人教版八年级第一学期期末测试卷及答案B卷

合集下载

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 22. 已知a > 0,b < 0,则下列各式中正确的是()A. a b > 0B. a b < 0C. a + b > 0D. a + b < 03. 下列哪个图形是平行四边形()A. 边长相等的四边形B. 有一个角是直角的四边形C. 对边平行且相等的四边形D. 对角线互相平分的四边形4. 下列哪个图形是正方形()A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直平分的四边形D. 对角线互相垂直且相等的四边形5. 下列各式中,正确的是()A. a^2 = a aB. a^2 = a + aC. a^3 = a a aD. a^3 = a + a + a二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 任何两个偶数之和都是偶数。

()3. 任何两个奇数之积都是奇数。

()4. 任何两个偶数之积都是偶数。

()5. 任何数乘以1都等于它本身。

()三、填空题5道(每题1分,共5分)1. 两个质数的和是______。

2. 两个偶数的积是______。

3. 两个奇数的积是______。

4. 任何数乘以0都等于______。

5. 任何数除以1都等于______。

四、简答题5道(每题2分,共10分)1. 请简要说明勾股定理的内容。

2. 请简要说明矩形的性质。

3. 请简要说明菱形的性质。

4. 请简要说明正方形的性质。

5. 请简要说明平行四边形的性质。

五、应用题:5道(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个正方形的边长是6cm,求它的面积。

3. 一个平行四边形的底是8cm,高是5cm,求它的面积。

4. 一个三角形的底是10cm,高是6cm,求它的面积。

2022-2023学年人教版八年级生物上学期期末达标测试卷(B卷)

2022-2023学年人教版八年级生物上学期期末达标测试卷(B卷)

2022-2023学年人教版八年级生物上学期期末达标测试卷(B卷)时间:45分钟满分:100分一、选择题(本题包括20小题,每题3分,共60分,每题只有1个选项符合题意)1.下列动物身体中含有脊椎骨组成的脊柱的是( )A.沙蚕B.鱼C.水母D.猪肉绦虫2.动物以各自独特的方式适应环境,下列选项错误的是( )A.水螅的外胚层细胞分化成刺细胞,有利于御敌和摄取食物B.涡虫前端感觉器官集中,有利于生存C.蝗虫主要靠三对足两对翅运动,通过肺完成气体交换D.蚯蚓身体分节,运动灵活3.在我国的淡水养殖品种结构中,“四大家鱼”一直占据主要位置。

“四大家鱼”是指( )A.青鱼、草鱼、鲢鱼、鳙鱼B.鲢鱼、鳙鱼、鲤鱼、带鱼C.青鱼、草鱼、带鱼、鲢鱼D.青鱼、鲤鱼、鲢鱼、鳙鱼4.动物有的体温恒定,有的体温随环境而变化。

下列动物中体温不恒定的是( )A.东北虎B.家鸽C.绵羊D.青蛙5.下列关于两栖动物和爬行动物的说法中,正确的是( )A.蟾蜍、大鲵、蝾螈、乌龟都是两栖动物B.青蛙是真正适应陆地生活的脊椎动物,既能在陆地上生活,又能在水中生活C.蜥蜴头后有颈,可以灵活地转动D.蛇的体壁裸露且能分泌黏液,利于与外界环境进行气体交换6.在马、牛、羊的口腔里找不到下列哪种结构( )A.犬齿B.舌头C.臼齿D.门齿7.打羽毛球是许多同学喜欢的体育运动。

在此过程中,关节所起的作用是( )A.枢纽作用B.支撑作用C.动力作用D.保护作用8.2022年北京冬奥会向世界展示了一场“更快、更高、更强、更团结”的体育盛会,中国运动员通过系列优美流畅的动作获得单板滑雪大跳台项目的金牌,为国争光。

下列有关生命活动调节的叙述正确的是( )A.在神经和激素的共同调节下完成空中动作B.接受开始指令后完成翻转动作是简单反射C.获得金牌特别兴奋时肾上腺素分泌会减少D.运动员的伸肘动作是由肱二头肌收缩完成9.从行为获得的途径看,下列动物的行为与其他三项不同的是( )A.孔雀开屏B.老马识途C.蜘蛛结网D.蜜蜂筑巢10.杜鹃鸟将卵产到别的小鸟巢中,小鸟为杜鹃鸟孵卵、育雏。

