角形角平分线经典习题
角平分线练习题

角平分线练习题一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,的长度是( )则DFA.2B.3C.4D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则( )∠MAB=A.30°B.35°C.45°D.60°.观察图中尺规作图痕迹,下列说法错误的是( )3A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为( )A .2B .2C .2D .35.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,若CD=2,AB=8,则△ABD的面积是( )A .6B .8C .10D .126.如图,Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=3,AB=10,则△ABD的面积等于( )A .30B .24C .15D .107.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD的长为( )A .3B .4C .5D .68.如图,BP 为∠ABC 的平分线,过点D 作BC 、BA 的垂线,垂足分别为E 、F,则下列结论中错误的是( )A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若长为( )ON=8cm,则OMA.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是( )A.6B.12C.18D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是( )个.A.1B.2C.3D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是( )A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是( )A.1B.2C.3D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )t h i nA .2个B .3个C .4个D .1个21.如图,Rt △ABC 中,∠C=90°,BD 平分∠ABC 交AC 于点D ,AB=12,CD=3,则△DAB 的面积为( )A .12B .18C .20D .2422.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE=2,AB=4,则AC 长是( )A .9B .8C .7D .6 评卷人得 分二.填空题(共13小题)23.如图,BD 平分∠ABC 交AC 于点D ,DE ⊥BC 于点E ,若AB=5,BC=6,S △ABC =9,则DE 的长为 .24.如图,OC 为∠AOB 的平分线,CM ⊥OB ,OC=5,OM=4,则点C 到射线OA 的距离为 .25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是 26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为 .28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是 .n29.如图,在△ABC 中,∠BAC=60°,AD 平分∠BAC ,若AD=6,DE ⊥AB ,则DE的长为 .30.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 处.31.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= .32.如图,在Rt △ABC 中,∠B=90°,CD 是∠ACD 的平分线,若BD=2,AC=8,则△ACD 的面积为 .33.如图,已知BD ⊥AE 于点B ,DC ⊥AF 于点C ,且DB=DC ,∠BAC=40°,∠ADG=130°,则∠DGF= .34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果 ,那么 .35.已知Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若BC=32,且BD :CD=9:7,则D 到AB 的距离为 . 评卷人得 分三.解答题(共5小题)36.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB +AC 与AE 之间的等量关系.37.如图已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.38.如图,四边形ABCD 中,AC 为∠BAD 的角平分线,AB=AD ,E 、F 两点分别在AB 、AD 上,且AE=DF .请完整说明为何四边形AECF 的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;的面积.(2)若BC=12cm,点O到AB的距离为4cm,求△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是( )A.2B.3C.4D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则( )∠MAB=A.30°B.35°C.45°D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,.故选:B3.观察图中尺规作图痕迹,下列说法错误的是( )A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选:C.4.如图,OP 是∠AOC 的平分线,点B 在OP 上,BD ⊥OC 于D ,∠A=45°,若BD=2,则AB长为( )A .2B .2C .2D .3【解答】 解:如图,过B 点作BE ⊥OA 于E ,∵OP 是∠AOC 的平分线,点B 在OP 上,BD ⊥OC 于D ,BD=2,∴BE=BD=2,在直角△ABE 中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.故选:C.5.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,若CD=2,AB=8,则△ABD的面积是( )A .6B .8C .10D .12【解答】解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于( )A.30B.24C.15D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故选:C.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△的长为( )=15,则CDABDA.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD =AB•DE=×10•DE=15,解得DE=3..故选:A8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为,则下列结论中错误的是( )E、FA.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF 中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为( )A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,故选:C.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB 的平分线上.所以点M到∠AOB两边的距离相等.故选A.11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处【解答】解:如图所示,加油站站的地址有四处.故选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是( )A.6B.12C.18D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,.