信号与系统习题解答

合集下载

信号与系统习题与答案

信号与系统习题与答案

【填空题】(为任意值)是________ (填连续信号或离散信号),若是离散信号,该信号____(填是或不是)数字信号。

【填空题】是________ (填连续信号或离散信号),若是离散信号,该信号____(填是或不是)数字信号。

【填空题】信号________ (填是或不是),若是周期信号,周期为__pi/5__。

【填空题】系统为____(填线性或非线性)系统、____(填时变或非时变)系统、____(填因果或非因果)系统。

【填空题】系统为____(填线性或非线性)系统、____(填时变或非时变)系统、____(填因果或非因果)系统。

【简答题】判断下图波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号。

连续时间信号【简答题】判断下图波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号。

离散时间信号且为数字信号【简答题】判断信号是功率信号还是能量信号,若是功率信号,平均功率是多少?若是能量信号,能量为多少?功率信号平均功率为4.5【简答题】线性时不变系统具有哪些特性?均匀性、叠加性、时不变性、微分性、因果性。

【填空题】的函数值为____。

2【填空题】的函数值为____。

【填空题】假设,的函数值为____。

1【填空题】假设,的函数值为____。

【填空题】的函数值为____。

我的答案:第一空:e^2-26【填空题】已知,将____(填左移或右移)____可得。

右移个单位7【简答题】计算的微分与积分。

8【简答题】什么是奇异信号?我的答案:奇异信号是指函数本身或其导数或高阶导数具有不连续点(跳变点)。

9【简答题】写出如下波形的函数表达式。

我的答案:f(t)=u(t)+u(t-1)+u(t-2)10【简答题】已知信号的图形如图所示,画出的波形。

我的答案:【简答题】信号微分运算具有什么特点?举一个应用实例。

特点:微分凸显了信号的变化部分。

微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S R S L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。

1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。

题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

题图 1-10形图。

题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。

(完整word版)信号与系统专题练习题及答案

(完整word版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t 〈3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>—1 D t 〉-22.设当t 〈3时,x (t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t 〉-1 B t=1和t=2 C t>—1 D t>—23.设当t<3时,x(t )=0,则使x (t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/2 5.下列各表达式中正确的是 BA. )()2(t t δδ= B 。

)(21)2(t t δδ= C. )(2)2(t t δδ= D 。

)2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B . A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统 7。

已知 系统的激励e(t )与响应r (t)的关系为:)()(2t e t r = 则该系统为 C .A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。

⎰∞-=t d ττττδ2sin )( A 。

A 2u (t ) B )(4t δ C 4 D 4u (t) 10. dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B —1 C 2 D —211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D . A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

奥本海姆《信号与系统(第二版)》习题参考答案

奥本海姆《信号与系统(第二版)》习题参考答案

第一章作业解答解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2;解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 2 34 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。

解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。

(也可以通过改变顺序求取输入、输出关系,与前面做对比)。

解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。

信号与系统复习题及答案

信号与系统复习题及答案

1.系统的激励是,响应为,若满足,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?)2.求积分的值为 5 。

3.当信号是脉冲信号时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4.若信号的最高频率是2kHz ,则的乃奎斯特抽样频率为 8kHz 。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的 截止频率 成反比。

7.若信号的,求该信号的。

8.为使LTI 连续系统是稳定的,其系统函数的极点必须在S 平面的 左半平面 。

9.已知信号的频谱函数是,则其时间信号为。

10.若信号的,则其初始值 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足 ( √ )2.满足绝对可积条件的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × )得分)t (e )t (r dt)t (de )t (r =dt )t ()t (212-+⎰∞∞-δf(t)f(t)t)f(23s F(s)=(s+4)(s+2)=)j (F ωj 3(j +4)(j +2)ωωω)s (H ))00(()j (F ωωδωωδω--+=f(t)01sin()t j ωπf(t)211)s (s )s (F +-==+)(f 0)()(t t -=δδ∞<⎰∞∞-dt t f )(3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)1.信号,信号,试求。

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin [()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x ed τττ--∞=⎰连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n n x n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()s in ()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()t x t A e -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()c o s 0tx t ett -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5k x k k =≥ 离散、模拟、非周期、能量型(6) 0().j kx k eΩ= 离散、模拟、周期、功率型()s i n [()];()()()(2);()()tt y t A x t y t x ed y n x n y n n x n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题n=0:pi/10:2*pi;y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill'),title('(0.8)^n'),gridn1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill'),title('exp[2*pi*n1'),gridsubplot(4,1,4),stem(n1,sin(2*pi*n1),'fill'),title('sin2pin1'),gridsubplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、总结归纳连续及离散系统零输入响应、零状态响应的求解方法与步骤。
10、试分析系统与信号的关系。
习题
2-1
1、
解:线性验证:
4[ar1(t)+br2(t)]=
=
=
可以看出,当输入x(t)= ,r(t)=ar1(t)+br2(t)],满足齐次性和叠加性,因此为线性系统;
时变性判断:设输入x(t-t0),则有
第一章
思考题
1、信号有哪些类型,各类信号的特点是什么?
答:
2、信号与函数有何同异点?
3、正交函数满足什么条件?具有相似性的函数是否正交?能否正交函数集中的某个函数用其余函数表示出来?
4、信号的基函数表示法有何重要意义?
5、 函数有哪些重要性质?
6、阶跃函数有什么应用?
7、u(t)与 有何关系?
8、由信号的脉冲分解表达式解释脉冲分解的含义。
本题或者直接使用反证法求证,即i和j直接取不满足条件的值求证。
1-6 1,x,x
证明:
两函数正交的条件应满足 (i j),而本题取i=0,j=1可得,
则该函数几何在(0,1)区间上不是正交函数集。
1-7
1、
2、
3、
4、
5、
6、
1-8
1、
2、
3、
4、
5、
6、
1-9
解:要画出g1(t)的波形,下面两种次序的解法均可:
3、如何判别系统是线性时不变系统?
4、连续系统和离散系统有何异同?
5、试解释零输入响应、零状态响应、自由响应、强迫响应、(暂态)瞬态响应、稳态响应及系统响应的物理含义。
6、零状态初始条件与零输入初始条件有什么类型?
7、单位冲激响应的意义和重要性是什么?
8、单位脉冲响应是零输入响应吗?它与零输入响应有什么关系?
x(t-t0+3)
2、
解:设 ,则
ay1(t)+by2(t)=
=
上式与当输入x(t)= 时的输出r(t)式子不符合,顾此系统为非线性系统;
(1)
(2)
要画出g2(t)的波形可以按照多种次序进行,下面介绍一种:
1-10
第3题的数学解法是先写出f(t)的表达式,再对表达式进行微分运算:
=
第四题的数学解法分段积分求取(积分使用分部积分法):
在 上,
在 上,
1-11

思考题
1、试阐述系统的概念及分类,各类系统的数学模型的主要特征是什么?
2、系统分析的任务是什么?
9、信号或序列的时移、反褶、波形展缩各有什么含义?三者之间有何差异?
10、同一信号的连续函数与离散函数有什么异同点?信号采样应满足什么条件?否则会出现什么情况?
11、信号采样有哪些方法?
习题
1-1
1-2
1-3
(1)
表达式为:
(2)
表达式为:
(3)
表达式为:
1-4
证明:
1-5
证明:
上式只有i , j同时为偶数或奇数时才为0,否则不为0,故函数集在(0,π/2)内不是正交函数集。
相关文档
最新文档