人教版新目标八年级英语上册期末试卷B卷及答案

人教版新目标八年级英语上册期末试卷B卷及答案

人教版新目标八年级英语上册期末试卷 B 卷Ⅰ .单项选择。

(每题 1 分,共 15 分)() 1. Yesterday I only bought _________for my cousin, but __________for myself.A. something; somethingB.nothing; somethingC. nothing; nothingD.something; nothing() 2. We _________ our holidays in Hong Kong next year.A. visitedB.spentC. are going to visitD. are going to spend() 3. My sister is as __________as herclassmate Joe, so they are good friends.A. outgoingB. moreoutgoingC. the more outgoingD. the most outgoing() 4. Of all the boys, John does his homework ___________.A. more carefulB. themost carefulC. more carefullyD. the most carefully() 5. There _________ a book sale in our school next month.A. will beB.will haveC.wasD.has() 6.Mr Smith plans _________ here muchlonger because he has lots of things to do.A.to keepB. keepC. to stayD. stay() 7. —— Does your brother __________ play soccer?—— Yes. He plays it every day.A. oftenB. neverC. hardly everD. sometimes() 8.Our son is going to study medicine when he __________ school.A. leaveB. leavesC. is leavingD. left() 9.—— Will you go boating this Saturday?—— ___________. We will camp by lake.A.Yes, we will.B. No, we won ’t.C. Yes, we doD. No, we don ’t.() 10. —— Do you know Lin Shuhao?—— Yes, he is one of ____________basketball player in NBA.A. popularB. morepopularC. the most popularD. the more popular() 11. —— We’ ll have a picnic _______ it doesn’ t rain tomorrow.—— Have a nice day.A. whenB. becauseC. ifD. since () 12.Susan, get some eggs and butter and _________.A. mix up themB. mix themupC.mix up itD. mix it up() 13.—— Can you go camping with me tomorrow?—— _________.A.No, I don’ t.B. Sure.C.No, I can ’ t.D. Let ’s make it.() 14.What ________ if I ________ to turn off water?A. will happen; forgetB. Will happen; will forgetC. happen; forgetD. happen; will forget() 15. —— _________ are these oranges and pears?—— About thirty yuan.A. How muchB. How manyC. How longD. How farⅡ . 完形填空。

2022-2023学年人教部编版八年级上学期语文期末达标测试卷(B卷)

2022-2023学年人教部编版八年级上学期语文期末达标测试卷(B卷)

2022-2023学年人教部编版八年级上学期语文期末达标测试卷(B卷)试卷满分120分,考试时间120分钟一、积累与运用(26分)1.下列字音、字形完全正确的一项是()(2分)A.瞥见(piē)骤雨(zhòu)窒息窈无消息B.诘责(jié)吹嘘(xū)不辍藏污纳垢C.佃农(tián)匿名(nì)凄然鹤立鸡群D.黝黑(yǒu)滞留(zhì)愚顿筋疲力尽2.下列各句中加粗成语使用不正确的一项是()(2分)A.民族精神是中华民族赖以生存和发展的精神支撑,是中华民族自强不息、不折不挠的不竭动力。

B.作者怀着极大的热情描绘勇士们在战场上纵横决荡,刻画参战者雄姿勃发的形象。

C.办公室的小刘为人诚实,待人接物坦荡如砥,深得同事们的好评。

D.唐代诗人崔颢来到四大名楼之黄鹤楼,妙手偶得写下仙人之作《黄鹤楼》。

3.下列各句中,标点符号使用不正确的一项是()(2分)A.“了解航空的进展,就是我的晚年之乐。

”国家最高科学技术奖获奖者顾诵芬说,“我现在能做的也就是尽可能给年轻人一点帮助。

”B.2020年1月11日,被誉为“中国天眼”的500米口径球面射电望远镜正式开放运行。

C.从“清澈的爱,只为中国”的戍边英雄,到奔赴偏远地区播撒梦想的支教群体,无数事实表明:新时代的中国青年是堪当大任的!D.本单元学习的散文类型多样、或写人记事、或托物言志、或阐发哲理、或写景抒情,表达出独特的情感体验和深刻的人生感悟。

