差动放大电路实验
差动放大电路实验报告

差动放大电路实验报告实验目的,通过对差动放大电路的实验,掌握差动放大电路的基本原理和特性,加深对放大电路的理解。
实验原理,差动放大电路由两个共集极放大器组成,其中一个放大器的输出与输入信号相位相同,另一个放大器的输出与输入信号相位相反。
当输入信号作用在两个放大器的基极上时,输出信号为两个放大器输出信号的差值,即差动输出。
差动放大电路对共模信号具有很好的抑制作用,对差模信号有很好的放大作用。
实验仪器和器材,示波器、信号发生器、电压表、电阻、电容、集成运放等。
实验步骤:1. 按照实验电路图连接好差动放大电路的电路;2. 调节信号发生器产生正弦波信号,并输入到差动放大电路的输入端;3. 通过示波器观察差动放大电路的输入信号和输出信号的波形,并记录数据;4. 调节信号频率,观察输入信号和输出信号的变化;5. 测量差动放大电路的放大倍数和共模抑制比。
实验结果分析:通过实验观察和数据记录,我们得到了差动放大电路的输入信号和输出信号的波形,并且测量了放大倍数和共模抑制比。
实验结果表明,差动放大电路对差模信号有很好的放大作用,对共模信号有很好的抑制作用。
随着信号频率的增加,放大倍数和共模抑制比会有所变化,但整体特性基本保持稳定。
实验结论:通过本次实验,我们深入了解了差动放大电路的工作原理和特性,掌握了差动放大电路的实验操作方法,并获得了实验数据。
差动放大电路在电子电路中具有重要的应用价值,能够有效地抑制干扰信号,提高信号的传输质量。
因此,差动放大电路在实际应用中具有广泛的应用前景。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了一些问题,如信号发生器频率调节不准确、示波器波形不稳定等。
我们通过仔细调节仪器参数、重新连接电路等方法,最终解决了这些问题,确保了实验数据的准确性和可靠性。
总结:差动放大电路是一种重要的放大电路结构,具有很好的信号处理特性。
通过本次实验,我们对差动放大电路有了更深入的了解,为今后的学习和工作打下了良好的基础。
差动放大电路实验报告

差动放大电路实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】实验五差动放大电路(本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~)一、实验目的1、加深对差动放大器性能及特点的理解2、学习差动放大器主要性能指标的测试方法二、实验原理R P 用来调节T1、T2管的静态工作点, Vi=0时, VO=0。
RE为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。
差分放大器实验电路图三、实验设备与器件1、±12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。
四、实验内容1、典型差动放大器性能测试开关K拨向左边构成典型差动放大器。
1) 测量静态工作点①调节放大器零点信号源不接入。
将放大器输入端A、B与地短接,接通±12V直流电源,用直流电压表测量输出电压VO ,调节调零电位器RP,使VO=0。
②测量静态工作点再记下下表。
2) 测量差模电压放大倍数(须调节直流电压源Ui1= ,Ui2=理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点:E3BEEE CC 212E3C3R V )V (V R R R I I -++≈≈= I c Q =Ic 3/2=, Ib Q =Ic/β=100=uA U CEQ =Vcc-IcRc+U BEQ =*10+=双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨)Pbe B C iOd β)R (121r R βR △V △V A +++-===Ac 双 =0.单端输出:d i C1d1A 21△V △V A ===, d i C2d2A 21△V △V A -=== (参考答案中的Re=10K ,而Re 等效为恒流源电阻,理想状态下无穷大,因此上式结果应为0.