飞行器飞行原理演示幻灯片

合集下载

直升机结构与系统--直升机飞行原理 ppt课件

直升机结构与系统--直升机飞行原理  ppt课件

《直升机结构与系统》 第1章 直升机飞行原理
直升机与固定翼飞机的比较:主要的不同之处是4个基本力(重力、升 力、推力和阻力)中的升力、推力和阻力的产生方法不一样。 ➢ 升力由运动的翼型产生,要改变升力的大小,则必须改变翼型与相 对气流之间的攻角。
• 在固定翼飞机上,要想实现改变攻角,必须通过改变机身沿横轴的俯 仰角的大小。
旋翼实度。 ➢ 挥舞(FLAPPING):在升力的作用下,桨叶绕水平关节的垂直运动。 ➢ 阻尼(DRAGGING):在阻力作用下,桨叶绕垂直关节的水平运动,也称摆
振。 ➢ 垂直飞行(VERTICAL FHGHT):直升机在垂直方向的上升和下降,由总距
杆操纵。 ➢ 转换飞行(TRANSLATIONAL FLIGHT):除垂直方向以外任何方向的飞行,
《直升机结构与系统》 第1章 直升机飞行原理
主旋翼
➢ 主旋翼
• 旋翼有效力
把每片桨叶产生的 升力合成为一个力, 这个力作用在桨叶 叶尖旋转平面的中 心,且垂直于这个 平面,这个力叫做 旋翼有效力,也叫 旋翼总空气动力。
《直升机结构与系统》 第1章 直升机飞行原理
• 旋翼锥体角
主桨叶形成一个倒锥体,桨叶与桨毂旋转平面之间的夹角叫做锥体角,它的 定义是桨叶的展向中心线与桨叶叶尖平面之间的夹角。
《直升机结构与系统》
第 01 章 直升机飞行原理
《直升机结构与系统》 第1章 直升机飞行原理
1.1 直升机概述(直升机与垂直/短距起落飞行器)
垂直/短距起落飞行器(V/STOL aircraft) ➢ V/STOL:vertical or short takeoff and landing ➢ 空气动力学原理主要侧重于在低速前飞时升力的产生。 ➢ “升力”是指飞行中为保持飞行器在空中飞行所需的垂直向上的力, 它也可能是常规的垂直向上的力和前飞所需的推进力的合力。

多旋翼无人机的飞行原理PPT课件

多旋翼无人机的飞行原理PPT课件

多旋翼无人机操控原理——六种运动
要操控无人机,就要操控它的各种运动,如图1-10所示,无人机 的整个飞行轨迹都是靠操控它的这六种运动来实现的。
多旋翼无人机操控原理——运动控制
①垂直运动控制。 当同时增加或减小4个旋翼的升力时,无人机垂直上升或下降;当 四旋翼产生的升力总和等于机体的自重时,四旋翼无人机便保持平衡状 态。四个旋翼同时增加升力,无人机就开始垂直上升。
两个物体之间的作用力和反作用力,在同一直线上,大小相等, 方向相反。牛顿第三运动定律也称为作用力与反作用力定律。
在多旋翼无人机的操控中,要用到此定律,比如多旋翼无人机的 自旋操控就是通过控制正桨和反桨作用在无人机上的扭矩大小来实现 的。
主要知识点回顾——欠驱动系统
欠驱动系统就是指系统的独立控制变量个数小于系统自由度个数 的一种非线性系统,多旋翼无人机就是典型的欠驱动系统,由于高度 非线性、参数摄动、多目标控制要求及控制量受限等原因,所以控制 难度较大。
主要知识点回顾——牛顿第二运动定律
物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比。 牛顿第二运动定律也称为加速度定律,它表明力的瞬时作用规律:力 和加速度同时产生,同时变化,同时消失。
所以,无人机的姿态和飞行速度的改变,需要在相应的方向上有 力的作用。
主要知识点回顾——牛顿第三运动定律
主要知识点回顾——全驱动系统
和欠驱动系统不同,全驱动系统的独立控制变量个数等于系统自 由度个数,具有操纵灵活、控制算法设计简单等特点,固定翼无人机 就是典型的全驱动系统。
飞行原理
主要知识回顾
多旋翼无人机飞行 原理
多旋翼无人机操控原理——飞行模式
四旋翼无人机的飞行模式有两种,左图为十字模式,右图为X字模 式。如前所述,多旋翼无人机根据旋翼桨距是否可控分为两类:旋翼 变距类和旋翼变速类,而电动多旋翼无人机基本都属于旋翼变速类, 下面就以旋翼变速类四旋翼无人机的十字模式为例,来对多旋翼无人 机操控原理进行介绍。