4.下列说法无误的一项是()(2分)A.律诗是古体诗的一种,有“五律”和“七律”之分,每两句为一联,共计四联,依次是首联、颔联、颈联、尾联。

B.我国古代用干支和皇帝的年号纪年。

如“元丰六年十月十二日夜”中的“元丰”和“自康乐以来”中的“康乐”,都是用皇帝的年号表示时间的。

C.《与朱元思书》的作者吴均,明朝文学家,为文清拔,工于写景,尤以小品书札见长,诗亦清新,多为反映社会现实之作,号称“吴均体”。

最新人教版八年级数学上册第一学期期末考试试卷及答案(AB卷)

最新人教版八年级数学上册第一学期期末考试试卷及答案(AB卷)

201×-201×学年度第一学期期末检测考试八年级数学试卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________(最新人教版专用)一、选择题(每小题3分,共30分)1.若分式x +1x +2的值为0,则x 的值为( )A .0B .-1C .1D .2周国年1031 2.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( ) A .25 B .25或20 C .20 D .153.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )周国年1031A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第3小题图 第5小题图 第8小题图 第10小题图 4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+1周国年1031 5.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE 的大小为( )周国年1031A .80°B .60°C .50°D .40° 6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32 D .647.若a +b =3,ab =-7,则a b +ba 的值为( )A .-145B .-25C .-237D .-257周国年10318.如图,在△ABC 中,∠C =40°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1-∠2的度数是( )A .40°B .80°C .90°D .140°周国年10319.若分式方程x -a x +1=a 无解,则a 的值为( )A .1B .-1C .±1D .0周国年1031 10.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,直角∠MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①△DEF 是等腰直角三角形;②AE =CF ;③△BDE ≌△ADF ;④BE +CF =EF ,其中正确结论是( )A .①②④B .②③④C .①②③D .①②③④周国年1031二、填空题(每小题3分,共24分)11.如图,∠ACD 是△ABC 的外角,若∠ACD =125°,∠A =75°,则∠B =__________. 12.计算:(-8)2016×0.1252015=__________.13.计算:x x +3-69-x 2÷2x -3=__________. 14.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.周国年103115.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =36°.周国年1031第11小题图周国年1031 第14小题图 周国年1031 第15小题图周国年1031 第18小题图 16.若x 2+bx +c =(x +5)(x -3),则点P (b ,c )关于y 轴对称点的坐标是________. 17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x 千米/时,根据题意,可列方程为________.18.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥DA 于Q ,PQ =3,EP =1,则DA 的长是________.周国年1031三、解答题(共66分)19.(8分)计算或因式分解:(1)计算:(a 2-4)÷a +2a ; (2)因式分解:a (n -1)2-2a (n -1)+a .20.(8分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.周国年103121.(10分)(1)解方程:1x -3-2=3x 3-x;周国年1031(2)设y =kx ,且k ≠0,若代数式(x -3y )(2x +y )+y (x +5y )化简的结果为2x 2,求k 的值.22.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;周国年1031(2)先化简⎝ ⎛⎭⎪⎫2a 2+2a a 2-1-a 2-a a 2-2a +1÷a a +1,并回答:原代数式的值可以等于-1吗?为什么?周国年103123.(8分)某校学生利用双休时间去距离学校10km 的炎帝故里参观.一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.周国年103124.(10分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;周国年1031(2)请你判断BE+CF与EF的大小关系,并说明理由.周国年103125.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P,Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.周国年1031期末参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B9.C 解析:在方程两边乘(x +1),得x -a =a (x +1),整理得x (1-a )=2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入x (1-a )=2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎪⎨⎪⎧∠B =∠CAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE=CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的结论有①②③.故选C.11.50 12.8 13.1 14.55° 15.36°16.(-2,-15) 17.1480x =1480x +70+318.7 解析:∵△ABC 为等边三角形,∴AB =CA ,∠BAE =∠C =60°.