高中数学经典例题错题详细讲解

合集下载

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路数学在高中阶段是一门重要的学科,也是许多学生感到困惑的科目之一。

高三阶段对于学生来说尤其重要,因为这一年是他们备战高考的关键时刻。

然而,在学习过程中,同学们免不了会遇到一些难以解答的数学问题,这就是所谓的错题。

为了帮助大家更好地理解和解决高三数学学习中的错题,本文将给出一些常见错题的集锦,并提供相应的解题思路。

1. 一次函数相关错题在解决一次函数相关的错题时,我们通常会遇到以下问题:(1)如何确定直线的斜率?答:直线的斜率可以通过计算两个点的坐标差值来求得。

设直线上两点为(x₁,y₁)和(x₂,y₂),则直线的斜率k可以表示为k=(y₂-y₁)/(x₂-x₁)。

例如,对于一条直线过点(2,3)和(6,4),我们可以计算斜率k=(4-3)/(6-2)=1/4。

(2)如何确定直线的解析式?答:通过已知直线上的一点和斜率,可以确定直线的解析式。

设直线的斜率为k,直线上一点的坐标为(x₁,y₁),则直线的解析式为y-y₁=k(x-x₁)。

(3)如何确定直线与坐标轴的交点?答:要确定直线与x轴的交点,只需令y=0,并解方程求得交点的x坐标。

同理,要确定直线与y轴的交点,只需令x=0,并解方程求得交点的y坐标。

2. 平面几何相关错题平面几何是高中数学中的重点内容之一,也是同学们容易出错的部分。

下面我们来看几个常见的平面几何错题及解题思路。

(1)如何判断两条直线是否平行?答:两条直线平行的条件是斜率相同。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁是否等于k₂即可,若相等则两条直线平行。

(2)如何判断两条直线是否垂直?答:两条直线垂直的条件是斜率的乘积为-1。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁与k₂的乘积是否为-1即可,若成立则两条直线垂直。

(3)如何判断一个点是否在直线上?答:对于已知直线的解析式为y=kx+b,若一个点(x₀,y₀)在该直线上,则满足该点的横坐标x₀代入方程后,等式成立,即y₀=kx₀+b。

高考数学易错题解析.ppt

高考数学易错题解析.ppt

则由 1 bc sin 3 , 0≤bc cos ≤6 ,可得
2
0≤
【错解】(Ⅱ)f
cot ≤1
( ) 2sin
2

π 4
Байду номын сангаас
π 4
,π 2
3 cos
2
1
cos
π 2
2
3 cos 2
(1 sin 2 ) 3 cos 2
【错解】(Ⅱ)
f
(
)
2
sin 2
π 4
3 cos 2
1
cos
【例4】已知:a 0,b 0, a b 1.

a
1 a
2
b
1 b
2
的最小值.
【正解】由 a b 1, a b 2 ab 知
ab
1 4
,
1 ab
4
思路一:展开(均值思想)
a
1 a
2
b
1 b
2
a2
1 a2
b2
1 b2
4
a2
1 16a2
b2
1 16b2
15 16a2
15 16b2
③+④得
10 3a b 43 , 即10 f (3) 43.
3
33
3
3
【评注】这种解法,忽视了这样一个事实:作为满足条件的函数
f
(x)
ax
b x
,其值是同时受 a和b 制约的.当 a
取最大(小)值时,b 不一定取最大(小)值,因而整个解题
思路是错误的.忽视等价性变形,导致错误.
【例2】已知
2
π 3
1
3
【例4】已知:a 0,b 0, a b 1.

