带电粒子在叠加场中的运动

合集下载

第九章专题十带电粒子在叠加场中的运动-2025年高考物理一轮复习PPT课件

第九章专题十带电粒子在叠加场中的运动-2025年高考物理一轮复习PPT课件
A.A 金属板是电源的正极 B.等离子体入射速度不变,减小 A、B 两金属板间的距离, 电源电动势增大 C.A、B 两金属板间的电势差等于电源电动势 D.A、B 两金属板间的电势差与等离子体的入射速度有关
答案
高考一轮总复习•物理
第16页
解析:根据磁场的方向和等离子体进入的方向,由左手定则可以判断等离子体中的正电 荷受向下的洛伦兹力,故 B 金属板是电源的正极,选项 A 错误;发电机的电动势稳定时,一 定存在 F 电=F 洛,即Ud q=Bqv,所以电源的电动势 U=Bdv,所以若等离子体入射速度 v 不 变,减小 A、B 两金属板间的距离 d,电源电动势 U 减小,选项 B 错误;由于电源与外电路 构成通路,电流还通过等离子体,而等离子体是有一定电阻的,所以 A、B 两金属板间的电 势差 U′=R+R rU,故它不等于电源电动势,选项 C 错误;根据前面的推导可知,电源的电动 势 U=Bdv,即 A、B 两金属板间的电势差 U′与电动势成正比,即这个电势差也与等离子体 的入射速度有关,选项 D 正确.
A.从 a 点射出 C.从 d 点射出
B.从 b 点射出 D.从 b、p 之间射出
答案
高考一轮总复习•物理
第24页
解析:设电场强度大小为 E,磁感应强度大小为 B,粒子所带电荷量的绝对值为 q,粒 子射入场区时的速度大小为 v,粒子恰能沿直线经过 p 点射出场区,由平衡条件得 qE=qvB, 仅撤去磁场,粒子从 c 点射出,则粒子所受电场力方向水平向右,则粒子所受洛伦兹力方向 水平向左,由运动学公式知 L=12·qmEt2,L=vt,仅撤去电场,粒子在磁场中做匀速圆周运动, 由牛顿第二定律得 qvB=mvr2,联立解得 r=L2,故粒子从 a 点射出,A 正确.

带电粒子在叠加场中的运动

带电粒子在叠加场中的运动
总结词
当带电粒子在重力场中运动时,重力对粒子做功,重力势能转化为动能。
详细描述
当带电粒子在重力场中运动时,重力对粒子做正功或负功,导致粒子的重力势能减小或 增加,同时粒子的动能增加或减小。这是因为重力对粒子做正功时,粒子获得动能,重
力势能转化为动能;重力对粒子做负功时,粒子失去动能,动能转化为重力势能。
加速度分析
总结词
带电粒子在叠加场中的加速度由电场和磁场 的梯度决定,与粒子的电荷和质量有关。
详细描述
带电粒子在叠加场中的加速度由电场和磁场 的梯度共同决定。电场梯度决定了粒子在电 场中的加速度,而磁场梯度决定了粒子在磁 场中的洛伦兹力产生的加速度。粒子的加速 度大小和方向同样受到电荷和质量的影响。
匀速圆周运动
总结词
当带电粒子在叠加场中受到的电场力和磁场力相互垂直且等大时,粒子将做匀速圆周运动。
详细描述
带电粒子在磁场中受到的洛伦兹力与粒子的电荷量、速度和磁感应强度成正比。当电场力和磁场力相互垂直且等 大时,洛伦兹力提供向心力,使粒子做匀速圆周运动。此时,粒子的速度大小不变,方向时刻改变。
匀速螺旋运动
实验设计
01
3. 发射带电粒子,观察其在叠加 场中的运动轨迹。
02
4. 记录实验数据,包括粒子速度 、位置、时间等。
实验结果分析
01
02
03
数据分析
对实验数据进行处理和分 析,提取有关粒子运动的 参数,如速度、加速度、 位移等。
结果解释
根据数据分析结果,解释 叠加场对带电粒子运动的 影响,探究其中的物理机 制。
详细描述
此时,磁场力充当向心力,使带电粒 子在垂直于其运动方向的平面内做圆 周运动。
螺旋轨迹分析