在△AEB 和△CDA中,AB =CA ,∠BAE =∠C ,AE =CD ,∴△AEB ≌△CDA (SAS),∴∠ABE =∠CAD ,AD =BE ,∴∠BPQ =∠BAD +∠ABE =∠BAD +∠CAD =∠BAC =60°.∵BQ ⊥AD ,∴∠BQP =90°,∴∠PBQ =30°,∴BP =2PQ =6.∵EP =1,∴BE =BP +PE =7,∴DA =BE =7.19.解:(1)原式=(a +2)(a -2)·aa +2=a (a -2)=a 2-2a ;(4分)(2)原式=a [(n -1)2-2(n -1)+1]=a (n -1-1)2=a (n -2)2.(8分)20.解:如图,作AB 的垂直平分线EF ,(3分)作∠BAC 的平分线AM ,两线交于P ,(7分)则P 为这个中心医院的位置.(8分)21.解:(1)方程两边乘(x -3),得1-2(x -3)=-3x ,解得x =-7.(4分)检验:当x =-7时,x -3≠0,∴原分式方程的解为x =-7.(5分)(2)∵(x -3y )(2x +y )+y (x +5y )=2x 2+xy -6xy -3y 2+xy +5y 2=2x 2-4xy +2y 2=2(x -y )2=2(x -kx )2=2x 2(1-k )2=2x 2,(8分)∴(1-k )2=1,则1-k =±1,解得k =0(不合题意,舍去)或k =2.∴k 的值为2.(10分)22.解:(1)a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(5分)(2)原式=⎣⎢⎡⎦⎥⎤2a (a +1)(a +1)(a -1)-a (a -1)(a -1)2·a +1a =⎝⎛⎭⎫2a a -1-a a -1·a +1a =a a -1·a +1a =a +1a -1.(8分)当a +1a -1=-1时,解得a =0,这时除式aa +1=0,没有意义,∴原代数式的值不能等于-1.(10分)23.解:设骑车学生的速度为x km/h ,则汽车的速度为2x km/h ,由题意得10x =102x +错误!,解得x =15.(6分)经检验,x =15是原方程的解,2x =2×15=30.(7分)答:骑车学生的速度和汽车的速度分别是15km/h ,30km/h.(8分) 24.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎪⎨⎪⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:∵△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF (垂直平分线上的点到线段端点的距离相等).(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分)25.(1)证明:如图①,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE .(1分)在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:如图①,∵△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分)证明:如图②,由(1)可得,BE =AD .∵AD ,BE 的中点分别为点P ,Q ,∴AP =BQ .∵△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎪⎨⎪⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP ≌△BCQ (SAS),∴CP =CQ 且∠ACP =∠BCQ .(10分)又∵∠ACP +∠PCB =90°,∴∠BCQ +∠PCB =90°,∴∠PCQ =90°,∴△CPQ 为等腰直角三角形.(12分)201×-201×学年度第一学期期中检测考试八年级数学试卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________(最新人教版专用)一、选择题(每小题3分,共30分)1.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm2.下列图形中不是轴对称图形的是()3.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M′,N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对第3题图第6题图第7题图4.正n边形每个内角的大小都为108°,则n的值为()A.5 B.6 C.7 D.85.在△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°6.如图,AD是△ABC的角平分线,且AB∶AC=3∶2,则△ABD与△ACD的面积之比为()A.3∶2 B.9∶4 C.2∶3 D.4∶97.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.点A(3,-2)关于x轴对称的点的坐标是________.12.已知三角形两边长分别是3cm,5cm,设第三边的长为x cm,则x的取值范围是________.13.如图所示是某零件的平面图,其中∠B=∠C=30°,∠A=40°,则∠ADC的度数为________.第13题图第14题图第15题图14.如图,△ABC≌△DFE,CE=6,FC=2,则BC=________.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________.16.如图,已知正方形ABCD中,CM=CD,MN⊥AC,连接CN,则∠MNC=________.17.如图所示是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕点M转动△ABC,使其直角顶点C 恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是________.18.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=________.三、解答题(共66分)19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.21.(8分)图①、图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,A、B、C三点均在小正方形的顶点上.(1)在图①中画出凸四边形ABCD,点D在小正方形的顶点上,且使四边形ABCD是只有一条对称轴的轴对称图形;(2)在图②中画出凸四边形ABCE,点E在小正方形的顶点上,且使四边形ABCE是有四条对称轴的轴对称图形.22.