高考数学复习点拨 《抛物线》错解四例.doc

高考数学复习点拨 《抛物线》错解四例.doc

《抛物线》错解四例例1.已知抛物线的方程为y=2ax 2(a<0),则它的焦点坐标为( )A (,02a -)B (2a ,0)C (0,18a) D ( 0,18a -)错解一:由已知抛物线的方程为y=2ax 2,得它表示的曲线是对称轴为x 轴,开口向左的抛物线,其中2p= —2a ,所以p= —a , 22p a =-,所以它的焦点坐标为(2a,0),所以选B.错解二:将已知方程变形为x 2=2ya,它表示的曲线是对称轴为y 轴,开口向下的抛物线,其中2p= 12a ,p=14a , 128p a =,所以它的焦点坐标为( 0,18a-),所以选D. 错解分析: 两种答案均是错误的.错误的原因在于解法一中没有认识到抛物线的标准方程应为y 2=±2px,x 2=±2py(p>0)的形式,从而将y=2ax 2误认为是标准方程y 2=—2px,误认为它表示的曲线是对称轴为x 轴、开口向左的抛物线,即有2p= —2a 的结论,再推导出焦点坐标为(—2a,0),当然错了。

解法二中没有注意到焦参数p 表示焦点到准线的距离,所以应有p>0。

故出现只从形式上考虑2p=12a ,从而得出p=14a <0的错误,进而推出焦点坐标为(0,18a-)的错误。

正解 :将抛物线方程变形为:x 2=2ya,因为a<0,所以它表示的曲线是对称轴为y 轴、开口向下的抛物线,其标准方程应为x 2=—2py(p>0)的形式,即有2p= —12a,p=—14a ,128p a =-,再推导出焦点坐标为(0,18a ), 所以选C. 例2:若动点 P 到定点 F (1,1)的距离与到直线l :3x + y - 4 = 0的距离相等,则动点 P 的轨迹是() (A )椭圆 (B )双曲线 (C )抛物线 (D )直线错解:因为动点 P 到定点F 的距离与到直线l 的距离相等,所以由抛物线的定义知动点 P 的轨迹是抛物线,故选(C ).错解分析:错误的原因在于:一是没有确切地掌握抛物线的定义;二是没有仔细地分析题设中的点与直线的位置关系 .抛物线定义中的定点在定直线之外,而题设中的定点 F (1,1)在定直线 l :3x + y - 4 = 0上,错误地套用了抛物线定义而错选了(C ).解此类题一定要从已知条件出发,正确列式求解 .正解 1:设动点 P ( x ,y ),∵ 点 P 到点 F 的距离和到定直线 l 的距离相等,=两边平方,整理得 x 2+ 9y 2- 6xy + 4x - 12y + 4= 0.∴( x - 3y + 2)2= 0,即 x - 3y + 2 = 0.∴ 动点 P 的轨迹是直线 .故选(D ).正解 2:因为点 F (1,1)在直线 l :3x+ y- 4 = 0上,所以动点 P 到定点F 的距离和到定直线 l 的距离相等的点一定在过点 F 且和直线 l 垂直的直线上,即 点 P 的 轨 迹 是 一 条 直线 .故选(D ).例3:平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为( )A y 2=2xB y 2=2x 和 ⎩⎨⎧≤=0x yC y 2=4xD y 2=4x 和 ⎩⎨⎧≤=00x y 错解:由平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,可知:平面上的动点P 到定点F(1,0)的距离与P 到1x =-的距离相等。

高三数学错题整理与解析

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版

高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

下面通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2 与 ⎩⎨⎧ x + y >3 xy >2不等价。

【例1】已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-(2) 已知(x+2)2+ y 24 =1, 求x 2+y 2的取值范围。

●忽视不等式中等号成立的条件,导致结果错误。

【例3】已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b)2的最小值。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=nn S ,求.n a(2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

【例5】(1)设等比数列{}n a 的前n 项和为n S .若9632S S S =+,求数列的公比q . (2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

《章节易错训练题》1、已知集合M = {直线} ,N = {圆} ,则M ∩N 中元素个数是 (A) 0 (B) 0或1 (C) 0或2 (D) 0或1或22、已知A = {}x | x 2+ tx + 1 = 0 ,若A ∩R *= Φ ,则实数t 集合T = ___。

高一数学错题集锦与讲解

高一数学错题集锦与讲解

高一数学错题集锦与讲解1. 周长与面积题目:一个正方形的周长为16cm,求它的面积。

解析:设正方形的边长为a,则周长可以表示为4a,根据题目可得4a=16cm,解方程得到a=4cm。

正方形的面积可以表示为a²,代入已知的边长得到面积为4²=16cm²。

所以,这个正方形的面积为16平方厘米。

2. 相似三角形题目:两个三角形的两个内角分别为45°和90°,它们的两边分别成比例,则这两个三角形相似吗?解析:根据三角形的内角和定理可知,三角形的内角和为180°。