故选:C13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是( )个.A.1B.2C.3D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED 中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP 中,∴Rt△ADP≌△AEP(HL),故选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若的距离是( )BC=4cm,CD=3cm,则点D到ABA.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,故选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是( )A.1B.2C.3D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选:A.19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )A.2个B.3个C.4个D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.故选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则的面积为( )△DABA.12B.18C.20D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,故选:B.22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是( )A.9B.8C.7D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×4×2=4,∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6故选:D.二.填空题(共13小题)23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ .=9,则DE 的长为 ABC【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴×AB×DF +×BC×DE=S△ABC ,即×5×DE +×6×DE=9,解得,DE=,.故答案为:24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA .的距离为 3【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是 96 .【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC 的面积为:×AB×OM +BC×DO +NO=(AB+BC+AC)×DO=32×6=96.故答案为:96.26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 42【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE +×AC×OF +×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为 4cm .【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到 .AB边的距离是 16【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16(角平分线性质),.故答案为:1629.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE 的长为 3 .b【解答】解:∵∠BAC=60°,AD 平分∠BAC ,∴∠DAE=∠BAC=30°.在Rt △ADE 中,DE ⊥AB ,∠DAE=30°,∴DE=AD=3.故答案为:3. 30.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC 内角平分线的交点到三角形三边的距离相等,∴△ABC 内角平分线的交点满足条件;如图:点P 是△ABC 两条外角平分线的交点,过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC ,∴PE=PF ,PF=PD ,∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.t h 故答案为:4.31.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= 120° .【解答】解:∵点O 在△ABC 内,且到三边的距离相等,∴点O 是三个角的平分线的交点,∴∠OBC +∠OCB=(∠ABC +∠ACB )=(180°﹣∠A )=(180°﹣60°)=60°,在△BCO 中,∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣60°=120°.故答案为:120°.32.如图,在Rt △ABC 中,∠B=90°,CD 是∠ACD 的平分线,若BD=2,AC=8,则△ACD 的面积为 8 .【解答】解:作DH ⊥AC 于H ,∵CD 是∠ACD 的平分线,∠B=90°,DH ⊥AC ,∴DH=DB=2,∴△ACD 的面积=×AC ×DH=×8×2=8,l 故答案为:8.33.如图,已知BD ⊥AE 于点B ,DC ⊥AF 于点C ,且DB=DC ,∠BAC=40°,∠ADG=130°,则∠DGF= 150° .【解答】解:∵BD ⊥AE 于B ,DC ⊥AF 于C ,且DB=DC ,∴AD 是∠BAC 的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD +∠ADG=20°+130°=150°.故答案为:150° 34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果 一个点在角的平分线上 ,那么 它到这个角两边的距离相等 .【解答】解:如果一个点在角平分线上,那么它到角两边的距离相等.35.已知Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若BC=32,且BD :CD=9:7,则D 到AB 的距离为 14 .【解答】解:如图,过点D 作DE ⊥AB 于E ,∵BC=32,BD :CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14..故答案为:14三.解答题(共5小题)36.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;的垂直平分线.(2)OE是CD【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;(2)在Rt△OCE和Rt△ODE 中,,∴Rt△OCE≌Rt△ODE(HL),∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD 的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:(1)OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;(2)过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,∴S△OBC=BC•OM=×12×4=24(cm2).40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.【解答】(1)证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;(2)解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4. 。
角平分线习题精选(专题)

角平分线习题精选
1、已知:如图1,中,ZC=2ZB,Nl=N2,求证:AB=AC÷CDo
2、已知,如图2,Z1=Z2,P为BN上一点,
且PDj_BC于D,AB+BC=2BD,求证:ZBAP+ZBCP=180o。
3、如图,ZkABC中,AC=BC,ZBAC的B^≤L外角平分线交
BC的延长线于点D,若NCAD=2NADC,求NB的度数
5、如图5、AB√CD,ZB=90o,E是BC的中点。
DE平分NADC,求证:
AE平分NDAB。
6、如图6、在AABC中,AB=7,BC=24,AC=25求内心到边的距离。
7、如图7、已知在AABC中,分
别以AC、BC为边向外作
正aBCE∖正aACD,BD与AE交于M,求证:(1)AE=BD o(2)MC平分NDMEoD
9如图9、在aABC中,ZB=60o,Z∖ABC的角平分线AD、CE交于点O,求证:AE+CD=AC o
