南昌大学数字信号处理实验报告7讲解

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师学院信息科学与工程学院专业班级姓名实验一 常见离散时间信号的产生和频谱分析实验内容及要求(1)复习常用离散时间信号的有关内容;(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on-20-15-10-5051015200.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

南昌大学数字信号处理实验报告7讲解

南昌大学数字信号处理实验报告7讲解

实验七数字滤波器设计一:实验目的1.掌握数字巴特沃斯滤波器的设计原理和步骤2.进一步学习用窗函数法设计FIR数字滤波器的原理及其设计步骤7.1 无限冲激响应滤波器的阶数的估计滤波器设计过程中的第一步是,选择接近所使用的滤波器的类型,然后由滤波器指标来估计传输函数的阶数。

用来估计巴特沃兹滤波器的阶数的MATLAB命令是[N,Wn] = buttord(Wp,WS,Rp,RS)其中输入参数是归一化通带边界频率Wp、归一化阻带边界频率Ws、单位为dB 的通带波纹Rp和单位为dB的最小阻带衰减Rs,,由于抽样频率被假定为2Hz,Wp 和Ws均必须是0和1之间的一个数。

输出数据是满足指标的最低阶数N和归一化截止频率Wn。

若Rp =3dB,则Wn =Wp。

buttord也可用于估计高通、带通和带阻巴特沃兹滤波器的阶数。

对于高通滤波器设计,Wp>Ws。

对于带通和带阻滤波器设计,Wp和Ws是指定边界频率的双元素向量,其中较低的边界频率是向量的第一个元素。

在后面的情况中,Wn也是一个双元素向量。

习题:1.用MATTAB确定一个数字无限冲激响应低通滤波器所有四种类型的最低阶数。

指标如下:40 kHz的抽样率,,4 kHz的通带边界频率,8 kHz的阻带边界频率,0.5 dB的通带波纹,40 dB的最小阻带衰减。

评论你的结果。

答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是0.5dB理想阻带波纹Rs是40dB(1)使用这些值得到巴特沃斯低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2469.(2)使用这些值得到切比雪夫1型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.2000.(3)使用这些值得到切比雪夫2型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.4000.(4)使用这些值得到椭圆低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2000.从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

南昌大学 信号系统 实验报告

南昌大学 信号系统 实验报告

专业班级: 学号: 姓名:实验一 周期信号的频谱测试一、实验目的:1、掌握周期信号频谱的测试方法;2、了解典型信号频谱的特点,建立典型信号的波形与频谱之间的关系。

二、实验原理及方法:1、信号的频谱可分为幅度谱、相位谱和功率谱,分别是 将信号的基波和各次谐波的振幅、相位和功率按频率的高低依次排列而成的图形。

2、连续时间信号的频谱具有离散性、谐波性、收敛性。

例如正弦波、周期矩形脉冲、三角波的幅度谱分别如图1-1,1-2,1-3所示: 01234567-1-0.8-0.6-0.4-0.20.20.40.60.81t s i n (t ) n C 1ωω图1-1(a) 正弦波信号 图1-1(b) 相应的幅度谱f(t)T A 0τ/2nC 14ω15ω13ω12ω1ωω图1-2(a) 周期矩形脉冲 图1-2(b) 相应的幅度谱因此,信号的频谱测试方法可用频谱分析仪直接测量亦可用逐点选频测量法进行测量。

本实验使用GDS-806C 型号的数字存储示波器直接测试幅度谱。

用示波器直接测试,就是将其与EE1460C 函数信号发生器连好。

分别输入相应频率和幅度的正弦波,三角波和矩形波,此时示波器将显示按频率由低到高的各输入信号的谐波分量。

GDS-806C 数字存储示波器测频谱的方法,就是将MATH 键按下,F1键选择FFT(快速傅立叶转换)功能可以将一个时域信号转换成频率构成,显示器出现一条红颜色的频谱扫描线。