已知其中一个三角形的两个内角分别为45°和90°,则第三个内角为180°-45°-90°=45°。

另一个三角形的两个内角分别为45°和90°,则第三个内角也为45°。

因此,这两个三角形的内角完全相同,所以它们是相似三角形。

3. 平行线与相交线题目:如图,AB//CD,AD是两平行线AB和CD的相交线段。

已知∠ABC=80°,求∠CDA的度数。

解析:根据平行线的性质,平行线AB和CD之间的对应角是相等的。

所以∠ABC=∠CDA。

已知∠ABC=80°,代入已知条件可得∠CDA=80°。

4. 三角函数的计算题目:已知cosθ=1/2,求sinθ的值。

解析:根据三角函数的定义可知,sinθ=√(1-cos²θ)。

已知cosθ=1/2,代入公式可得sinθ=√(1-(1/2)²)=√(1-1/4)=√(3/4)=√3/2。

所以,sinθ的值为√3/2。

5. 数列的求和题目:求等差数列1, 4, 7, 10, …, 100的前n项和Sn。

解析:已知第一项a₁=1,公差d=3(等差数列的公差是指相邻两项之间的差值)。

根据等差数列的求和公式,Sn=n(a₁+an)/2。

基于康奈尔笔记法的高中数学错题本课例讲解

基于康奈尔笔记法的高中数学错题本课例讲解

基于康奈尔笔记法的高中数学错题本课例讲解一、康奈尔笔记法简介康奈尔笔记法源于美国康奈尔大学,在学术界被广泛应用。

其核心思想是将课堂笔记分为笔记栏、问题栏和总结栏三部分,通过这种结构化的方式提高笔记的效果和利用率。

1. 笔记栏:记录课堂内容的关键信息、概念和要点。

2. 问题栏:列出你在学习过程中遇到的问题、不理解的地方或者需要进一步思考的内容。

3. 总结栏:总结笔记内容,重点强调重要的知识点、规律或者公式,以便后续复习和记忆。

二、康奈尔笔记法在高中数学错题本中的应用高中数学是许多学生认为较为困难的学科之一,尤其是解题方法和题目中的技巧性内容往往让学生难以掌握。

利用康奈尔笔记法来记录数学错题本的课例讲解,可以帮助学生更好地理解知识点、强化记忆,并且在解题过程中能够更有针对性地分析问题,提高解题效率。

1. 笔记栏:在笔记栏中,记录数学错题本中的课例讲解内容,主要包括题目、解题方法、关键步骤、计算过程等。

这些信息可以帮助学生回顾和复习课堂内容,加深对知识点的理解和记忆。

2. 问题栏:在问题栏中,学生可以列出在学习过程中遇到的困惑和疑问,包括理解不透彻的概念、解题思路混乱的地方或者难以理解的公式推导。

通过这种方式,学生可以有针对性地向老师请教或者进行重点复习,解决学习中的问题。

3. 总结栏:在总结栏中,学生可以对课例讲解中的重点知识点和解题技巧进行总结归纳,强化记忆,并且对相似类型的题目进行分类整理,以便后续复习时能够更加有条理地进行学习。

三、高中数学错题本课例讲解的实际应用案例结合康奈尔笔记法的应用特点,以下是一个实际的高中数学错题本课例讲解的应用案例:1. 题目:已知函数f(x) = x^2 + 2x + 1,求f(-3)的值。

2. 笔记栏:记录题目内容和解题过程,包括应用公式、代入计算过程和最终结果,确保信息完整准确。

3. 问题栏:列出在计算过程中可能出现的混淆点和模糊理解的地方,例如负数平方计算、代入计算过程中的细节问题等。

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

?,但与不等价。

【例1时受a 和)3(f =∴●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。

这正是思维缺乏反思性的体现。

如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。

原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆?.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18。

