数学建模 生活中的建模
数学建模 几何在生活中应用

数学建模几何在生活中应用
数学建模在几何学的应用在生活中非常广泛,以下是一些具体的应用实例:
1.购房贷款:在购房过程中,数学模型可以帮助我们理解和分析贷款的各种可能方案。
例
如,利用数学模型,我们可以比较等额本金和等额本息这两种不同的还款方式,并计算出在不同利率和还款期限下,每种方式的还款总额和每月还款金额。
这样,我们就可以选择最适合自己的还款方案。
2.时尚穿搭:高跟鞋是一种时尚单品,但穿多高的高跟鞋才能达到最佳的视觉效果呢?这
时,我们可以借助数学模型来解决这个问题。
根据黄金分割原理,当女生的腿长和身高比值是0.618时,身材会显得最迷人。
因此,我们可以计算出最适合女生身高的高跟鞋高度,使她们在穿搭上更加出彩。
3.银行利率:在金融领域,数学建模也发挥着重要作用。
例如,我们可以通过建立数学模
型来分析银行利率的变化对存款或贷款的影响。
这种分析可以帮助我们更好地理解金融市场的运作,从而做出更明智的决策。
生活中的数学建模问题例子

生活中的数学建模问题例子生活中的数学建模问题数学建模是将实际问题抽象为数学模型的过程,通过数学模型的建立和求解,可以对问题进行分析、预测和优化。
在生活中,我们会遇到许多需要用数学建模来解决的问题。
下面是一些常见的例子。
1. 交通拥堵问题问题描述在城市交通流量较大时,往往会出现交通拥堵的情况。
为了合理规划交通流量,我们需要建立一个能预测交通拥堵程度的数学模型。
建模过程•收集数据:首先,我们需要收集一段时间内的交通数据,包括车辆数量、行驶速度等信息。
•分析数据:根据收集到的数据,我们可以分析交通拥堵的原因和模式。
例如,可以通过分析车辆密度和速度的关系来确定交通流量的阈值。
•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述交通拥堵程度。
例如,可以使用流体力学中的守恒方程,考虑车辆的流入、流出和流动等因素。
•模型求解:通过求解建立的数学模型,我们可以得到交通拥堵程度的预测结果。
•模型评估和优化:根据模型预测的结果,我们可以评估当前交通规划的效果,并提出优化建议。
2. 疫情传播问题问题描述在疫情爆发时,我们希望能够及早预测疫情的传播趋势和规模,以便采取相应的措施来控制疫情。
建模过程•收集数据:收集疫情传播的相关数据,包括感染人数、治愈人数、病毒传播速度等信息。
•分析数据:利用收集到的数据,我们可以分析疫情传播的特点和规律。
例如,可以通过分析感染人数的增长速度来预测疫情的传播趋势。
•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述疫情传播的过程。
例如,可以使用传染病数学模型中的传染病传播动力学模型,考虑人群的感染、康复和死亡等因素。
•模型求解:通过求解建立的数学模型,我们可以得到疫情传播的预测结果。
•模型评估和优化:根据模型预测的结果,我们可以评估当前疫情防控的效果,并提出优化建议。
3. 资产投资问题问题描述在投资领域,我们希望能够通过建立数学模型来分析不同投资策略下的收益和风险,并进行优化选择。
数学建模在生活中的应用

数学建模在生活中的应用数学建模是将真实世界中的问题转化为数学模型并进行求解的过程。
这样就可以通过分析数学模型得出对问题的解决方案和预测未来发展趋势。
现代生活中数学建模的应用非常广泛,以下是其中的几个例子。
1. 交通流量预测城市交通拥堵是一个普遍存在的问题,交通流量预测可以帮助城市规划者和交通管理部门更好地组织交通流量。
数学建模可以通过收集历史交通数据、道路拓扑结构、公共交通等因素,建立交通流量预测模型。
在此基础上,通过计算预测出交通流量峰值,及时采取合适的交通管理措施来避免拥堵。
2. 风险评估与保险在金融领域中,数学建模可以用于风险评估和保险计算。
对于保险公司来说,通过数学建模可以评估风险和建立合适的保险方案。