当示波器输入了不同信号的波形时就显示它们相应的频谱, 参数的测量由调试水平(即频率)与垂直(即增益)游标获取,从而得到输入信号的频谱图。

三、实验原理图:图1-4 实验原理图四、实验设备:GDS-806C 数字存储示波器和EE1640函数信号发生器/计数器五、实验内容及步骤:1、测试正弦波的幅度频谱将信号源、示波器、按图1-4连接好;信号源CH1的输出波形调为正弦波,输出频率自选,输出信号幅度自选 ,并记录幅度与频率的参数.2、测试三角波的幅度频谱在实验步骤1的基础上将信号源CH1的输出波形调为三角波(T) ,频率自选,幅度自选.并记录幅度和周期的参数.六、实验结果: tf(t)T1AT1/2 n C 14ω15ω13ω12ω1ωω16ω17ω图1-3(a) 三角波 1-3(b) 相应的幅度谱七、实验总结:(1)由测量数据分别画出频谱图.(2)说明理论分析计算与实测数据的误差及产生的原因.读取测量值时波形变化、仪器本身局限等各种原因都可能导致这样的误差出现(3)实验心得体会:通过本次实验掌握了周期信号频谱的测试方法,了解了典型信号频谱的特点,建立典型信号的波形与频谱之间的关系,对信号与系统这门课程有了更深刻更系统的了解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七数字滤波器设计一:实验目的1.掌握数字巴特沃斯滤波器的设计原理和步骤2.进一步学习用窗函数法设计FIR数字滤波器的原理及其设计步骤7.1 无限冲激响应滤波器的阶数的估计滤波器设计过程中的第一步是,选择接近所使用的滤波器的类型,然后由滤波器指标来估计传输函数的阶数。

用来估计巴特沃兹滤波器的阶数的MATLAB命令是[N,Wn] = buttord(Wp,WS,Rp,RS)其中输入参数是归一化通带边界频率Wp、归一化阻带边界频率Ws、单位为dB 的通带波纹Rp和单位为dB的最小阻带衰减Rs,,由于抽样频率被假定为2Hz,Wp 和Ws均必须是0和1之间的一个数。

输出数据是满足指标的最低阶数N和归一化截止频率Wn。

若Rp =3dB,则Wn =Wp。

buttord也可用于估计高通、带通和带阻巴特沃兹滤波器的阶数。

对于高通滤波器设计,Wp>Ws。

对于带通和带阻滤波器设计,Wp和Ws是指定边界频率的双元素向量,其中较低的边界频率是向量的第一个元素。

在后面的情况中,Wn也是一个双元素向量。

习题:1.用MATTAB确定一个数字无限冲激响应低通滤波器所有四种类型的最低阶数。

指标如下:40 kHz的抽样率,,4 kHz的通带边界频率,8 kHz的阻带边界频率,0.5 dB的通带波纹,40 dB的最小阻带衰减。

评论你的结果。

答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是0.5dB理想阻带波纹Rs是40dB(1)使用这些值得到巴特沃斯低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2469.(2)使用这些值得到切比雪夫1型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.2000.(3)使用这些值得到切比雪夫2型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.4000.(4)使用这些值得到椭圆低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2000.从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。

2.用MATLAB确定一个数字无限冲激响应高通滤波器所有四种类型的最低阶数。

指标如下:3500Hz的抽样率,1050 Hz的通带边界频率,600 Hz的阻带边界频率,1 dB的通带波纹,50 dB的最小阻带衰减。

评论你的结果。

答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是1dB理想阻带波纹Rs是50dB(1)使用这些值得到巴特沃斯高通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.5646.(2)使用这些值得到切比雪夫1型高通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.6000.(3)使用这些值得到切比雪夫2型高通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.3429.(4)使用这些值得到椭圆低通滤波器最低阶数N=4,相应的标准通带边缘频率Wn是0.6000.从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。