(10分)如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB 的平分线,DF⊥CE于F,求∠CDF的度数.23.(10分)已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.24.(10分)如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F 作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.25.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积;(2)求证:CE=2AF.期中参考答案与解析1.C 2.C 3.C 4.A 5.D 6.A 7.A 8.C9.D 解析:∵图中是三个等边三角形,∴∠1=180°-60°-∠ABC =120°-∠ABC ,∠2=180°-60°-∠ACB =120°-∠ACB ,∠3=180°-60°-∠BAC =120°-∠BAC .∵∠ABC +∠ACB +∠BAC =180°,∴∠1+∠2+∠3=360°-180°=180°.故选D.10.A 解析:∵BF ∥AC ,∴∠C =∠CBF .∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC .∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确;在△CDE 与△BDF 中,⎩⎪⎨⎪⎧∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF (ASA),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A.11.(3,2) 12.2<x <8 13.100°14.8 15.108° 16.67.5°17.5 解析:如图,连接CC 1.∵两块三角板重叠在一起,较长直角边的中点为M ,∴M是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =12AC =5,∴∠A 1CM =∠A 1=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5.18.1.5 解析:如图,连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEA =∠DEB =90°.又∵AD =AD ,∴Rt △ADF ≌Rt △ADE (HL),∴AE=AF .∵DG 是BC 的垂直平分线,∴CD =BD .在Rt △CDF 和Rt △BDE 中,⎩⎪⎨⎪⎧CD =BD ,DF =DE ,∴Rt △CDF ≌Rt △BDE (HL),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE .∵AB =6,AC =3,∴BE =1.5.19.证明:∵AB ∥CD ,∴∠B =∠C .(2分)在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,AE =DF ,∴△ABE ≌△DCF (AAS),(6分)∴AB =CD .(8分)20.解:(1)设等腰三角形的顶角为x °,则底角为2x °,由题意得x +2x +2x =180,解得x =36,∴这个三角形三个内角的度数分别为36°、72°、72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5、3.5、3.5可以构成三角形;(6分)当5为腰长时,其他两边长为5和2,5、5、2可以构成三角形.(7分)∴另外两边长是3.5、3.5或5、2.(8分)21.解:(1)图①中两个图形画出一个即可.(4分)(2)如图②所示.(8分)22.解:∵∠A =40°,∠B =72°,∴∠ACB =180°-40°-72°=68°.(2分)∵CE 是∠ACB的平分线,∴∠BCE =12∠ACB =12×68°=34°.(4分)∵CD ⊥AB ,∴∠CDB =90°,∴∠BCD =180°-90°-72°=18°,∴∠DCE =∠BCE -∠BCD =34°-18°=16°.(8分)∵DF ⊥CE ,∴∠DFC =90°,∴∠CDF =180°-90°-16°=74°.(10分)23.解:如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线,则有AB +AD=9cm 或AB +AD =15cm.(2分)设△ABC 的腰长为x cm ,分下面两种情况:(1)x +12x =9,∴x =6.∵三角形的周长为9+15=24(cm),∴三边长分别为6cm ,6cm ,12cm.6+6=12,不符合三角形的三边关系,舍去;(6分)(2)x +12x =15,∴x =10.∵三角形的周长为24cm ,∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.(9分)综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.(10分)24.(1)证明:∵AE ∥BC ,∴∠B =∠DAE ,∠C =∠CAE .(2分)∵AE 平分∠DAC ,∴∠DAE =∠CAE .(3分)∴∠B =∠C .∴△ABC 是等腰三角形.(4分)(2)解:∵点F 是AC 的中点,∴AF =CF .(5分)在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠F AE =∠C ,AF =FC ,∠AFE =∠CFG ,∴△AEF ≌△CGF (ASA).∴AE =GC =8.∵GC =2BG ,∴BG =4,∴BC =12.(9分)∴△ABC 的周长为AB +AC +BC =10+10+12=32.(10分)25.(1)解:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAC=∠EAD .(2分)在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).∴S △ABC=S △ADE ,∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×102=50.(6分) (2)证明:∵△ACE 是等腰直角三角形,∴∠ACE =∠AEC =45°.由△ABC ≌△ADE 得∠ACB =∠AEC =45°,∴∠ACB =∠ACE ,∴AC 平分∠ECF .(8分)过点A 作AG ⊥CG ,垂足为点G ,∵AC 平分∠ECF ,AF ⊥CB ,∴AF =AG .又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC ,∴CG =AG =GE ,(11分)∴CE =2AG =2AF .(12分)。