读者自己改一下)实测计算:(注:本实验相对误差不做数据处理要求,下面给出的仅供参考比对数据) 静态工作点:Ic 1Q =(Vcc-Uc1)/Rc1=/10mA= Ic 2Q = Ib 1Q = Ic Q/β=100mA= Ib 2Q =U C1E1Q =U C1-U E1==U C2E2Q =差模放大倍数:(Ui=Ui1-Ui2=+ (注:放大倍数在实测计算时,正负值因数据而异~!)Ad1=(Uc1差模-Uc1)/(Ui-0)=Ad2=(Uc2差模-Uc2)/(Ui-0)=Ad双=Uo双/Ui==相对误差计算 (||Ad理|-|Ad实||)/|Ad理|r d1=| r d2=| r d双=%共模放大倍数:(Ui=+Ac1=(Uc1共模-Uc1)/Ui=共模-Uc2)/Ui=双=Uc双/Ui== (Ui=时同理)共模抑制比:CMRR=|Ad双/Ac双|=||=4.单端输入(注:上面实验中差模与共模接法均为双端输入,详见最后分析)=Uc2)Ui=+时Ac1=时Ac1=正弦信号时(注:部分同学的输入电压可能为500mV,处理时请注意)Ac1=分析部分:(注:只供理解,不做报告要求)Vi、Vo、Vc1和Vc2的相位关系其中Vi、Vc1同相,Vi、Vc2反相,Vc1、Vc2反相。
实验四 差动放大电路

+12V
UE3
2.差模和共模电压放大倍数测量 在输入端加入f=100~200Hz,Ui=50mV正弦信号(注 意:输出衰减置于20db,输出从小慢慢调节,带负载),按 表3.4.2要求测量并记录,由测量数据计算出单端和双端输 出的电压放大倍数。 输入信号方式: 双端输入:红夹子接B1端,黑夹子接B2端。 差模信号: 单端输入:红夹子接B1端,黑夹子接地端。 共模信号:B1+B2同时接红夹子,黑夹子接在地端。
表 3.4.2 差模和共模放大倍数测试
五、实验报告
1.根据实测数据计算图3.4.3电路的静态工作点,与预习 计算结果相比较。 2.整理实验数据,计算各种接法的Ad,并与理论计算值 相比较。 3.计算实验步骤3中Ac和CMRR值。 4.总结差放电路的性能和特点。
六、思考题
1、差动放大器的电路对称时,发射极总电流Ie与集电极电 流Ic1、Ic2 有何关系? 2、静态时Ic1=Ic2及Vc1=Vc2的条件是什么? 3、直流集电极电流及电压的计算值与测量值比较,情况如 何? 4、差模电压增益的计算值与测量值比较,两者有何差别?
实验电路如图3.4.3所示。 1.测量静态工作点。 (1)调零 T1 T2 将输入端B1、B2短 路并接地,接通直流电源, 调节电位器Rp1使双端输 出电压Uo=0。 衰减20dB,可不接电位器!T3 (2)静态工作点 测量T1、T2、T3各 极对地的电位,填入表 图3.4.3 差动放大器 3.4.1中。 表3.4.1 静态工作点测试
实验四 差动放大电路
一、实验目的
1. 熟悉差动放大器工作原理。 2. 掌握差动放大器的基本测试方法。
直流差动电路实验报告

一、实验目的1. 理解直流差动放大电路的工作原理。
2. 掌握直流差动放大电路的组成和特点。
3. 通过实验,验证差动放大电路对差模信号和共模信号的放大能力。
4. 学习使用直流电压表、万用表等仪器测量电路参数。
二、实验原理差动放大电路是一种能够有效抑制共模干扰的放大电路,由两个完全相同的晶体管组成。
它能够分别放大两个输入端输入的差模信号和共模信号,并抑制共模信号的影响。
差动放大电路的原理如下:1. 差模信号放大:当两个输入端分别输入大小相等、极性相反的信号时,差动放大电路能够将这两个信号的差值作为输出信号放大。
2. 共模信号抑制:当两个输入端同时输入大小相等、极性相同的信号时,差动放大电路能够抑制这个共模信号的影响,只输出差模信号。
三、实验仪器与设备1. 直流电源2. 晶体管3. 电阻4. 电容5. 直流电压表6. 万用表7. 信号发生器8. 电路板9. 连接线四、实验步骤1. 搭建电路:根据实验原理图,将电路连接好,包括直流电源、晶体管、电阻、电容等元件。
2. 测量静态工作点:使用直流电压表测量晶体管的集电极电压和发射极电压,确保晶体管工作在合适的工作点。