10、如图10、已知在四边形ABCD中,BD>AB,AD=证:ZA+ZC=180o o
C D
A
D DC,BD平分NABC求
8、如图8、AB=CD,∆PCD的面积等于aPAB的面积,求证:OP平分NBoD。
11、如图11>∆ABC 中,ZEDF+ZBAF=180o 12、如图12、∆ABC中,
A
C AD是NA的平分线,E、F分别为AB、Ae上的点,且
,求证:DE=DF o
A二AD是NBAC的平分线,∈Z /\
AD的垂直平分线交AD于点E,交BC
的延长线于点F o求证:FD2=FBxFC
B ADC
DC F。
角平分线的性质和判定复习题

角平分线的性质及判定内容及典型例题补充1、实际生活中的应用.例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由.2. 画一个任意三角形并作出两个角(内角、外角)的平分线,观察交点到这个三角形三条边所在直线的距离的关系.【典型例题】例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定).例2.如图所示,已知△ABC中,PE∥AB交BC于E,PF∥AC交BC于F,P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.例3. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.例4.如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m,现分别以公路、铁路所在直线为x轴、y轴建立平面直角坐标系.(1)学校距铁路的距离是多少?(2)请写出学校所在位置的坐标.例5图例5.如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.练习题一. 选择题1. 如图所示,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是()A. PC>PDB. PC=PDC. PC<PDD. 不能确定(1)(4)2. 在R t△ABC中,∠C=90°,AD是角平分线,若BC=10,BD∶CD=3∶2,则点D到AB的距离是()A. 4B. 6C. 8D. 103. 在△ABC中,∠C=90°,E是AB边的中点,BD是角平分线,且DE⊥AB,则()A. BC>AEB. BC=AEC. BC<AED. 以上都有可能4. 如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A. 3B. 4C. 5D. 65. 如图所示,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A. DC=DE B. ∠AED=90° C. ∠ADE=∠ADC D. DB=DC(5)(7)(8)6. 到三角形三边距离相等的点是()A. 三条高的交点B. 三条中线的交点C. 三条角平分线的交点D. 不能确定7. 如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长为()A. 4cmB. 6cmC. 10cmD. 以上都不对8. 如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有()A. 一处B. 二处C. 三处D. 四处二. 填空题9. 如图所示,点P是∠CAB的平分线上一点,PF⊥AB于点F,PE⊥AC于点E,如果PF=3cm,那么PE=__________.(9)(10)(11)10. 如图所示,DB⊥AB,DC⊥AC,BD=DC,∠BAC=80°,则∠BAD=__________,∠CDA=__________.11. 如图所示,P在∠AOB的平分线上,在利用角平分线性质推证PD=PE时,必须满足的条件是____________________.12. 如图所示,∠B=∠C,AB=AC,BD=DC,则要证明AD是∠BAC的__________线.需要通过__________来证明.如果在已知条件中增加∠B与∠C互补后,就可以通过__________来证明.因为此时BD与DC已经分别是__________的距离.(12)(13)(14)13. 如图所示,C为∠DAB内一点,CD⊥AD于D,CB⊥AB于B,且CD=CB,则点C在__________.14. 如图所示,在R t△ACB中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=8,BD=5,则点D到AB的距离是__________.(2)若BD∶DC=3∶2,点D到AB的距离为6,则BC的长为__________.三. 解答题15. 已知:如图,在R t△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.16. 如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.(1)求证:DE=DF;(2)若把最后一个条件改为:AE>AF,且∠AED+∠AFD=180°,那么结论还成立吗?17. 如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC=BC.18. 如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.(1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.四. 探究题19. 有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.。
角平分线知识点+经典例题

第四讲 角平分线【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD于点F ,则PE =PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC三边所在直线距离相等.【典型例题】类型一、角的平分线的性质例1.如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.例2、如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.【变式】已知:如图,AD是△ABC的角平分线,且:3:2AB AC=,则△ABD与△ACD的面积之比为()A.3:2 B.3:2C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵:3:2AB AC=,则△ABD与△ACD的面积之比为3:2.例3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC 上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD =∠OPE,∠DPF=∠EPF.再证明△DPF≌△EPF,得到结论.【答案与解析】解:DF=EF.理由如下:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,∴PD=PE,由HL 定理易证△OPD ≌△OPE , ∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定例4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.【变式】已知:如图,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 、G 分别是OA 、OB 上的点,且PF=PG ,DF=EG .求证:OC 是∠AOB 的平分线.【答案】证明:在Rt △PFD 和Rt △PGE 中,,∴Rt △PFD ≌Rt △PGE (HL ),∴PD=PE ,∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB ,∴OC 是∠AOB 的平分线.。
初一三角形角平分线经典例题