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。

每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。

7. 下列函数中,其图像是抛物线的是__________。

8. 下列图形中,属于中心对称图形的是__________。

9. 下列关于圆的命题中,错误的是__________。

10. 下列关于角的命题中,错误的是__________。

三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。

12. 解不等式:3x 2 < 2x + 5。

13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

14. 解圆的方程:x² + y² 6x 8y + 9 = 0。

四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。

16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级第一学期期末测试卷(B卷)地理时间:90分钟满分:100分一、单项选择题(每题2分,共40分)1.我国纬度最高与最低的省级行政区是( )A.新疆维吾尔自治区、云南省 B.黑龙江省、海南省C.黑龙江省、广东省D.新疆维吾尔自治区、海南省2.下列叙述,错误的是( )A.工业是国民经济的主导B.农业是国民经济的基础产业C.交通运输业是国民经济发展的“先行官”D.重工业是指采矿业3.我国降水量分布的总趋势是( )A.由西向东逐渐减少B.由中部向四周逐渐减少C.从东南沿海向西北内陆逐渐减少 D.自北向南逐渐减少4.有关我国山区的说法,正确的是( )A.山区面积与平原面积几乎相等B.山区面积广大,约占全国60%C.山区指的是山地、高原和平原D.我国难以利用的山区主要分布在东北部5.我国信仰伊斯兰教的少数民族是( )A.维吾尔族、藏族B.回族、蒙古族C.藏族、蒙古族D.维吾尔族、回族6.有关我国自然资源基本特征的叙述,正确的是( )A.资源总量大,人均资源占有量高B.资源总量少,人均资源占有量低C.资源种类多,但总量少D.资源丰富,总量大,但人均资源占有量不足7.下列地区,主要粮食作物为小麦的是( )A.洞庭湖平原B.成都平原 C.鄱阳湖平原D.三江平原8.我国面积最大的沙漠位于( )A.塔里木盆地 B.准噶尔盆地 C.柴达木盆地D.吐鲁番盆地9.下列自然资源中,都为可再生资源的是( )A.森林、草原、土地、阳光和水B.土地、阳光、石油、天然气C.煤、铁、水能、天然气D.水能、阳光、天然气、煤10.下列土地资源利用措施中,符合“因地制宜”原则的是( )A.在山区修筑梯田、开垦耕地,增加粮食产量B.在西北地区建立蔬菜生产基地,建“菜篮子”工程C.在南方平原地区广种玉米、棉花D.在丘陵地区发展林业,开展多种经营11.“橱生淮南则为橘,橘生淮北则为枳”,造成这一差异的最主要原因是( ) A.地形因素B.土壤因素 C.人文因素 D.气候因素12.对我国交通运输的叙述,正确的是( )A.我国交通运输网东部地区比西部地区稠密B.传统交通运输方式中,北方地区以船为主,南方地区以马拉大车为主C.随着我国西部大开发战略的落实,西部地区水运交通有了很大改善D.许多大城市形成了海、陆、空立体化交通13.下列河流,汛期最长的是( )A.长江 B.黄河C.松花江D.珠江14.下列对洞庭湖的叙述,正确的是( )A.洞庭湖位于长江中游,湖北省境内B.洞庭湖位于非季风区,为淡水湖C.素有“八百里洞庭”之称的洞庭湖融水量在不断扩大D.洞庭湖目前是我国第二大淡水湖15.我国水资源季节分配不均的主要原因是( )A.我国地势西高东低,呈三级阶梯状分布B.我国跨经度、纬度大,地域辽阔C.我国降水多集中在夏秋季节D.我国气候复杂多样16.对我国土地资源的叙述,正确的是( )A.耕地主要分布在湿润、半湿润的山地、丘陵地区B.草地主要分布在东北、西南降水比较丰富的地区C.林地主要分布在降水量不足400mm的西部内陆地区D.东部季风区是我国耕地、林地集中的地区17.对我国水资源地区分布的叙述,正确的是( )A.南方水资源丰富,北方水资源短缺B.西北地区塔里木河流域水资源很丰富C.西南地区水资源短缺D.非季风区水资源比季风区丰富18.我国最早建立的高新技术开发试验区是( )A.南京高新技术开发区B.北京中关村C.上海浦东开发区D.深圳特区19.高新技术产业的特点是( )A.企业规模大,资金投入多B.重工业比重明显大于轻工业C.产品科技含量高,更新换代快D.一般都建在交通便利、资源丰富的平原地区20.首都北京位于( )A.暖温带、半湿润区、季风区 B.亚热带、半湿润区、季风区C.暖温带、湿润区、非季风区 D.亚热带、半湿润区、非季风区二、填空题(每空1分,共10分)21.我国位于亚洲的部,太平洋岸。