这样保险公司不仅可以根据风险程度收取合理的保费,而且可以保证公司的盈利。
3. 医疗应用医学研究因其数据复杂性而需要使用数学建模。
医学数学建模主要应用于疾病预测、疾病分类、治疗优化等方面。
例如,肿瘤生长模型可以帮助医生预测肿瘤的发展趋势,从而为合适的治疗方案提供基础。
4. 客流管理在公共交通系统,数学建模可以用于客流管理。
这些模型可以帮助人们更好地规划使用公共交通工具的时间和路线。
通过收集历史客流数据和公共交通运营数据,建立客流管理模型,就可以在客流高峰期和交通停机时间段内提供更好的公共交通服务。
5. 工业生产优化数学建模可以为工业企业提供优化生产方案的支持。
生产优化模型可以在减少物料浪费、提高生产效率和优化工程任务分配的同时,最小化生产成本。
总之,数学建模在现代生活中的应用非常广泛。
通过数学建模的分析、设计和优化,我们可以在各个领域中提高效率,提高准确性,从而更好地满足人们的需求。
生活中的数学建模

生活中的数学建模生活中的数学建模无处不在,可以帮助我们解决现实生活中的各种问题。
本文将介绍数学建模的概念、应用领域以及实际案例,旨在展示数学建模在我们日常生活中的重要性和影响。
1. 数学建模的概念数学建模是将实际问题转化为数学问题,并运用数学方法进行求解的过程。
它结合了数学理论与实际应用,通过建立数学模型来描述与解释现实现象,为问题的分析和决策提供科学依据。
2. 数学建模的应用领域数学建模广泛应用于各个领域,包括经济学、物理学、生物学、环境科学、医学等。
下面将重点介绍几个常见的应用领域。
2.1 经济学领域在经济学中,数学建模可以用于预测市场走势、量化风险和利润等。
例如,通过建立投资组合模型,投资者可以根据历史数据和数学模型来分析和优化投资组合,以实现最大的收益和最小的风险。
2.2 物理学领域在物理学中,数学建模可以用于解释和预测物理现象。
例如,通过建立数学模型来描述天体运动规律,科学家们可以预测天体的位置和轨迹,为天文学的发展提供重要的理论基础。
2.3 生物学领域在生物学中,数学建模可以用于研究生物系统的行为和相互作用。
例如,通过建立生物传染病传播模型,科学家们可以预测病毒传播速度和传播路径,为疾病控制和预防提供科学依据。
2.4 环境科学领域在环境科学中,数学建模可以用于模拟和预测环境变化。
例如,通过建立气候模型来研究全球变暖的趋势和影响,科学家们可以提出减少温室气体排放的策略,以减缓气候变化的进程。
2.5 医学领域在医学中,数学建模可以用于疾病诊断、治疗和药物研发等方面。
例如,通过建立数学模型来模拟药物在人体内的传输和作用机制,科学家们可以优化药物疗效和副作用的平衡,为药物研发提供指导。
3. 生活中的数学建模实例生活中的数学建模可以帮助我们解决各种实际问题,下面将介绍几个实际案例。
3.1 交通流量优化在城市交通管理中,数学建模可以帮助优化交通流量,减少拥堵现象。
通过建立交通流量模型,研究者可以分析道路的瓶颈和交通信号灯的优化方案,提高交通效率和减少交通事故的发生。
数学建模在生活中的应用

数学建模在生活中的应用数学建模是将抽象的数学概念应用于实际问题的方法,它在生活中的应用非常广泛。
下面将详细介绍数学建模在生活中的几个应用领域。
首先是交通规划领域。
交通规划是城市发展和交通安全的重要组成部分。
通过数学建模,可以对城市交通流量进行分析和预测,进而制定最佳的交通控制策略。
可以利用数学模型来优化交通信号灯的定时,使得交通流量更加顺畅,减少拥堵和交通事故的发生。
数学建模还可以用于制定交通运输网络的规划,预测未来的交通需求,以满足城市发展的要求。
其次是金融领域。
金融市场是由众多参与者和复杂交互关系组成的。
数学建模可以帮助金融机构和投资者更好地理解市场行为和趋势,制定有效的投资策略。
可以利用数学模型分析股票和期货市场的价格波动,进行投资组合优化,降低风险并提高收益。