《角平分线》经典例题在直角三角形ABC中,∠A=90°,∠ABC的平分线BE交AC于E点,过E点作ED⊥BC于D点,已知AC=10cm,ΔCDE的周长为16cm,求CD的长.〔解析〕根据角平分线上的点到角的两边的距离相等可得AE=DE,从而求出DE+CE=AC,所以ΔCDE的周长=AC+CD,根据ΔCDE的周长及AC的长即可求得CD的长.解:∵BE为∠ABC的平分线,∠A=90°,DE⊥BC,∴AE=DE,∴DE+CE=AE+CE=AC=10cm,∵ΔCDE的周长为16cm,∴DE+CE+CD=16cm,∴CD=16-10=6(cm).如图(1)所示,已知∠ADC+∠ABC=180°,DC=BC.求证点C在∠DAB的平分线上.〔解析〕作CE⊥AB,CF⊥AD,垂足分别为E,F,利用∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,得出∠ABC=∠CDF,进而证得ΔCBE≌ΔCDF,得出FC=EC,即可求得结论.证明:如图(2)所示,作CE⊥AB,CF⊥AD,垂足分别为E,F,∴∠BEC=∠DFC=90°,∵∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,∴∠ABC=∠CDF,在ΔCBE和ΔCDF中,∴ΔCBE≌ΔCDF(AAS),∴FC=EC,∴点C在∠DAB的平分线上.如图(1)所示,已知点P 是ΔABC 三条角平分线的交点,PD ⊥AB ,若PD =5,ΔABC 的周长为20,求ΔABC 的面积.〔解析〕作PE ⊥BC 于E ,PF ⊥AC 于F ,根据角平分线的性质定理得PE =PF =PD =5,然后根据三角形面积公式和S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC 得到S ΔABC =(AB +BC +AC ),再把ΔABC 的周长为20代入计算即可.解:作PE ⊥BC 于E ,PF ⊥AC 于F ,如图(2)所示,∵点P 是ΔABC 三条角平分线的交点,∴PE =PF =PD =5,∴S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC=PD ·AB +PE ·BC +PF ·AC=(AB +BC +AC )=20=50.如图(1)所示,在RtΔABC 中,∠ACB =90°,且AC =b ,BC =a ,AB =c ,∠A 与∠B 的平分线交于点O ,O 到AB 的距离为OD.试探究OD 与a ,b ,c 的数量关系.〔解析〕过点O作OE⊥AC于E,OF⊥BC于F,然后根据角平分线上的点到角的两边的距离相等可得OD=OE=OF,然后证得四边形EOFC是正方形,从而证得OE=OF=FC=EC=OD,AE=AD,BD=BF,通过AB=AC-OD+BC-OD即可求解.解:如图(2)所示,过点O作OE⊥AC于E,OF⊥BC于F,∵∠BAC,∠ABC的平分线交于点O,OD⊥AB,∴OD=OE,OD=OF,∴OD=OE=OF,∵∠ACB=90°,∴四边形EOFC是正方形,∴OE=OF=FC=EC=OD,在RtΔOAE和RtΔOAD中,∴RtΔOAE≌RtΔOAD,∴AE=AD,同理BD=BF,∴AE+EC=AD+OD=AC=b,BF+CF=BD+OD=BC=a,∴AD=b-OD,BD=a-OD,∴AD+BD=a+b-2OD,即c=a+b-2OD,∴OD=(a+b-c).。
中考:角平分线、垂直平分线经典试题

中考:角平分线、垂直平分线经典试题知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:【例题】如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。
分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。
问题转化为证CF =2AF ,又∠B =∠C =300,这就等价于要证∠CAF =900,则根据含300角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
例题图1 F EC B A例题图2 G F ECB A分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300,不妨设EF =1,再用勾股定理计算便可得证。
以上三种分析的证明略。
例题图3D F ECB A问题图321ED CB A探索与创新:【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD 是角平分线。
求证:ACABDC BD =。
分析:要证ACABDC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。
我们注意到在比例式ACABDC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明ACABDC BD =就可以转化为证AE =AC 。
角平分线的性质练习题

角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。
5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。
6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。
三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。
8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。
四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。
10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。
五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。
12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。
六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。
14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。
初二数学《角平分线》练习题

角平分线练习一、填空题1.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC 的度数为.2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.第4题第5题第6题第7题6.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,则CF______FG,CE________CF.7.如图,已知AB、CD相交于点E,∠AEC及∠AED的平分线所在的直线为PQ与MN,则直线MN与PQ的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到____________________相等.9.点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为_____________.10.在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32cm,且BD∶CD=9∶7,则D到AB 的距离为__________cm.二、选择题11.三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点B、三条高的交点C、三条中线的交点D、三条角平分线的交点12.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD13.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A、4处B、3处C、2处D、1处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题 第13题 第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPMEDCBAEDC BAF第15题 第16题 第17题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①和②D .①②③18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm 20.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等DCB A O第18题三.解答题21.如图,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD .求证:AD 平分∠BAC.22.如图,已知BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠F AC .EFDCBA23.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4.已知:如图,在 ABC 中, AB .