22.我国四大盆地中,纬度最低的是,四大高原中海拔最高的是。

23.自然资源总的特点是、。

24.秦岭一淮河一线以南主要粮食作物为,以北主要粮食作物为。

25.解决我国水资源时空分布不均的方法,最主要的是,解决水资源地区分布不均的最有效方法是。

三、综合题(共50分)26.将下列省级行政单位和其简称、行政中心用直线连接起来。

(i0分)①渝A.西藏自治区a.南京②湘B.重庆市b.南昌③赣C.湖南省c.长沙④藏D.江西省d.重庆⑤苏E.江苏省e.拉萨27.读图,回答下列问题。

(6分)(1)写出图中字母所代表的省级行政单位名称。

A B C(2)写出图中数字所代表的边缘海名称。

①②③(3)我国面积最大的省级行政单位是;人口最多的省级行政单位是;位置最南的省级行政单位是;位置最北的省级行政单位是;位置最东的省级行政单位是;位置最西的省级行政单位是。

28.读图,回答下列问题。

(5分)(1)写出图中字母所代表的地形区名称。

A B C D(2)A地处(温度带) (干湿地区);B地处(温度带),(干湿地区);C高原地表主要特征为;D处经济以畜牧业为主,为我国四大牧区中的。

(3)①处为(河流),该河流自向注入海。

河流的流向与地势的联系是。

②山脉为走向,位于我国三级阶梯中的。

该山东侧为平原,西侧为高原。

29.读我国铁路干线的分布图,回答下列问题.(4分)(1)图中A为线,它的起止城市是、。

(2)B为线,该条路线主要途径省和省。

(3)C是正在修建的铁路。

(4)有第二条亚欧大桥之称的铁路在我国东起(城市名称)经线、线和线到哈萨克斯坦、欧洲。

(5)家住南京的明明乘火车经徐州去西安旅游。

①西安是省的省会,其位于我国(温度带)、(干湿地区)。

②依次经过哪些铁路干线?30.读图,回答下列问题。

(4分)(1)黄河干流的形状像个巨大的“”字形。

(2)黄河从源头至内蒙古自治区的为上游,河南省以下为下游。

(3)黄河中游主要流经高原,下游流经平原。

(4)在图中标处黄河“地上河”的河段,说说“地上河”的成因。

(5)治理黄河的措施中,最重要的是。

31.读我国气候类型图,回答下列问题。

(4分)(1)我国是世界上季风气候显著的国家,请说出我国有哪几种季风气候类型。

(2)青藏高原地区为气候,形成这一气候的主要原因是。

(3)长江中下游地区为气候,海南岛为气候,内蒙古高原绝大部分地区为气候,首都北京为气候。

(4)亚热带季风气候与温带季风气候的界线大致在。

32.读我国主要商品粮基地图,回答下列问题。

(4分)(1)分析这些地区能够成为我国重要商品粮基地的原因。

①从地形上看,商品粮基地都为(地形),这种地形对发展农业有哪些有利条件?②“水利是国民经济的命脉”,发展农业需要有水,我国主要商品粮基地在灌溉水源方面状况如何?(2)你认为上述地区还有哪些是其成为我国重要商品粮基地的有利条件?(3)松嫩平原、三江平原属我国三大平原中的平原。