高中物理专题:带电粒子(带电体)在叠加场中的运动

高中物理专题:带电粒子(带电体)在叠加场中的运动

高中物理专题:带电粒子(带电体)在叠加场中的运动学习目标:1.了解带电粒子在复合场中的应用实例.2.能求解较复杂的单个粒子在复合(组合)场中的运动问题.考点一带电粒子(带电体)在叠加场中的运动【知识梳理】1.分析方法2.三种场的比较1【命题突破】命题点1电场与磁场共存类1.如图所示,空间中存在匀强电场和匀强磁场,电场和磁场的方向水平且互相垂直。

一带电微粒沿直线由a 向b 运动,在此过程中()。

A.微粒做匀加速直线运动B.微粒的动量减小C.微粒的电势能增加D.微粒的机械能增加命题点2磁场与重力场共存类2.如图所示,整个空间有一方向垂直纸面向里的匀强磁场,一绝缘木板(足够长)静止在光滑水平面上,一带正电的滑块静止在木板上,滑块和木板之间的接触面粗糙程度处处相同.不考虑空气阻力的影响,下列判断正确的是()A.若对木板施加一水平向右的瞬时冲量,最终木板和滑块一定相对静止B.若对木板施加一水平向右的瞬时冲量,最终滑块和木板间一定没有弹力C.若对木板施加一水平向右的瞬时冲量,最终滑块和木板间一定没有摩擦力D.若对木板始终施加一水平向右的恒力,最终滑块做匀速运动命题点3电场、磁场与重力场共存类3..如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向里的磁场和竖直向下的匀强电场中,磁感应强度大小为B,电场强度大小为E,一质量为m、电荷量为Q的带负电小滑块从斜面顶端由静止下滑,在滑块下滑过程中,下列判断正确的是()A.滑块受到的摩擦力不变2B.若斜面足够长,滑块最终可能在斜面上匀速下滑C.若B足够大,滑块最终可能静止于斜面上D.滑块到达地面时的动能与B有关考点二带电粒子(带电体)在叠加场中运动的实例分析【知识梳理】3命题点1应用实例1——速度选择器4.如图所示,含有11H、21H、42He的带电粒子束从小孔O1处射入速度选择器,沿直线O1O2运动的粒子在小孔O2处射出后垂直进入偏转磁场,最终打在P1、P2两点.则()A.粒子在偏转磁场中运动的时间都相等B.打在P1点的粒子是42HeC.打在P2点的粒子是21H和42HeD.O2P2的长度是O2P1长度的4倍命题点2应用实例2——磁流体发电机5.如图所示为一利用海流发电的原理图,用绝缘材料制成一个横截面为矩形的管道,在管道的上、下两个内表面装有两块电阻不计的金属板M、N,板长为a,宽为b,板间的距离为d,将管道沿海流方向固定在海水中,在管道中加与前后表面垂直的匀强磁场,磁感应强度大小为B,将航标灯与两金属板连接(图中未画出).海流方向如图,海流速率为v,下列说法正确的是()A.M板电势高于N板的电势B.该海流发电机的电动势为Bd vC.该海流发电机的电动势为Ba vD.管道内海水受到的安培力方向向左命题点3应用实例3——电磁流量计6.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正、负45离子随血液一起在磁场中运动,电极a 、b 之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和洛伦兹力的合力为零.在某次监测中,两触点间的距离为3.0 mm ,血管壁的厚度可忽略,两触点间的电势差为160 μV ,磁感应强度的大小为0.040 T .则血流速度的近似值和电极a 、b 的正负为( )A .1.3 m/s ,a 正、b 负B .2.7 m/s ,a 正、b 负C .1.3 m/s ,a 负、b 正D .2.7 m/s ,a 负、b 正命题点4 应用实例4——霍尔元件7.如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H Bd ,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比命题点5 综合应用实例8.如图所示,某粒子分析器由区域Ⅰ、区域Ⅱ和检测器Q组成。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。

当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。

当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。

3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。

常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。

带电粒子在叠加场和组合场中的运动(推荐文档)

带电粒子在叠加场和组合场中的运动(推荐文档)