这时就可以作出正确选择,只有(B )正确。

(2)已知(x+2)2+=1,求x 2+y 2的取值范围。

错解分析从而当 【例错解∴分析21,第二 由ab ≤(2b a +)2=41得:1-2ab ≥1-21=21,且221b a ≥16,1+221ba ≥17, ∴原式≥21×17+4=225(当且仅当a=b=21时,等号成立), ∴(a+a 1)2+(b+b1)2的最小值是。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a错误解法.222)12()12(1111----=-=+-+=-=n n n n n n n n S S a错误分析显然,当1=n 时,1231111=≠==-S a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N 的映射是()M NA M NBM NCM ND映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射。

函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。

(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系:函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。

映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。

映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B 中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性上题答案应选 C【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。

本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。

【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2 +1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数()【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有 n m 个;集合B到集合A的映射共有 m n个,所以答案为23=9;32=8【例4】 若函数f(x)为奇函数,且当x ﹥0时,f(x)=x-1,则当x ﹤0时,有( ) A 、f(x) ﹥0 B 、f(x) ﹤0 C 、f(x)·f(-x)≤0 D 、f(x)-f(-x) ﹥0 奇函数性质:1、图象关于原点对称;2、满足f(-x) = - f(x) ;3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f(0)=0;5、定义域关于原点对称(奇偶函数共有的) 偶函数性质:1、 图象关于y 轴对称;2、满足f(-x) = f(x) ;3、关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0;5、定义域关于原点对称(奇偶函数共有的) 基本性质:唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数(即对所有x ,f(x)=0)。

通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2。

两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数。

两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数。

两个偶函数的乘积为一个偶函数。

两个奇函数的乘积为一个偶函数。

一个偶函数和一个奇函数的乘积为一个奇函数。

两个偶函数的商为一个偶函数。

两个奇函数的商为一个偶函数。

一个偶函数和一个奇函数的商为一个奇函数。

一个偶函数的导数为一个奇函数。

一个奇函数的导数为一个偶函数。

两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数。

一个偶函数和一个奇函数的复合为一个偶函数【分析】 f(x)为奇函数,则f(-x) = -f(x),当X ﹤0时,f(x) = -f(-x) = -[-(-x) – 1] = -x+1>0,所以A 正确,B 错误; f(x)·f(-x)=(x-1)(-x+1)﹤0,故C 错误; f(x)-f(-x)= (x-1)-(-x+1)﹤0,故D 错误【例5】 已知函数f(x)是偶函数,且x ≤0时,f(x)=xx-+11,求:(1)f(5)的值; (2)f(x)=0时x 的值;(3)当x >0时,f(x)的解析式【考点】 函数奇偶性的性质 【专题】计算题,函数的性质及应用 【分析及解答】(1)根据题意,由偶函数的性质f(x)= f(-x),可得f(5)= f(-5)=)()(5--15-1+=—32(2)当x ≤0时,f(x)=0 可求x ,然后结合f(x)= f(-x),即可求解满足条件的x , 即当x ≤0时,xx-+11=0 可得x=—1;又f(1)= f(-1),所以当f(x)=0时,x=±1(3)当x >0时,根据偶函数性质f(x)= f(-x)=)(1)(1x x ---+=xx+-11【例6】 若f(x)=e x+ae -x为偶函数,则f(x-1)<ee 12+的解集为( )A.(2,+∞)B.(0,2)C.(-∞,2)D.(-∞,0)∪(2,+∞) 【考点】 函数奇偶性的性质 【专题】转化思想;综合法;函数的性质及应用 【分析及解答】根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可∵f(x)=e x +ae -x 为偶函数,∴f(-x)=e -x +ae x = f(x)= e x +ae -x,∴a=1,∴f(x)=e x +e -x在(0,+∞)上单调递增,在(-∞,0)上单调递减,则由f(x-1)<ee 12+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确【点评】 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键【例7】 函数f(x)=21xb ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(2x-1)+ f(x) <0【考点】 函数奇偶性与单调性的综合 【专题】函数的性质及应用 【分析及解答】(1) 因为f(x)为(-1,1)上的奇函数,所以f(0)=0,可得b=0,由f(21)=52,所以2)21(121+a=52,得出a=1,所以f(x)= 21x x + (2) 根据函数单调性的定义即可证明任取-1 <x 1<x 2<1,f(x 1)—f(x 2)=2111x x +—2221x x +=)1)(1()1)((22212121x x x x x x ++--因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以f(x 1)—f(x 2) <0, 得出f(x 1) <f(x 2),即f(x)在(-1,1)上为增函数(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不等式组,解出即可:f(2x-1)+ f(x)= <0,f(2x-1) <—f(x),由于f(x)为奇函数,所以f(2x-1) <f(—x),因为f(x)在(-1,1)上为增函数,所以2x-1<—x ○1, 因为-1 <2x-1<1○2,-1 <x <1○3,联立○1○2○3得 0 < x <31,所以解不等式f(2x-1)+ f(x) <0的解集为(0,31) 【点评】 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理。