6种姿态飞行原理ppt课件

6种姿态飞行原理ppt课件
xx
俯仰运动
6
与俯仰运动的原理相同,右 图中,改变电机2和电机4 的转速,保持电机1和电机 3的转速不变,则可使机身 绕x轴旋转(正向和反向), 实现飞行器的滚转运动
滚转运动
xx
7
四旋翼飞行器偏航运动可以借助旋翼产生的 反扭矩来实现。旋翼转动过程中由于空气阻 力作用会形成与转动方向相反的反扭矩,为 了克服反扭矩影响,可使四个旋翼中的两个 正转,两个反转,且对角线上的来年各个旋 翼转动方向相同。反扭矩的大小与旋翼转速 有关,当四个电机转速相同时,四个旋翼产 生的反扭矩相互平衡,四旋翼飞行器不发生 转动;当四个电机转速不完全相同时,不平 衡的反扭矩会引起四旋翼飞行器转动。在右 图中,当电机1和电机3的转速上升,电机2 和电机4的转速下降时,旋翼1和旋翼3对机 身的反扭矩大于旋翼2和旋翼4对机身的反扭 矩,机身便在富余反扭矩的作用下绕z轴转 动,实现飞行器的偏航运动,转向与电机1、 电机3的转标系
xx
2
垂直运动
俯仰运动
滚转运动
偏航运动
前后运动
xx
侧向运动
3
电机1 和电机3 逆时针旋转的同时,电机2 和电机4 顺时针旋转 ,因此当飞行器平衡飞行时,陀螺效应 和空气动力扭矩效应均被抵消
四旋翼飞行器在空间共有6个自由度(分别沿3个坐 标轴作平移和旋转动作)
xx
垂直运动
5
在图中,电机1的转速上升,电机 3的转速下降,电机2、电机4的转 速保持不变。为了不因为旋翼转 速的改变引起四旋翼飞行器整体 扭矩及总拉力改变,旋翼1与旋翼 3转速该变量的大小应相等。由于 旋翼1的升力上升,旋翼3的升力 下降,产生的不平衡力矩使机身 绕y轴旋转(方向如图所示),同 理,当电机1的转速下降,电机3 的转速上升,机身便绕y轴向另一 个方向旋转,实现飞行器的俯仰 运动