数学建模还可以应用于金融风险管理领域,通过对市场的风险建模和模拟,预测和评估金融风险的发生概率和影响。
再次是医学领域。
数学建模在医学研究和临床实践中发挥着重要作用。
数学模型可以用来分析疾病的传播和扩散机制,预测疫情的发展趋势,指导制定合理的防控措施。
数学建模还可以应用于医学影像处理、医疗设备设计等领域,提高医疗诊断和治疗的准确性和效率。
最后是环境保护领域。
数学建模可以帮助解决环境问题,如气候变化、环境污染等。
可以利用数学模型来分析和模拟大气循环、海洋动力学等复杂的自然系统,预测气候变化的趋势和影响。
数学建模还可以帮助优化环境监测网络的布点和数据采集策略,提高环境污染的监测和控制效果。
数学建模在生活中的应用非常广泛,涉及交通规划、金融、医学和环境保护等多个领域。
通过数学建模,我们可以更好地理解和解决实际问题,为社会发展和人类福祉做出贡献。
数学建模在生活中的应用

数学建模在生活中的应用数学建模是一种通过数学工具和方法来模拟、分析和解决实际问题的过程。
它在科学、工程、经济和社会等领域都有广泛的应用。
数学建模可以帮助人们更好地理解和预测复杂的现象,提高决策的科学性和准确性,为社会的发展和进步提供重要的支持和保障。
在日常生活中,数学建模也扮演着重要的角色,它为我们的生活带来了诸多便利和改变。
本文将从不同方面介绍数学建模在生活中的应用。
一、交通运输交通运输是人们日常生活中不可或缺的一部分,而数学建模在交通运输领域发挥着重要的作用。
通过数学建模,交通规划者可以分析交通流量、预测交通拥堵、提高交通效率,优化交通路网布局和信号控制方案,减少交通事故的发生率。
数学建模还可以帮助人们规划出行路径,选择最佳的交通方式和出行时间,提高出行效率和舒适度。
二、气象预报气象预报是人们生活中的一个重要方面,而数学建模在气象预报领域的应用为人们提供了准确的天气信息和预测。
通过建立气象数学模型,科学家们可以模拟大气运动、云雨演变等过程,从而对天气变化进行预测。
数学建模可以为人们提供及时的气象预警,预防自然灾害的发生,也为农业、交通、航空等行业提供重要的气象信息支持。
三、医学影像在医学影像领域,数学建模发挥着重要的作用。
医学影像技术如CT、MRI等都需要通过数学建模对患者的内部结构和器官进行准确的重建和分析。
数学建模可以帮助医生更清晰地观察患者的内部情况,辅助医学诊断和手术规划,促进治疗效果的提高,降低医疗风险。
四、金融数学建模在金融领域的应用日益广泛,它可以帮助金融机构对市场趋势进行预测,控制风险,优化投资组合,提高资产配置效率。
数学建模还可以为个人投资者提供科学的投资建议,帮助他们进行风险评估和资产配置,实现财富增值。
比特币的市场波动,也可以通过数学建模来规划金融方案的解决。
五、环境保护在环境保护领域,数学建模可以帮助人们对环境污染、资源利用和生态平衡等问题进行分析和预测。
通过建立环境数学模型,人们可以模拟环境变化的规律,评估环境政策的效果,制定合理的环境保护和治理措施,保护自然生态环境的完整性和稳定性。
结合生活中的例子说明数学建模的一般过程

结合生活中的例子说明数学建模的一般过程数学建模是一种抽象问题实际化的过程,通过数学方法和技巧来解决实际问题,常常被应用在工程、物理、经济、社会等多个领域。
下面将结合几个生活常见例子,来说明数学建模的一般过程。
首先,我们以交通拥堵问题为例。
当我们面临交通拥堵的情况时,我们可以通过数学建模来分析交通流量、交通瓶颈等因素,以便采取相应的措施减轻拥堵。
首先,我们需要收集一些实际数据,比如道路的长度、车辆的平均速度等。
然后,我们可以利用流体力学中的守恒方程建立数学模型,将道路上的车辆看作流体,并根据车辆的密度和速度等因素推导出交通流量的方程。
最后,我们可以通过求解这个方程,得出交通流量的变化规律,从而提出一些改善交通拥堵的建议。
其次,我们以环境污染问题为例。
当我们面临环境污染的情况时,我们可以通过数学建模来分析污染物的排放、扩散等过程,以便制定相应的环保政策。