【例8】 定义在R 上的奇函数f(x)在(0,+∞)上是增函数, 又f(-3)=0,则不等式x f(x) <0的解集为( )【考点】 函数单调性的性质 【专题】综合题;函数的性质及应用【分析及解答】 易判断f(x)在(-∞,0)上的单调性及f(x)图像所过特殊点,作出f(x)草图,根据图像可解不等式。

解:∵ f(x)在R 上是奇函数,且f(x)在(0,+∞)上是增函数,∴ f(x)在(-∞,0)上也是增函数,由f(-3)=0,可得- f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0 作出f(x)的草图,如图所示:由图像得:x f(x) <0⇔⎩⎨⎧〈〉0)(0x f x 或⎩⎨⎧〉〈0)(0x f x ⇔ 0﹤x ﹤3或-3﹤x ﹤0,∴ x f(x) <0的解集为:(-3,0)∪(0,3),故答案为:(-3,0)∪(0,3)【点评】 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键。

【例9】 已知f (x+1)的定义域为[-2,3],则f (2x+1)的定义域为( ) 抽象函数定义域求法总结:(1)函数y=f[g(x)]的定义域是(a ,b ),求f (x )的定义域:利用a <x <b ,求得g (x )的围就是f (x )的定义域;(2)函数y=f (x )的定义域是(a ,b ),求y=f[g(x)]的定义域:利用a <g(x)<b ,求得x 的围就是y=f[g(x)]的定义域。

【考点】 函数定义域极其求法【分析及解答】 由f (x+1)的定义域为[-2,3],求出 f (x )的定义域,再由2x+1在函数f (x )的定义域求解x 的取值集合,得到函数f (2x+1)的定义域。

解:由f (x+1)的定义域是[-2,3],得-1≤x+1≤4 ;再由-1≤2x+1≤4 ⇒0≤x ≤25 ∴ f (2x+1)的定义域是[0,25],故选A 【点评】 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域是(a ,b ),求函数f (x )的定义域,就是求x ∈(a ,b )的g(x)的值域;给出函数f (x )的定义域是(a ,b ),只需由a <g(x) <b ,求解x 的取值集合即可。