C 90 , AC
求证: AC CD 例5、如图, 已知
AB//DC , A
D 90,点 求证: BC AB DC 。
PE 的
求证:AE AF . 例2 .已知: 如图,
BD 是 ABC 的平分线,AB BC , P 在 BD 上, PM AD , PN CD 求证:
PM PN . 例3.如图, 已知: 在 ABC 中AD 是 BAC 的平分线, DE AB 于 E , DF AC 于 F .
求证: AD EF .
例6 •已知:如图,在 ABC 中,BE CF 分别平分 求证:点0在 A 的平分线上•
针对性练习
1、 下列说法正确的有几个( )
(1) 角的平分线上的点到角的两边的距离相等;
(2) 三角形两个内角的平分线交点到三边距离相等;
(3) 三角形两个内角的平分线的交点到三个顶点的距离相等;
(4) 点E 、F 分别在/ AOB 的两边上,P 点到E 、F 两点距离相等,所以 P 点在/ AOB 的平分线上;
(5) 若0C 是/ AOB 的平分线,过 0C 上的点P 作0C 的垂线,交 0B 于D,交0A 于 E ,则线段PD 长分别是P 点到角两边的距离
A. 2 B 3 C 4 D 5
2、在厶 ABC 中,/ C = 900, BC = 16cm,/ A 的平分线 AD 交 BC 于 D,
且CD DB= 3: 5,贝U D 到AB 的距离等于 ___________
例1 .如图,已知: AD 是ABC 的角平分线, DE DF 分别是 ABD 和 ACD 的高.
BC ,AD 是 A 的平分线• E
AB 于E.
图1 3、 已知:如图1, BD 是/ ABC 的平分线,DEIAB 于E , S ABC
36cm 2
AB= 18cm,BC = 12cm,求 DE 的长 4•如图,已知:BD CD , BF AC 于 F, CE
求证:D 在 BAC 的平分线上•
A
5、已知:如图2,
/ B =Z C = 900, M 是BC 中点, 求证:AM 平分/ DAB DM 平分/ ADC
6•如图, ABC 是等腰直角三角形,
A 90,BD 是 ABC 的平分线,DE BC 于 E, BC 10cm ,
求DEC 的周长. 7.如图,已知:在 ABC 中,外角
CBD 和 BCE 的平分线BF, CF 相交于点F .
求证:点F 在 DAE 的平分线上 8、如图, AD//BC ,点E 在线段AB 上, 求证:CD AD BC 。
ADE CDE , DCE ECB ,
9、已知:如图 3,在△ ABC 中,/ B = 600, 求证:AE+CD- AC
10. 如图在 △ ABC 中,/ BAG= 100° , / ACB= 20° ,CE 是/ ACB 的平分线,D 是 BC 上一点,若/ DAG= 20 ° 求/ CED 的度数.
C
△ ABC 的角平分线AD CE 线相交于点O C
11. 在四边形ABCD中,BC >BA,A» CD,BD平分/ ABC,/ C= 72
C。