3. 输入差模信号:使用信号发生器输入一个差模信号,使用直流电压表测量输出电压,分析差模放大倍数。
4. 输入共模信号:使用信号发生器输入一个共模信号,使用直流电压表测量输出电压,分析共模抑制能力。
5. 测量电路参数:使用万用表测量晶体管的参数,如β值、输入阻抗等。
五、实验结果与分析1. 差模信号放大:通过实验,我们得到了差模放大倍数Aud的测量值,并与理论值进行了比较,验证了差动放大电路对差模信号的放大能力。
2. 共模信号抑制:通过实验,我们得到了共模抑制比CMRR的测量值,并与理论值进行了比较,验证了差动放大电路对共模信号的抑制能力。
3. 电路参数测量:通过实验,我们测量了晶体管的参数,如β值、输入阻抗等,并与理论值进行了比较,验证了电路的可靠性。
实验3 差动放大电路实验

实验3 差动放大电路实验一、实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。
二、实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。
三、实验原理实验电路如图1。
它是一个具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1集电极电流增加,则Q2集电极电流一定减少,增加与减少之和为零,Q3和R e3等效于短路,Q1,Q2的发射极几乎等效于接地,差模信号被放大。
对于共模信号,若Q1集电极电流增加,则Q2集电极电流一定增加,两者增加的量相等,Q1,Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模干扰被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器R p用来调节Q1,Q2管的静态工作点,希望输入V I1=0, V I2=0时,使双端图1 差动放大电路图输出电压V o=0。
差动放大器常被用做前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望有一种只放大差模信号、不放大共模信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,OP07的输入电阻约为107Ω量级。
四、实验内容本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于510Ω,这是很小的输入电阻。
其原因是,本实验电路用分立元件组成,电路中对称元件的数值并不完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。
恒流源差动放大实验报告

恒流源差动放大实验报告1. 实验目的本实验旨在:1. 了解并掌握恒流源差动放大电路的基本原理;2. 学习如何搭建和调试一个恒流源差动放大电路;3. 掌握如何选取合适的元器件参数以及调整电路参数。
2. 实验原理恒流源差动放大电路是一种常见的放大电路,其主要由差动输入级、差动输出级和恒流源组成。
恒流源差动放大电路通过共射放大器的放大作用,可以实现差动信号的放大和放大信号的线性放大。
3. 实验器材与元器件1. 函数发生器2. 双踪示波器3. 恒流二极管4. 电阻、电容和二极管等元器件4. 实验步骤1. 搭建恒流源差动放大电路,按照给定的电路图连接电阻、电容和二极管等元器件;2. 连接函数发生器和示波器,调整合适的信号频率和幅值;3. 使用示波器观察信号源的输出波形;4. 调整电路参数,使得输出波形达到期望的放大效果;5. 记录实验数据和观察结果。
5. 实验结果与分析通过调整电路参数,得到了合适的放大效果。
实验结果显示,恒流源差动放大电路能够实现差动信号的增益放大,并且能够保持较好的线性度。
6. 实验总结本实验通过搭建和调试恒流源差动放大电路,使得学生能够全面了解该电路的基本原理和调试方法,进一步掌握了电路搭建和调试的技能。
在实验过程中,学生需要注意选择合适的元器件参数,并且仔细调节电路参数,以实现良好的放大效果。
此外,观察实验结果时,要注意信号源的输出波形和放大器的增益以及线性度等指标。