(4)江汉平原、洞庭湖平原同属我国三大平原中的平原。

33.阅读材料,回答下列问题。

(5分)材料一尽管从1973年中国实行计划生育以来已累计少出生人口3亿以上,但按照目前的人口基数和人口出生比率,预计到2010年将突破14亿,直到2050年达到16亿时我国人口才有可能实现零增长。

如此巨大的人口数量以及今后较长一个时期内的人口增长趋势,无疑对我国的环境、资源和经济发展构成严重的威胁和压力。

材料二新中国人口增长图:(1)目前,我国人口的突出特点是。

(2)到1998年,我国城市人口占总人口的比重约为,与世界经济发达国家相比,这个比重是(低、高)的。

(3)我国耕地面积居世界第四位,但人均耕地面积只有世界平均水平的1/3,其原因是。

(4)你认为人口与经济、资源、环境之间的关系应如何处理?34.读长江水系示意图,回答下列问题。

(5分)(1)长江发源于,流经的主要地形区依次为横断山脉、高原、盆地、巫山、长江中下游平原,最后注入东海。

(2)图中A、B、C、D是长江沿岸重要的港口,它们分别是( )A.重庆、武汉、南京、上海B.武汉、重庆、南京、上海C.上海、南京、武汉、重庆D.重庆、南京、武汉、上海(3)关于图中三个水利工程的叙述,正确的是( )A.E为二滩水电站F为葛洲坝水利枢纽G为丹江口水利枢纽B.E为二滩水电站F为三峡水利枢纽G为丹江口水利枢纽C.E为龚嘴水电站F为葛洲坝水利枢纽G为丹江口水利枢纽D.E为龚嘴水电站F为葛洲坝水利枢纽G为二滩水电站35.小王从南京乘坐火车去西安,临行前与家住西安的好朋友小明通了电话,告知上车时乘坐的车次。

可小明在西安查阅了从南京开出后到西安的车次都没有这趟车。

据此回答下列问题。

(3分)(1)你认为是小明查阅不仔细、时间没有计算好,还是其他原因?(2)请说出你判断的理由。

(3)你认为火车车次的排列有什么规律?八年级第一学期期末测试卷(B卷)地理参考答案1.B 2.D 3.C 4.B 5.D 6.D 7.D 8.A 9.A 10.D 11.D l2.A 13.D 14.D 15.C 16.D 17.A 18.B 19.C 20.A21.东西22.四川盆地青藏高原23.自然资源总量丰富人均不足24.水稻小麦25.修建水库跨流域调水26.①—B—d ②—C—c ③—D—b ④—A—e ⑤—E—a27.(1)黑龙江省内蒙古自治区四川省(2)南海东海渤海(3)新疆维吾尔自治区河南省海南省黑龙江省黑龙江省新疆维吾尔自治区28.(1)华北平原四川盆地青藏高原天山山脉(2)暖温带半湿润区亚热带湿润区海拔高、多冰川积雪新疆牧区(3)长江西东东我国地势西高东低,河流从高处流向低处东北一西南第二级阶梯与第三级阶梯交界处附近华北黄土29.(1)京广北京广州(2)湘黔湖南贵州(3)青藏(4)连云港陇海兰新北疆(5)陕西暖温带半湿润京沪线、陇海线30.(1)几(2)河口孟津(3)黄土华北(4)黄河流经华北平原后水流变缓,泥沙淤积,人们为了防止黄河水泛滥,不断加固大堤所致。

(5)加强中游黄土高原上的水土保持31.(1)热带季风气候、亚热带季风气候、湿带季风气候。

(2)高原山地青藏高原海拔高(3)亚热带季风热带季风温带大陆性温带季风(4)秦岭一淮河一线32.(1)平原便于耕作、灌溉等,附近有河流,可保证农业用水。

(2)可以从气候、历史等方面思考。

(3)东北(4)长江中下游33.(1)人口基数大,人口增长快(2)30%低(3)人口总量太大(4)人口的增长同经济的发展相适应,与资源能源环境相协调。

34.(1)青藏高原唐古拉山云贵四川(2)A (3)C35.只要回答合理即可。

主要从火车由北京为起点开出的列车编为单次,驶向北京的列车编为双次,同列火车,小王从南京上车时列车编为双次,到徐州后列车驶离北京为单次等方面去思考、回答。

相关文档
最新文档