3.用MATLAB确定一个数字无限冲激响应带通滤波器所有四种类型的最低阶数。

指标如下:7 kHz的抽样率,1.4 kHz和2.1 kHz的通带边界频率,1.05 kHz和2.45 kHz的阻带边界频率,,0 .4 dB的通带波纹,50 dB的最小阻带衰减。

评论你的结果。

答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是0.4dB理想阻带波纹Rs是50dB(1)使用这些值得到巴特沃斯带通滤波器最低阶数2N=18,相应的标准通带边缘频率Wn是[0.3835 0.6165].(2)使用这些值得到切比雪夫1型带通滤波器最低阶数2N=12,相应的标准通带边缘频率Wn是[0.4000 0.6000].(3)使用这些值得到切比雪夫2型带通滤波器最低阶数2N=12,相应的标准通带边缘频率Wn是[0.3000 0.7000].(4)使用这些值得到椭圆带通滤波器最低阶数2N=8,相应的标准通带边缘频率Wn是[0.4000 0.6000].从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。

4.用MATLAB确定一个数字无限冲激响应带阻滤波器所有四种类型的最低阶数。

指标如下:12 kHz的抽样率,2.1 kHz和4.5 kHz的通带边界频率,2.7 kHz和3.9 kHz的阻带边界频率,0.6 dB的通带波纹,45 dB的最小阻带衰减。

评论你的结果。

答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是0.6dB理想阻带波纹Rs是45dB(1)使用这些值得到巴特沃斯带阻滤波器最低阶数2N=18,相应的标准通带边缘频率Wn是[0.3873 0.7123].(2)使用这些值得到切比雪夫1型带阻滤波器最低阶数2N=10,相应的标准通带边缘频率Wn是[0.3500 0.7500].(3)使用这些值得到切比雪夫2型带阻滤波器最低阶数2N=10,相应的标准通带边缘频率Wn是[0.4500 0.6500].(4)使用这些值得到椭圆带阻滤波器最低阶数2N=8,相应的标准通带边缘频率Wn是[0.3500 0.7500].从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。

7.2无限冲激响应滤波器设计程序P7.1说明巴特沃斯带阻滤波器的设计。

% 程序 P7_1% 巴特沃斯带阻滤波器的设计Ws = [0.4 0.6]; Wp = [0.2 0.8]; Rp = 0.4; Rs = 50;% 估计滤波器的阶数[N1, Wn1] = buttord(Wp, Ws, Rp, Rs);% 设计滤波器[num,den] = butter(N1,Wn1,'stop');% 显示传输函数disp('分子系数是 ');disp(num);disp('分母系数是 ');disp(den);% 计算增益响应[g, w] = gain(num,den);% 绘制增益响应plot(w/pi,g);gridaxis([0 1 -60 5]);xlabel('\omega /\pi'); ylabel('增益, dB');title('巴特沃斯带阻滤波器的增益响应');习题:5.通过运行程序P7. 1来设计巴特沃兹带阻滤波器。

写出所产生的传输函数的准确表达式。

滤波器的指标是什么,你的设计符合指标吗,使用MATLAB,计算并绘制滤波器的未畸变的相位响应及群延迟响应。

答:表达式是:滤波器参数是:Wp1=0.2π,Ws1=0.4π,Ws2=0.6π,Wp2=0.8π,Rp=0.4dB,Rs=50dB. 设计的滤波器增益响应如下:从图中可以总结出设计符合指标。