总之,在本实验中,学生不仅加深了对恒流源差动放大电路的理解,还培养了实验操作和数据分析的能力,提高了解决问题的能力。
7. 参考资料[1] 实验教材《电子技术实验指导书》[2] 相关论文和教学视频。
差动放大电路实验报告

差动放大电路实验报告一、实验目的和背景差动放大电路作为一种常见的电路结构,在许多电子设备中都有广泛应用。
其主要功能是将输入信号放大,并且在信号放大过程中抑制了共模噪声的干扰。
本实验旨在通过搭建差动放大电路并对其进行测试,进一步了解其原理和性能。
二、实验器材与步骤1. 实验器材本次实验采用的实验器材包括:操作示波器、函数发生器、功能信号发生器、电阻、电容。
2. 实验步骤(1) 将差动放大电路按照给定的电路图连接好,并注意正确的电路连接。
(2) 将函数发生器的正弦波输出接入差动放大电路的输入端,调节函数发生器的输出信号频率和幅度。
(3) 通过示波器观察差动放大电路输入与输出的波形,并记录相应的数值。
(4) 对不同频率和幅度的输入信号进行测试,并观察测试结果的差异。
三、实验结果与分析在本实验中,我搭建了差动放大电路,并通过函数发生器输入不同频率和幅度的信号进行测试。
通过观察示波器上的波形和记录相应的数值,可以得到以下结果和分析:1. 输入信号与输出信号的关系:通过调节函数发生器的频率和幅度,可以观察到差动放大电路正确放大了输入信号,并产生了相应的输出信号。
而且,输出信号的幅度随着输入信号的幅度增大而增大,说明差动放大电路的放大增益较高。
2. 噪声抑制能力:差动放大电路的一个重要特性是抑制共模噪声。
在实验过程中,我引入了一些干扰信号,如电源纹波和环境的电磁干扰等,观察到差动放大电路能够有效地抑制这些共模噪声,并输出较为干净的信号。
3. 频率响应特性:通过改变输入信号的频率,可以观察到差动放大电路的频率响应特性。
实验结果表明,差动放大电路在较低频率时的放大增益较高,但随着频率增加,放大增益逐渐降低。
这是由于差动放大电路的内部结构和元器件参数导致的。
4. 幅度非线性:在一些高幅度的输入信号条件下,观察到差动放大电路存在一定的非线性现象。
这可能是由于电路中的元件饱和或者过载引起的。
在实际应用中,需要根据具体要求对差动放大电路进行调整,以优化其性能。
差动放大电路实验报告

一、实验目的1. 理解差动放大电路的工作原理和特性。
2. 掌握差动放大电路的组成、电路图和基本分析方法。
3. 学习差动放大电路的静态工作点调整、差模和共模放大倍数的测量方法。
4. 分析差动放大电路的共模抑制比(CMRR)和输入阻抗等性能指标。
二、实验原理差动放大电路由两个性能相同的基本共射放大电路组成,具有抑制共模信号、提高差模信号放大倍数的特点。
差动放大电路的输出电压为两个输入电压之差,即差模信号,而共模信号则被抑制。
本实验采用长尾式差动放大电路,电路结构简单,易于分析。
三、实验仪器与设备1. 模拟电路实验箱2. 数字示波器3. 数字万用表4. 信号发生器5. 电阻、电容、晶体管等元器件四、实验步骤1. 实验电路搭建:按照实验指导书要求,搭建长尾式差动放大电路,包括晶体管、电阻、电容等元器件。
2. 静态工作点调整:调整电路中的偏置电阻,使晶体管工作在放大区。
使用数字万用表测量晶体管的静态电流和静态电压,调整偏置电阻,使静态电流和静态电压符合设计要求。
3. 测量差模电压放大倍数:将信号发生器输出信号接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,测量差模电压放大倍数。
4. 测量共模电压放大倍数:将信号发生器输出共模信号接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,测量共模电压放大倍数。
5. 测量共模抑制比(CMRR):将信号发生器输出差模信号和共模信号同时接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,计算CMRR。
6. 分析输入阻抗:根据实验数据,分析差动放大电路的输入阻抗。
五、实验结果与分析1. 静态工作点调整:经过调整,晶体管工作在放大区,静态电流和静态电压符合设计要求。