首先,我们需要收集一些实际数据,比如污染物的排放量、风向风速等。
然后,我们可以利用物理学中的扩散方程建立数学模型,描述污染物在环境中的传播过程,并根据环境因素推导出污染物浓度的变化规律。
最后,我们可以通过求解这个方程,得出污染物浓度的分布情况,从而制定相应的环保政策。
再次,我们以金融投资问题为例。
当我们面临金融投资的决策时,我们可以通过数学建模来分析不同投资方案的风险和收益,以便做出明智的投资决策。
首先,我们需要收集一些实际数据,比如资产的收益率、风险指标等。
然后,我们可以利用概率论和统计学的方法建立数学模型,评估不同投资方案的风险和收益,并根据个人的风险偏好制定投资策略。
最后,我们可以通过模型的输出结果,比如预期收益率和风险指标等,来指导实际的投资决策。
通过以上几个例子,我们可以看到数学建模的一般过程。
首先,需要明确问题的背景和目标,以便选择适当的建模方法和技巧。
然后,收集实际数据,并对数据进行分析和处理,以便建立合理的数学模型。
接着,推导出模型的方程或表达式,并通过数值计算或解析求解等方法得到模型的解析解或近似解。
数学建模在生活中的应用

数学建模在生活中的应用数学建模是一种将现实问题转化为数学问题,并通过建立数学模型来分析和解决问题的方法。
它是数学与其他学科交叉的一种重要方法,广泛应用于科学、工程、经济、环境保护等领域。
下面将介绍数学建模在生活中的一些应用。
数学建模在物流领域有着重要的应用。
物流是指从供应链上的某一环节到另一环节所涉及的物品的流动过程。
数学建模可以帮助企业优化物流路径、合理安排货物运输,从而减少物流成本、提高物流效率。
在货物配送过程中,数学建模可以依据货物的种类、数量、运输距离等因素,建立数学模型来确定最佳的配送方案,以最小的时间和成本完成货物的运输。
数学建模在交通规划和优化中也有着重要的应用。
随着城市的不断发展和交通流量的增加,交通拥堵问题愈发严重。
数学建模可以通过分析交通流量、道路网络、交通信号灯等因素,建立交通流模型,进而预测和优化交通流量分布,提高交通系统的效率。
数学建模还可以帮助交通规划者预测未来交通需求,合理规划道路、交叉口、公交线路等交通设施。
数学建模在环境保护方面也发挥着重要的作用。
由于工业化进程的快速发展,环境问题日益突出。
数学建模可以通过建立环境系统的数学模型,对污染源、环境因素等进行分析和预测,以实现环境保护的科学决策和可持续发展。
数学建模可以对城市空气质量进行预测和评估,提供科学依据和措施来改善空气质量。
数学建模还在医学诊断、金融风险评估、能源规划等领域有着广泛应用。
医学诊断方面,数学建模可以通过分析医学数据,建立疾病模型,提供对疾病的早期预测和诊断,帮助医生做出准确的诊断。
金融风险评估方面,数学建模可以帮助金融机构通过建立数学模型,对风险进行评估和控制,提高金融机构的稳定性和可靠性。
能源规划方面,数学建模可以通过建立能源系统的数学模型,进行能源供应与需求的优化配置,提高能源利用效率,降低能源的浪费。
数学建模在生活中的应用非常广泛,几乎涉及到方方面面。
它的应用可以帮助人们更好地理解和解决各种现实问题,提高生活质量和经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.让学生明白数学建模的过程是从简单到复杂多次循环的过程,认真分析人口的增长问题,使学生体会建模过程.
3.想像力、洞察力和判断力的培养是数学建模的主要任务之一,从课程就应该抓紧. 可用以下例子:
A.人人都能做到: 哥伦布与鸡蛋
B.对称性-----
分析思维与综合思维的对比: 一杯咖啡与一杯牛奶
C.杀鸡用牛刀: 到河里饮水
D.思维并无限制: 漏洞原理
E.小洞不补,大洞吃苦ห้องสมุดไป่ตู้ 睡莲问题
F.错误的感觉---再快一点就能如愿以偿: 高速问题
G.有限和无限
讨论题:交通路口红绿灯:十字路口绿灯亮15秒,最多可以通过多少辆汽车?