飞机的飞行原理PPT课件

飞机的飞行原理PPT课件
乱流——飞机飞入对流性云区,如积云、积雨云、层积云, 由于空气发生上下对流垂直运动,使机身起伏不定,会使乘 客感觉不舒服、晕机呕吐、颠伤,严重时导致飞机结构损坏, 造成飞机失事。
风切变——指某高度和另一高度间风速的变化。飞行员在 降落和爬升阶段要注意是否有风切变现象。 下降时,风速突然减弱,造成飞机失速,未抵达机场跑道就 坠毁;风速突然增强,造成飞机超越跑道降落;爬升时,风 速突然减弱,飞机爬升角度减小,风速突然增强,爬升角度 增大。
第22页/共40页
一、飞机的操纵
飞机的操纵,主要是通过3个操纵面 -------升降舵(有时 是全动平尾),方向舵和副翼来实现的。这些操纵面可分为 主要的,次要的和辅助的三类。
第23页/共40页
一、飞机的操纵
驾驶员操纵舵面改变飞机飞行状态,应该和人体的自然 动作趋势一致。驾驶员的常见操纵动作:
第24页/共40页
飞 机 着 陆 遇 侧 风
第8页/共40页
一、大气的结构和气象要素
云是空中水气的凝结物。云的不同形状和变化,既能反映 当时大气运动的状态,又能预示未来的天气变化,有经验的 飞行人员把云称为“空中地形”和“空中的路标”。云对飞 行的影响有以下几点:(1)低云妨碍飞机的起飞、降落。 (2)云中飞行可能出现颠簇。(3)云中飞行还可能造成飞 机积冰。
第9页/共40页
一、大气的结构和气象要素
降水是云雾中的水滴或冰晶降到地面的现象。降水通常 指雨、雪、冰、雹等。
降水对飞行的影响: 1.降水使能见度减小。 2.过冷雨滴会造成飞机结冰。 3.降水影响了跑道的正常使用。
第10页/共40页
降水改变了滑行阶段的摩擦系数,增长了滑行距离。 跑道可分为干跑道和湿跑道二类,干跑道属于正常起降, 而湿跑道,则要分下面四种情况:

飞行器飞行原理ppt课件

飞行器飞行原理ppt课件
53
2.3 飞机飞行原理
可重复使用的放热材料
用于像航天飞机类似的可重复使用的航天器的防热。 根据航天器表面不同温度的区域,采用相应的可重复使 用的防热材料。
例如:机身头部、机翼前缘温度最高,采用增强碳 碳复合材料,温度可耐受1593度;机身、机翼下表面前 部和垂尾前缘温度高,可采用防热隔热陶瓷材料;机身、 机翼上表面前部和垂尾前缘气动加热不是特别严重处, 可采用防热隔热的陶瓷瓦材料;机身中后部两侧和有效 载荷舱门处,温度相对较低(约350度),可采用柔性的 表面隔热材料;对于温度最高的区域,采用热管冷却和 强制循环冷却和发汗冷却等。
材料来制造飞机的重要受力构件和蒙皮; 2. 用隔热层来保护机内设备和人员; 3. 采用冷却液冷却结构内表面。
美国SR-71的机体结构的93%采用钛合 金越过热障,达到3.3倍音速。
52
2.3 飞机飞行原理
航天器的防热方法:
材料:石墨、陶瓷等。 高温下的热解和相变:固 液,固 气,液 气。 应用:烧蚀法适用于不重复使用的飞船、卫星等。
60
2.3 飞机飞行原理
B. 超声速飞机的机翼平面形状和布局形式
61
2.3 飞机飞行原理
62
2.3 飞机飞行原理
F-14 Tomcat 舰载机
米格-23
B-1 Lancer轰炸机
63
2.3 飞机飞行原理
边条涡
64
2.3 飞机飞行原理
超声速飞机的气动外形
鸭翼产生的脱体漩涡
机翼升力
鸭翼升力 机翼升力
流体黏性和温度有关,气体温度升高,黏性增大。液体相反。
4. 可压缩性
当气体的压强改变时,其密度和体积也改变,为气体可压缩性。 5. 声速