2. 差模电压放大倍数:实验测得的差模电压放大倍数为20dB,与理论值相符。
3. 共模电压放大倍数:实验测得的共模电压放大倍数为2dB,与理论值相符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零点调好以后,用万用表的直流电压挡测量T1、T2管各电极电位及射极 电阻Re两端电压URE,记入表1.4.1。
测量值
UC1(V)
UB1(V) UE1(V)
UC2(V)
UB2(V) UE2(V) URe(V)
计算值
IC(mA)
IB(mA)
UCE(V)
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
5.具有恒流源的差动放大电路性能测试 将图1.4.1电路中开关K拨向右边,构成具有恒流源的差
动放大电路。参照典型差动放大器性能测试的步骤对具有恒 流源的差动放大器进行测试,将测得的静态工作点填入自行 设计的表格中,而后测量表1.4.2右侧的相关数据。
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
测量静态工作点:放大器输入端A、B与地短接
实验四 差动放大电路
实验内容
实验目的实验要求 知识点 难点指导
3.测量差模电压放大倍数
断开直流电源,将函数信号发生器的输出端接放大器输入
A端,信号源的地端(黑夹子)接放大器输入B端构成双端输 入方式,调节输入信号为频率f=1KHz的正弦信号,并使信 号源的幅度输出旋钮(AMPL)旋至零,用示波器监视输出 端(集电极C1或C2与地之间)。
实验四 差动放大电路
实验内容
1.按实验原理图,连接好电路。
实验目的实验要求 知识点 难点指导
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
实验内容
2.开关K拨向左边构成典型差动放大器。 (1)测量静态工作点 ①调节放大器零点
信号源不接入,将放大器输入端A、B与地短接,接通±12V直流电源, 用万用表的直流电压挡测量输出电压UO,调节调零电位器RP,使UO=0。 调节要仔细,力求准确。
实验四 差动放大路
实验目的实验要求 知识点 难点指导
测量差模电压放大倍数:差模信号
实验四 差动放大电路
实验目的 实验要求 知识点 难点指导
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
实验内容
4.测量共模电压放大倍数
将放大器A、B短接,信号源接A端与地之间,构成共 模输入方式,调节输入信号f=1kHz,Ui=1V,在输出电压无 失真的情况下,测量Ui,UC1,UC2之值记入表1.4.2,并观察 ui,uC1,uC2之间的相位关系及URe随Ui改变而变化的情况。
实验目的 实验要求 知识点 难点指导
实验四
差动放大电路实验
实验目的
1. 加深对差动放大器性能及特点的理解 2. 学习差动放大器主要性能指标的测试方法
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
实验仪器
1、模拟电路实验装置一台 2、数字万用表一只 3、毫伏表一台 4、示波器一台 5. 函数信号发生器 一台
接通±12V直流电源,逐渐增大输入电压Ui(约100mV), 在 输 出 波 形 无 失 真 的 情 况 下 , 用 交 流 毫 伏 表 测 量 Ui , UC1 , UC2 (注意:毫伏表后面板的开关打到“FLOAT”位置,保证 两个被测信号不共地),记入表1.4.2中,并观察ui,uC1,uC2 之间的相位关系。
思考题
1.试说明实验电路中的电位器 RP的作用。
2.差动放大电路有几种接法,各有什么特 点?并根据电路图说明:比较不同接法对 输入电阻、输出电阻以及放大倍数的影响。
测量差模电压放大倍数:差模信号
实验四 差动放大电路
实验目的实验要求 知识点 难点指导
实验报告的要求
实验总结 1.计算静态工作点、差模共模电压放大倍数和 共模抑制比CMRR 。 2.整理实验数据,列表比较实验结果和理论估 算值,分析误差原因 3.回答思考题,总结实验收获。
实验四 差动放大电路
实验目的 实验要求 知识点 难点指导