专题强化十带电粒子在叠加场和组合场中的运动命题点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动(1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子) ①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.例 1 (2017·全国卷Ⅰ ·16)如图1,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c 电荷量相等,质量分别为m a、m b、m c,已知在该区域内, a 在纸面内做匀速圆周运动, b 在纸面内向右做匀速直线运动, c 在纸面内向左做匀速直线运动.下列选项正确的是( )A.m a>m b> m cB.m b>m a>m cC.m c> m a>m bD.m c>m b>m a(多选)(2017 ·河南六市一模)如图2所示,半径为R的光滑半圆弧绝缘轨道固定在竖直面内,磁感应强度为 B 的匀强磁场方向垂直于轨道平面向里.一可视为质点、质量为m、电荷量为q(q>0)的小球由轨道左端 A 点无初速度滑下,当小球滑至轨道最低点 C 时,给小轨道的两端 等高,小球始终与轨道接触,重力加速度为 g ,则下列判断正确的是 ( )A.小球在 C 点对轨道的压力大小为 qB 2gRB.小球在 C 点对轨道的压力大小为 3mg -qB 2gRC.小球从 C 到 D 的过程中,外力 F 的大小保持不变D.小球从 C 到 D 的过程中,外力 F 的功率逐渐增大(2017 河·北冀州 2 月模拟 )我国位于北半球,某地区存在匀强电场 E 和可看做匀强磁场的地磁场 B ,电场与地磁场的方向相同, 地磁场的竖直分量和水平分量分别竖直向下和水平向北, 一带电小球以 速度 v 在此区域内沿垂直场强方向在水平面内做直线运动, 忽略空气阻力, 此地区的重力加速度为 g ,则下列说法正确的是 ( )A. 小球运动方向为自南向北B. 小球可能带正电C. 小球速度 v 的大小为 EB .( 多选 )如图 1 所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖 直向下,磁场方向垂直纸面向里,则下列说法正确的是 ( )A. 小球一定带正电B. 小球一定带负电C. 小球的绕行方向为顺时针D. 改变小球的速度大小,小球将不做圆周运动如图 2 所示的虚线区域内, 充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场 .一带电粒子 a (不计重力 )以一定的初速度由左边界的 O 点射入磁场、电场区域,恰好沿直线由区域右边界 的 O ′点 (图中未标出 )穿出 .若撤去该区域内的磁场而保留电场不变,另一个同样的粒子 b (不计重力 )仍以相同初速度由 O 点射入,从区域右边界穿出,则粒子 b ( )A.穿出位置一定在 O ′点下方B.穿出位置一定在 O ′点上方C. 运动时,在电场中的电势能一定减小D.小球的比荷为 gE 2+ v B 2D.在电场中运动时,动能一定减小轨道的两端【2017·辽宁省本溪市高级中学、大连育明高级中学、大连二十四中高三联合模拟考试】如图所示,质量为m,带电量为+q 的三个相同的带电小球,A、B、C,从同一高度以初速度 v 0水平抛出,B 球处于竖直向下的匀强 磁场中, C 球处于垂直纸面向里的匀强电场中, 它们落地的时间分别为t A 、t B 、t C ,落地时的速 度大小分别为v A 、 v B 、 v C ,则以下判断正确的 是: ( )如图所示,三个完全相同的半圆形光滑轨道竖直放置,分别处在真空、匀强磁场和匀 强电场中,轨道两端在同一高度上,三个相同的带正电小球同时从轨道左端最高点由 静止开始沿轨道运动, P 、M 、N分别为轨道的最 低点,如图所示,则下列有关判断正确的是( )A .小球第一次到达轨道最低点的速度关系v p =v M >v NB .小球第一次到达轨道最低点时对轨道的压力关系 F P =F M >F NC .小球从开始运动到第一次到达轨道最低点所用的时间关系 tP <t M <t ND .三个小球到达轨道右端的高度都不相同,但都能回到原来的出发点位置 带电粒子在组合场中的运动 1.组合场 :电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现2.分析思路A .t A tB tC B .t B t A t C .v C v A v BD .v A v B v C(2016 ·江西八校联考 ) 如图 4 所示,在水平匀强电场和垂直纸 面向里的匀强磁场中,有一竖直足够长固定绝缘杆 MN ,小球 P 套在 杆上,已知 P 的质量为 m 、电荷量为+ q ,电场强度为 E ,磁感应强 度为 B ,P 与杆间的动摩擦因数为 μ,重力加速度为 g 。