周授课教案
课程名称
数学建模
教学周数
第7、8、9、10周 4课时
课程主题: 优化模型
周授课教案
课程名称
数学建模
教学周数
第3、4、5、6周
4课时
课程主题:人口的增长 数学建模的基本方法和步骤 数学模型的特点和分类 数学建模能力的培养
教
学
方
案
教学目的:
通过具体建模案例的教学,使学生掌握数学建模的基本思想、基本方法、基本类型;培养学生联想、洞察能力、综合分析能力、协作能力和科技论文写作能力,激发学生的学习积极性,培养学生应用数学解决实际问题的能力。
从顾客的利益出发, 自然希望在每批锁具中"一把钥匙开一把锁". 但是在当前工艺条件下, 对于同一批中两个锁具是否能够互开, 有以下试验结果: 若二者相对应的 5个 槽的高度中有 4个相同, 另一个的高度差为 1, 则可能互开; 在其它情形下, 不可能互开.原来, 销售部门在一批锁具中随意地取每 60个装一箱出售. 团体顾客往往购买几箱到几十箱, 他们抱怨购得的锁
讨论题:
某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示:
每个书桌
每个餐桌
每个椅子
现有资源总数
木料
8单位
6单位
1单位
48单位
漆工
4单位
2单位
1.5单位
20单位
木工
2单位
1.5单位
0.5单位
8单位
成品单价
60单位
30单位
20单位
若要求桌子的生产量不超过5件,如何安排三种产品的生产可使利润最大?
教学内容:
1.3. 建模示例之一;椅子能在不平的地面上放稳吗;
1.4. 建模示例之二:商人们怎样安全过河;
1.5. 建模示例之三:如何预报人口的增长;
1.6. 数学建模的基本方法和步骤;
1.7. 数学模型的特点和分类;
1.8. 数学建模能力的培养.
教学重点和难点:
数学建模基本思想和基本方法。
教学过程:
4) 按照原来的装箱办法, 如何定量地衡量团体顾客抱怨互开的程度 (试对购买一、二 箱者给出具体结果).
5)考试
用数学建模方法来解决一个优化问题的时候,首先要确定优化的目标是什么,寻求的决策是什么,决策受到哪些因素的影响,然后用数学工具(变量、常数、函数)表示它们。所以在讲授时,必需把问题分析清楚。
1.重点分析“存储问题”和“森林救火问题”。
2.存储管理在现代企业管理中占有重要地位,研究较深入,这里仅仅介绍比较简单的存储模型。首先引导学生对存储问题有一个基本的认识,此问题的目标应为贮存费,然后分析清楚贮存费的主要因素有哪些,如何度量它们,最后在一定的需求下建立模型,并进行敏感性分析。
4.轧钢中的浪费 这是经常遇到的实际,常规建模即可,但需引导学生上下功夫。
讨论题:锁具装箱
某厂生产一种弹子锁具, 每个锁具的钥匙有 5 个槽, 每个槽的高度从 {1,2,3,4, 5,6} 6 个数 (单位略) 中任取一数. 由于工艺及其它原因, 制造锁具时对 5 个槽的高度还有两个限制: 至少有 3 个不同的数; 相邻两槽高度之差不能为 5. 满足以上条件制造出来的所有互不相同的锁具称为一批.出来的所有互不相同的锁具称为一批.
3.森林救火是一个具有现实意义问题,此问题的目标很容易得到,即,损失费和救援费,而影响因素稍复杂,但都与速度有关,因此,应引导学生用微元法来建模。
4.“生猪的出售时机”和“最优价格”教师引导学生把问题分析清楚,让学生在一定假设下建立模型。
讨论题:航天飞机的水箱:考虑航天飞机上固定在飞机墙上供宇航员使用的水箱。水箱的形状为在直圆锥顶上装一个球体。如果球体的半径限定为正好6米,水箱的表面积为450平方米,请你为宇航员设计水箱,使它的容积最大。
《数学建模在生活中的应用举例》
周授课教案
周授课教案
课程名称
数学建模
教学周数
第1、2周 2课时
课程主题: 课程介绍 总体教学安排 教学要求
教
学
方
案
教学目的:
通过具体建模案例的教学,使学生掌握数学建模的基本思想、基本方法、基本类型;学会进行科学研究的一般过程,并能进入一个实际操作的状态;通过数学模型有关的概念与特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力、数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力、协作能力和科技论文写作能力;培养学生应用数学解决实际问题的能力。
教学重点和难点:
建立概率模型的基本思想和基本步骤,随机思想的培养.