【例10】 已知函数f(x)=x 7+ax 5+bx-5,且f(-3)= 5,则f(3)= ( )A. -15B. 15C.10D.-10 【考点】 函数的值;奇函数【分析及解答】令g(x)= x7+ax5+bx,则g(-3)=【例15】已知函数f(x)=x 2+ax+3,(1)当x ∈R 时,f(x)≥a 恒成立,求a 的取值围;(2)当x ∈[-2,2]时,f(x)≥a 恒成立,求a 的取值围解(2)函数f(x)=x^2+ax+3对称轴x=-a /2,依题意得①当-a /2≤-2时,当x ∈[-2,2]时,f(x)最小值≥a 即:f(-2)=4-2a+3≥a ,无解 ②当-2<-a /2<2,当x ∈[-2,2]时,f(x)最小值≥a 即:f(-a /2)≥a ,得-4<a ≤2 ③当-a /2≥2时,当x ∈[-2,2]时,f(x)最小值≥a 即:f(2)=4+2a+3≥a ,得-7≤a ≤-4综上所述得:-7≤a ≤2 解法2:【例16】下列各组函数表示相等函数的是( )A. y=39x 2--x 与y=x+3 B. y=12-x 与y=x-1C. y=x 0(x ≠0)与y=1(x ≠0) D. y=2x+1(x ∈Z )与y=2x-1(x ∈Z )解:A. y=392--x x =x+3(x ≠3)与y=x+3定义域不同,不是相等的函数;B. y=2x -1=|x|-1与 y=x-1对应关系不同,不是相等的函数;f(2)·f(3)<0,说明这个函数在区间(2,3)有零点,由于函数f(x)在定义23、已知f(x)的定义域为[-2,3],则f(2x-1)的定义域为( )A.[0,5/2]B.[-4,4]C.[-5,5]D.[-3,7]24、已知函数⎪⎩⎪⎨⎧〉-≤++=)0(10)0(63)(2x x x x a x f 且f(a)=10,则a=( ) A.-4 B.-1 C.1 D.-4或125、已知函数f(x)=x7+ax 5+bx-5,则f(3)=( ) A.-15 B.15 C.10 D.-1026、若函数f(x)=4x 2-kx-8在区间[5,8]上是单调函数,则k 的取值围是( )A.(-∞,0]B.[40,64]C.(- ∞,40]∪[64,+∞)D.(64,+ ∞)27、已知二次函数f(x)=x 2+x+a(a>0),若f(m)<0,则f(m+1)的值为( )A.正数B.负数C.零D.符号与a 有关28、函数f(x)=∣x 2-2x ∣-m 有两个零点,m 的取值围__________29、已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2,在区间(0,+∞)有最大值5,那么h(x)在区间(0,+∞)的最小值为________30、对于每个实数x ,设f(x)取y=x+1,y=2x+1,y=-2x 三个函数中的最大值,用分段函数的形式写出f(x)的解析式,求出f(x)的最小值由方程组y=x+1,y=2x+1,解得x=0,y=1,得到交点A(0,1) ;由方程组y=x+1,y=-2x,解得x=-1/3,y=2/3,得到交点B(-1/3,2/3) ;由方程组y=2x+1,y=-2x,解得x=-1/4,y=1/2,得到交点C(-1/4,1/2). 由图像容易看出:1)x <-1/3时,三直线的最大值是y=-2x,所以在此时f(x)=-2x;2)-1/3≤x ≤0时,三直线的最大值是y=x+1,所以此时的f(x)=x+1;3)x >0时,三直线中最大值是y=2x+1,所以此时的f(x)=2x+1.所以f(x) =-2x ;(x <-1/3) ,x+1;(-1/3≤x ≤0) ,2x+1. (x >0)1)考察函数的图像(由射线—线段—射线组成的折线)可以看出函数的最小值是x=1/3时的y=2/3.31、已知函数f(x)=x 2+ax+3,(1)当X ∈R 时,f(x)≧a 恒成立,求a 的取值围;(2)当X ∈[-2,2]时,f(x)≧a 恒成立,求a 的取值围;(3)若对一切a ∈[-3,3],不等式f (x )≥a 恒成立,那么实数x 的取值围是什么?1)f (x )≥a 即x 2+ax+3-a ≥0,要使x ∈R 时,x 2+ax+3-a ≥0恒成立,应有△=a 2-4(3-a )≤0,即a 2+4a-12≤0,解得-6≤a ≤2; (2)当x ∈[-2,2]时,令g (x )=x 2+ax+3-a ,当x ∈[-2,2]时,f (x )≥a 恒成立, 转化为g (x )min ≥a ,分以下三种情况讨论:①当-a/2≤-2,即a ≥4时,g (x )在[-2,2]上是增函数,∴g (x )在[-2,2]上的最小值为g (-2)=7-3a ,∴a ≤4 7-3a ≥0,解得a 无解 ②当-a/2≥-2,即a ≤4时,g (x )在[-2,2]上是递减函数,∴g (x )在[-2,2]上的最小值为g (2)=7+a ,∴a ≤-4 7+a ≥0 解得-7≤a≤-4(3)不等式f (x )≥a 即x 2+ax+3-a ≥0.令h(a)=(x-1)a+x 2+3,要使h(a) ≥0在[-3,3]上恒成立,只需⎩⎨⎧≥≥-0)3(0)3(h h 即⎩⎨⎧≥+≥+-030632x x x x 解得:x ≥0或x ≤-3。

相关文档
最新文档