高考物理《带电粒子在叠加场中的运动》真题练习含答案

高考物理《带电粒子在叠加场中的运动》真题练习含答案

高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。

2025高考物理总复习带电粒子在叠加场和交变电、磁场中的运动

2025高考物理总复习带电粒子在叠加场和交变电、磁场中的运动
由平衡条件得:qvB= 2mg 电场方向变化后,微粒所受重力与静电力 平衡,微粒在洛伦兹力作用下做匀速圆周 运动,运动轨迹如图乙,有qvB=mvr2 由几何知识可得:r= 2l 联立解得:v= 2gl,B=mq gl 。
考点一 带电粒子在叠加场中的运动
(3)微粒在叠加场中的运动时间。
答案 (34π+1)
电子在竖直向下的匀强电场和垂直坐标平面向里的匀强磁场的复合场 中,由于洛伦兹力不做功,且电子入射速度为 v40,电子受到的静电力 大于洛伦兹力,则电子向上偏转, 根据动能定理有 eEy1=12m(12v0)2-12m(14v0)2 解得 y1=332mevB0
考点一 带电粒子在叠加场中的运动
(3)若电子入射速度在 0<v<v0 范围内均匀分布, 求能到达纵坐标 y2=5mevB0位置的电子数 N 占总电 子数 N0 的百分比。 答案 90%
考点二 带电粒子在交变电、磁场中的运动
方法二:图乙中,恰从 F 点射出的粒子,其射入磁 场的时刻为T20-135600°°×2qπBm0 =2πqmB0 此时刻之前发射的粒子从x轴射出, 时长 Δtx=2πqmB0
考点二 带电粒子在交变电、磁场中的运动
图丙中,恰从 D 点射出的粒子,其射入磁场的时 刻为T20-132600°°×2qπBm0 =32qπBm0 此时刻至T20时刻发射的粒子从 y 轴射出, 时长 Δty=T20-32qπBm0=32qπBm0 所以从x轴和y轴射出的粒子数之比为Δtx∶Δty=3∶4。
考点二 带电粒子在交变电、磁场中的运动
A.粒子可能在2.5t0时刻射出极板 B.极板间距不小于v2t0+2vπt0
√C.极板长度为nvπt0(n=1,2,3…)
D.EB00=2πv

第6节 带电粒子在组合场、叠加场中的运动

第6节 带电粒子在组合场、叠加场中的运动

由几何关系有 = 2cos 30∘
联立解得 =
3

2

(2)匀强电场的电场强度的大小。
[解析] 粒子进入电场时,速度方向与边界的夹角为60∘ ,由几何关系可知,速度方
向和电场方向垂直。粒子在电场中的位移 = = sin 30∘
又sin 30∘ =
1பைடு நூலகம்
2
cos 30∘ = 2
为的带正电粒子以速度从坐标原点沿轴正方向进入磁场,经磁场
偏转后由点进入电场,最后从轴上的点离开电场,已知、两点间距离为
,连线平行于轴。不计粒子重力,求:
(1)匀强磁场的磁感应强度的大小;
[解析] 粒子在磁场中运动时(如图所示),设轨迹半径为,根据
洛伦兹力提供向心力可得 =
动的规律
较复杂的曲线 除洛伦兹力外,其他力的合力既不为 动能定理、能量守恒定
运动
零,也不与洛伦兹力等大反向

【视角1】 叠加场中做直线运动
域内有竖直向上的匀强电场,在 > 0 区域内有垂直纸面向里的匀强磁场,控制电场
强度(值有多种可能),可让粒子从射入磁场后偏转打到接收器上,则
(
AD
)
A.粒子从中点射入磁场,电场强度满足 =
B.粒子从中点射入磁场时速度为0
0 02
02
02 +02
02
C.粒子在磁场中做圆周运动的圆心到的距离为
=
联立解得 =
8 3 2

考点二 带电粒子在叠加场中的运动
1.叠加场
电场、磁场、重力场共存,或其中某两场共存。
2.带电粒子在叠加场中常见的几种运动形式
运动性质
受力特点
匀速直线运动 粒子所受合力为0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在复合场中的运动
砚山县第三高级中学 龙熠
教学目标:
1.知道什么是复合场;会用左手定则判断洛伦兹力、电流和磁场三者的方向关系。

2.会把带点粒子的受力情况和运动情况结合起来一起分析.
3.结合受力分析和运动分析会建构物理运动的模型,并用物理模型解决问题. 教学重点难点:
带电粒子在复合场中的运动的受力分析和运动情况的分析
教学过程:
知识准备:
1.带电:自然界有正负两种电荷
2.粒子:⑴基本粒子,如电子,质子,α粒子,离子等不考虑重力
⑵带电小球、油滴应考虑重力
⑶对未知名的,题中又没有明确交代的带电粒子是否考虑重力,则应根据题给物理过程及隐含条件具体分析后作出符合实际的决定。