教学过程:
在社会、生产、科研和生活中,许多问题的不确定现象都是由随机因素的影响所造成的,而随机因素的变化往往都会服从于一定的概率分布。在实际中,就是利用这些概率分布对问题进行研究,从而可以对所研究的实际问题做出估计、判断。预测和决策。
1.传送带的效率 引导学生讨论系统的传送效率如何衡量,传送效率――一周内带走的产品数与全部产品数之比。而带走的产品数是随机的,所以,这是一个随机问题。
2.报童的诀窍 引导学生分析此问题与需求有关,而需求是随机的。另,在求解时,把此问题化为连续问题会非常方便,应给予重视。
3.随机存储策略 回忆存储模型,分析它与某些实际问题的差异,提出问题,建立模型,求解并分析结果即可。
教
学
日
记
教学目的:
理解静态优化问题的建模思路,掌握静态优化的方法,能把一些比较简单的静态优化问题转化为数学模型,并求解。
教学内容:
3.1.存储问题
3.2.生猪的出售时机
3.3.森林救火
3.4.最优价格
教学重点和难点:
如何把静态优化问题转化为数学模型,并求解。
教学过程:
优化问题可以说是人们在生活中经常遇到的一类问题,这一章我们介绍较简单的优化模型,归结为微积分中的函数极值问题,可以直接用微分法求解。
课程名称
数学建模
教学周数
第11、12、13、14周 4课时
课程主题: 线性规划模型奶制品的生产与销售
教
学
方
案
教学目的:
1.掌握建立线性规划模型的最基本建模技巧
2.掌握用Lindo6.1软件求解线性规划模型的方法,并能根据求解报告正确解答线性规划问题的灵敏度分析问题。
教学内容:
4.1.奶制品的生产与销售
具会出现互相开的情形. 现聘聘请你为顾问, 回答并解决以下问题:
1)每一批锁具有多少个, 装多少箱.
2) 为销售部门提供一种方案, 包括如何装箱(仍是60个锁具一箱),如何给箱子以标志, 出售时如何利用这些标志, 使团体顾客不再或减少抱怨.
3) 采取你提出的方案, 团体顾客的购买量不超过多少箱, 就可以保证一定不会出现互开.
周授课教案
周授课教案
课程名称
数学建模
教学周数
第15、16、17周 3课时
课程主题: 概率模型报童的诀窍 随机存储策略 轧钢中的浪费、考试
教
学
方
案
教学目的:
理解用概率方法建立模型的基本思路和技巧,能够建立一些比较简单问题的概率模型。
教学内容:
9.1.传送带的效率
9.2.报童的诀窍
9.3.随机存储策略
9.4.轧钢中的浪费
教学重点和难点:
模型建立以及结果分析。
教学过程:
1.问题分析:确定优化问题的目标――利润,决策变量――两种奶制.
2.寻找约束条件:原料供应、劳动时间、设备能力和非负约束.
3.建立模型并用图解法和LINDO软件求解.
4.引导学生分析软件输出的结果并给出相应经济意义.
5.扩充问题.
注:讲授时注重线性模型的三要素:目标函数、决策变量和约束条件.
教学内容:
1.课程介绍、说明总体教学进度的安排以及实践教学的设想;
2.参考书见ppt;
3.课程介绍:
1.1.从现实对象到数学模型
1.2.数学建模的重要意义
教学重点和难点:
数学模型、数学建模过程等。
作业和讨论要求:
1.每位同学准备两本作业本,轮流交,每周第一节课各收、发一次作业,作业全批全改。
2.每三人为一组(随机分组),根据教师布置的问题,小组首先讨论,形成小组的数学模型,其次,各小组在班上报告和讨论,最后,根据讨论的情况后定稿。