第二章 飞机飞行的基本原理ppt课件

第二章 飞机飞行的基本原理ppt课件

机翼上的压强分布
压心
阻力
作用在飞机上的空气动力在平行于气流速度 方向上的分力就是飞机的阻力。
摩擦阻力
压差阻力
诱导阻力
干扰阻力
附面层:
摩擦阻力
压差阻力
概念:翼尖涡
诱导阻力
翼尖涡的形成
诱导阻力的形成
诱导阻力的防止
干扰阻力
干扰阻力就是飞机各部分之间由于气流相互 干扰而产生的一种额外的阻力。
作变速运动。
(1)飞机的起飞 飞机从静止开始滑跑离开地面,并上升到h高度的加速
运动过程,叫做起飞。现代喷气式飞机安全 高度阶段。
飞机的主要飞行科目
A 3
h
1
2
1-起飞滑跑;2-加速爬升;3-起飞距离;4-建筑物
图2.31 飞机的起飞
散逸层 2000~3000km 电离层 800km 中间层 85km 平流层 50~55km 对流层 9~18km
如果你在对流层……
如果你在平流层……
如果你再往上……
继续往上……
2.1 飞行器飞行环境
大气物理特性:
连续性 有压强 有粘性 可压缩
大气的粘性
v∞
n
v∞
n
平板
(a)空气粘性实验示意图
飞机的主要飞行科目
飞机的主要飞行科目
A
h
5
4
3
2
1
6
1-下滑;2-拉平;3-平飞减速;4-飘落触地;5-着陆滑跑;6-着陆距离;7-建筑物
图2.32 飞机的着陆
飞机的主要飞行科目
(2)飞机的着陆 飞机的着陆同起飞相反,是一种减速运动。一般可分为五
个阶段:下滑、拉平、平飞减速、飘落触地和着陆滑跑。 合起来的总距离叫做着陆距离。

四轴飞行器PPT

四轴飞行器PPT

3.4 无刷马达旋转螺旋桨来提 供升力,以推动飞行器。与有 刷马达相比,无刷马达具有扭 % 力大、低耗损的优点,但由于 其结构,必须加上一些电路与 较为复杂的方法控制。本次使 用KV的无刷马达。见图四
Байду номын сангаас
50
图四
图三
3.5 电池提供控制板与马达电源。本 次专题使用11.1V1500mAh的锂电池( 最大放电25C,瞬间35C),如图五所 示。
映射到电机
32%
4
成果展示
2
系统整体框图
四轴飞行器的系统运作示意图如右 图所示,微控制器从传感器读取信 息,转换成飞行器姿态,飞行器上 的微控制器依此当前姿态,转换成 PWM信号控制电调,改变无刷电机 转速,来达到自主平衡与方向控制 。
传感器组
四轴飞行器
I^2C总线
PWM 单片机 电调 无刷电机
32%
3
硬件及软件设计
此次四轴飞行器的结构由两对正反桨、四颗无 刷马达、四个电子调速器(电调)、一颗电池构成 。 3.1 机身用来放置控制器、马 达、电池…等等的平台。机身 的大小,会限制螺旋桨的长度 ,进而影响到负载的大小;机 身的硬度,会使感测器受到马 达所产生震动影响的大小。本 次专题使用对角长度250mm的 机身。如图一
研究背景及意义:
近年来,由于微机电系统(Micro Electro Mechanical Systems,MEMS)技术快速发展,同时低成本、普及的传感器的产 生。便出现以算法与传感器为核心的四轴飞行器成为热门的研究课 题,其有着重量轻、体积小、结构简单、机动性高、维护方便等优 点。 四轴飞行器基于以上优点,可以应用于实时监控、地形探勘、 灾区救援及收寻。
3.7 惯性测量单元(IMU) 如图为单片机的I2C接口与传 感器的连接示意。 % 使用I2C总线即可与多个装置 通信。 本次使用MPU6050(三轴加速 度陀螺仪传感器)与HMC5883 (电子罗盘)。