3.复合场:是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.
电场力:(方向)电Eq F =
重力: mg G =
洛伦兹力:(方向)洛qvB F =(左手定则)
4.运动模型: 匀速直线运动平抛运动
直线运动曲线运动匀变速直线运动圆周运动
过度:本节所研究的内容:带电粒子在复合场中的直线运动和匀速圆周运动
一、带电粒子在复合场中的直线运动:
1.带电粒子在重力场和电场共存的场中的受力情况:
重力和电场力不变,所以他们在合力也保持不变
2.带电粒子在垂直于磁场射入复合场中做直线运动时的受力情况分析:
结论:带电粒子在垂直射入磁场的正交的匀强电场、匀强磁场和重力场中做直线运动:一定是匀速直线运动,合力为零
例1:如图,一竖直空间内存在竖直向下匀强电场E,垂直于纸面向内匀强磁场B,一质量为m的带电粒子从右侧水平射入,刚好可以做直线运动,则:
(1)带电粒子带何种电荷?
(2)粒子做什么样的直线运动?
二、带电粒子复合场中的圆周运动时:
1.带电粒子垂直射入磁场中做匀速圆周运动:
F洛总是与v垂直,F洛只改变V的方向,不改变V的大小,所以F洛=qvB大小不变,且F洛提供向心力,使带电粒子做匀速圆周运动
2.带电粒子垂直于磁场射入复合场中做匀速圆周运动时(教师带学生在黑板上分析):
重力与电场力平衡,洛伦兹力提供向心力
所以:看到“带电微粒在重力场、电场、磁场中做匀速圆周运动”,想到“重力与电场力平衡,洛伦兹力提供向心力”。

例2.质量为m的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如图所示,由此可知( )
A.小球带正电,沿顺时针方向运动
B.小球带负电,沿顺时针方向运动
C.小球带正电,沿逆时针方向运动
D.小球带负电,沿逆时针方向运动
小结:带电粒子复合场中的圆周运动:看到“带电微粒在重力场、电场、磁场中做匀速圆周运动
三、课堂练习
1.(2017·全国卷Ⅰ·16)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是( ) A.m a>m b>m c B.m b>m a>m c
C.m c>m a>m b
D.m c>m b>m
2.(2016·天津理综·11)如图所示,空间中存在着水平向右
的匀强电场,电场强度大小E=5 3 N/C,同时存在着垂直纸面向里的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T.有一带正电的小球,质量m=1×10-6kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直
线运动,取g=10 m/s2,求:小球做匀速直线运动的速度v的
大小和方向;
本题小结:
带电粒子在复合场中的直线运动:带电粒子在正交的匀强电场、匀强磁场、和重力场中做直线运动:一定是匀速直线运动,合力为零
四、小结
1.知道什么是复合场;会用左手定则判断洛伦兹力、电流和磁场三者的方向关系。

2.带电粒子垂直于磁场射入三场中做直线运动时:带电粒子做匀速直线运动,三个场力的合力为零。

3.当计重力带电粒子垂直于磁场射入复合场中做匀速圆周运动时:重力与电场力平衡,洛伦兹力提供向心力
4.结合带电粒子的运动情况和受力情况来一起分析;
5.会根据受力情况建立物理模型,进而用已经学过份的物理模型解题。

五.板书
1.带电:自然界有正负两种电荷
2.粒子:⑴基本粒子,如电子,质子,α粒子,离子等不考虑重力
⑵带电小球、油滴应考虑重力
⑶对未知名的,题中又没有明确交代的带电粒子是否考虑重力,则应根据题给物理过程及隐含条件具体分析后作出符合实际的决定。

3.复合场:是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.
电场力:(方向)电Eq F =
重力: mg G =
洛伦兹力:(方向)洛qvB F =(左手定则)
4.运动模型: 匀速直线运动平抛运动
直线运动曲线运动匀变速直线运动圆周运动
5.两个结论:
1.带电粒子在垂直射入磁场的正交的匀强电场、匀强磁场和重力场中做直线运动:一定是匀速直线运动,合力为零
2.带电粒子垂直于磁场射入复合场中做匀速圆周运动时重力与电场力平衡,洛伦兹力提供向心力
五、作业:做配套练习的339页的2、3、5题。

相关文档
最新文档