滤波器的未畸变的相位响应及群延迟响应如下:6.修改程序P7.1来设计符合习题Q7.1所给指标的切比雪夫1型低通滤波器。

写出所产生的传输函数的准确表达式。

你的设计符合指标吗?使用MATLAB,计算并绘制滤波器的未畸变的相位响应及群延迟响应。

答:表达式如下:设计的滤波器增益响应如下:从图中可以总结出设计符合指标。

滤波器的未畸变的相位响应及群延迟响应如下:7.修改程序P7.1来设计符合习题Q7.2所给指标的切比雪夫2型高通滤波器。

写出所产生的传输函数的准确表达式。

你的设计符合指标吗?使用MATLAB,计算并绘制滤波器的未畸变的相位响应及群延迟响应。

答:表达式如下:设计的滤波器增益响应如下:从图中可以总结出设计符合指标。

滤波器的未畸变的相位响应及群延迟响应如下:8.修改程序P7.1来设计符合习题Q7.3所给指标的椭圆带通滤波器。

写出所产生的传输函数的准确表达式。

你的设计符合指标吗,使用MATLAB,计算井绘制滤波器的未畸变的相位响应及群延迟响应。

答:表达式如下:设计的滤波器增益响应如下:从图中可以总结出设计符合指标。

滤波器的未畸变的相位响应及群延迟响应如下:7.3吉布斯现象通过截短由式(7,16)、式(7.18)、式((7.20)、式(7.22)、式((7.24)和式((7.26)给出的理想滤波器的冲激响应,来设计得到有限冲激响应滤波器,然后计算它们的频率响应,可以说明吉布斯现象的发生。

低通滤波器的截短的冲激响应系数可在MATLAB中使用函数的sinc二产生。

该函数通过简单的修改,也可用于产生一种高通、带通或带阻滤波器的截短的冲激响应系数习题:9.使用函数sinc编写一个MATLAB程序,以产生截止频率在Wc= 0.4π处、长度分别为81,61,41和21的四个零相位低通滤波器的冲激响应系数,然后计算并画出它们的幅度响应。

使用冒号“:”运算符从长度为81的滤波器的冲激响应系数中抽出较短长度滤波器的冲激响应系数。

在每一个滤波器的截止频率两边研究频率响应的摆动行为。

波纹的数量与滤波器的长度之间有什么关系?最大波纹的高度与滤波器的长度之间有什么关系?你将怎样修改上述程序以产生一个偶数长度的零相位低通滤波器的冲激响应系数?答:长度为81时幅度响应如下:长度分别为61,41和21的幅度响应如下:从中可以观察到由于吉布斯现象产生的幅度响应的摆动行为。

波纹的数量与滤波器的长度之间的关系——波纹的数量减少与长度成正比。

最大波纹的高度与滤波器的长度之间的关系——最大波纹的高度与长度无关。

10.使用函数sinc编写一个MATLAB程序,以产生一个截止频率在Wc= 0.4π处、长度为45的零相位高通滤波器的冲激响应系数,计算并画出其幅度响应。

在每一个滤波器的截止频率两边研究频率响应的摆动行为。

你将怎样修改上述程序以产生一个偶数长度的零相位高通滤波器的冲激响应系数?答:长度为45时幅度响应如下:从中可以观察到由于吉布斯现象产生的幅度响应摆动行为。

在这种情况下你不能改变长度。

原因:这是一个零相位滤波器,这意味着它也是一个线性相位滤波器,因为零相是一种特殊的线性相位的子集。

现在,理想的有限脉冲响应长度甚至有对称的中点h[n]。

使其成了一个线性相位FIR 滤波器。

二型滤波器不可能是高通滤波器,因为必须在z=-1处有零点,意味着w=+-π。

11.编写一个MATLAB程序,以产生长度分别为81,61,41和21的四个零相位微分器的冲激响应系数,计算并画出它们的幅度响应。

下面的代码段显示了怎样产生一个长度为2M+1的微分器。

n=1:M;b=cos(pi*n)./n;num=[-fliplr(b) 0 b];对于每种情况,研究微分器的频率响应的摆动行为。

波纹的数量与微分器的长度之间有什么关系,最大波纹的高度与滤波器的长度之间有什么关系?答:幅度响应分别如下:从中可以观察到由于吉布斯现象产生的幅度响应的摆动行为。

波纹的数量与微分器的长度之间的关系——两者成正比。

相关文档
最新文档