《飞机飞行原理》PPT课件

《飞机飞行原理》PPT课件

第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差 (阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。
第二节 大气的一般介绍
空气的密度、温度和压力是确定空气状态 的三个主要参数。飞行中,飞机的空气动 力和大小和飞行性能的好坏都与这些参数 有关。
粘性和压缩性是空气的两种物理性质。在 飞行中,飞机之所以会受到空气阻力原因 之一就是空气有粘性。而飞机以接近音速 或者超过音速飞行时会出现阻力突增等现 象则与空气的压缩性有关。
3.空气密度的影响
空气密度越大,升力和阻力越大。升力、阻力的大小与空 气密度成正比。根据动压公式(g=1/2ρv,2),空气密度增大 后,气流流过机翼时的动压变化大。所以机翼上下的压力差 和机翼前后的压力差变化也大4.机真的影响
(1)面积:升力和阻力与面积成正比。
(2)平面形状:机翼产生升力后出现涡流,使上翼面压强增 加,下翼面压强减小,机翼升力受到损失,并产生诱导阻力。 当机翼平面形状接近椭圆形时,升力损失最小,诱导阻力也 较小,平面形状为矩形的机翼升力损失较大,诱导阻力也较 大。而梯形机翼居 两者之间,因此椭圆形机翼空气动力性能 最好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2.2 气ቤተ መጻሕፍቲ ባይዱ流动基本规律
2.2.2. 连续性定理和伯努力定理
1. 流体流动的连续性定理 可压缩流体沿管道流动的连续性方程
1v1A1 2v2 A2 L 常数
不可压缩流体沿管道流动的连续性方程
v1A1 v2 A2 L 常数
不可压缩流体流过 管道时,流速与截 面面积成反比
7
2.2 气体流动基本规律
2. 伯努利定理(1738年)
伯努利定理是能量守恒定律在流体中的应用。伯努利定 理描述了流体在流动过程中流体压强和速度之间的流动关系。
丹尼尔·伯努利
不可压缩 理想流体 的伯努力 方程
连续性定理和伯努力方程是分析和研究飞机上空气动力产生的物理原因及
其变化规律的基本定理。
8
2.2 气体流动基本规律
9
2.2 气体流动基本规律
14
2.3 飞机飞行原理
3. 平板剖面与相对气流速度成一定夹角
15
2.3 飞机飞行原理
2.3.2 机翼升力的产生和增升装置
翼型的定义:
16
2.3 飞机飞行原理
翼型按速度分:
翼型按形状分:
17
2.3 飞机飞行原理
翼型几何参数:
翼弦:前缘和后缘之间的连线。 迎角:翼弦与相对气流速度之间的夹角。
18
3. 低速气流和高速气流的流动特点
(1)低速气流特点 流动过程中近似认为不可压缩。管道收缩速度增大,静压减小。
(2)高速气流特点 高速飞行中,气流速度变化引起空气密度发生变化,从而引起空
气动力发生变化,必须考虑空气的可压缩性。特别对于高速气流。 空气可压缩性和空气密度和施加的空气压力有关。空气的密度和
《航空航天概论》
第二章 飞行器飞行原理
厦门大学航空航天学院
1
2.1 飞行环境
飞行环境包括大气环境和空间环境
2000~3000公里
大气外层顶界
2.1.1 大气环境 1. 对流层
哈勃太空望远镜平 均轨道高度569公里
太阳短波辐射
2. 平流层
3. 中间层(高空对流层) 4. 热层
平流层热量
5. 散逸层(外大气层)
(4)机翼剖面形状和迎角的影响
机翼剖面形状和迎角不同,产生的升力也不同,其影响通过升力
系数体现。升力系数起初随迎角增大而增大,但当迎角达到一定值后,
会骤降,出现失速。
综合各项因素,升力公式为:
Y
1 2
Cyv2S
21
2.3 飞机飞行原理
3. 增升装置 (1)改变机翼剖面形状,增大机翼弯度; (2)增大机翼面积; (3)改变气流动的流动状态,控制机翼上的附面层, 延缓气流分离;
季节和高度相关。为对飞行器的性能进行研究和对比,目前我国采用的国 际标准大气。
大气被看成完全气体,服从气体状态方程;以海平面高度为零高度。 在海平面状态为:气温15度,压强为一个标准大气压,密度为1.225kg/m2, 声速为341m/s。
4
2.1 飞行环境
7. 空间环境 真空、电磁辐
射、高能粒子辐射、 等离子体和微流星 体组成的飞行环境, 是航天器的主要环 境。
飞机不应以接近或大于临界迎角的状态飞行。
20
2.3 飞机飞行原理
2. 影响飞机升力的因素
(1)机翼面积的影响机翼
机翼面积应包括同机翼相连的部分面积。升力与机翼面积成正比。
(2)相对速度的影响
速度越大,空气动力越大,机翼上产生的升力也越大。升力与相 对速度的平方成正比。
(3)空气密度的影响
升力大小与空气密度成正比。
航空器的飞行环境主要是对流 层和平流层。
臭氧层吸收太阳紫外线
地面辐射热量
90%大气质量 99.9%大气质量 航空器飞行环境
国际空间站平均 高度360公里
2
2.1 飞行环境
2.1.1 大气的物理性质
1. 大气的状态由参数 p,,T 确定,
其关系由状态方程表示: p RT
2. 连续性
3. 黏性
大气相邻流动层间产生的摩擦力。不同的流体黏性不同,黏性大小 用内摩擦系数衡量。
流体黏性和温度有关,气体温度升高,黏性增大。液体相反。
4. 可压缩性
当气体的压强改变时,其密度和体积也改变,为气体可压缩性。 5. 声速
振动的声源在介质中传播时产生的疏密波。空气中约为340m/s。介
质可压缩性越大,声速越小。
3
2.1 飞行环境
6. 国际标准大气 飞行器飞行性能和大气物理状态有关,而大气物理状态与其地理位置、
地球空间环境、 行星际空间环境和 恒星际空间环境
5
2.2 气体流动基本规律
气体流过物体时其物理量的变化规律与作用在物体上 的空气动力有密切关系。 2.2.1 相对运动原理
飞机产生的空气动力与飞机和空气间的相对运动速度有很大关系。 空气相对飞机的运动称为相对气流。相对气流的方向与飞机运动方向 相反。只要相对气流速度相同,产生的空气动力也就相等。将飞机的 飞行转换为空气的流动,使空气动力问题的研究得到简化。
10
2.2 气体流动基本规律
超声速气流在变截面管道中流动情况和低速气流相反。 收缩管道超声速气流减速、增压;扩张形管道使超声速气 流增速、减压。
原因:截面积变化引起的密度的变化比截面积变化引 起速度的变化快得多,密度变化占主导地位。
总之,在亚声速气流中,流速增大,管道截面面积必 然减小;而在超声速气流中,随着流速增大,,管道截面 面积必然增大。
2.3 飞机飞行原理
1. 机翼升力的产生
前缘
后缘
空气动力作用点
翼弦
19
2.3 飞机飞行原理
升力的大小与翼型形状和迎角大小有很大关系。不对称的流线型翼 型在迎角为零时仍可产生升力。
在一定范围内,迎角大,升力大。 当迎角达到一定程度,气流会从机翼前缘开始分离,尾部出现很大的 涡流区,致使升力突然下降,阻力迅速增大,出现失速。 临界迎角:失速刚出现时的迎角。
要使气流由亚声速加速到超声速,除了沿气流方向要 有一定的压力差外,还应具有一定的管道形状,即先收缩 后扩张的拉瓦尔管形状。
11
2.2 气体流动基本规律
12
2.2 气体流动基本规律
13
2.3 飞机飞行原理
作用在飞机上的空气动力包括升力和阻力。
2.3.1 平板上的空气动力
1. 平板剖面与相对气流夹角为零 无垂直于气流的升力。 2. 平板剖面与相对气流夹角为90度
声速有关,施加于空气的压力与在空气中运动的物体速度有关,速度 越大,施加给空气的压力越大。
衡量空气被压缩的程度用马赫数(Ma)表示: Ma v a
低速: Ma 0.4; 亚声速: 0.4 Ma 0.85; 跨声速: 0.85 Ma 1.3 超声速: 1.3 Ma 5.0; 高超声速: Ma>5.0
相关文档
最新文档