聚烯烃催化剂的发展现状与趋势
2024年聚烯烃催化剂市场前景分析

2024年聚烯烃催化剂市场前景分析引言聚烯烃催化剂是一种重要的化学催化剂,用于聚烯烃的生产过程。
聚烯烃是一种广泛应用于塑料、橡胶、纺织和包装等行业的重要原料。
随着全球经济的发展和人民生活水平的提高,对聚烯烃产品的需求不断增加,这促使了聚烯烃催化剂市场的快速发展。
本文将对聚烯烃催化剂市场的前景进行分析。
市场规模及发展趋势根据市场研究数据,目前全球聚烯烃催化剂市场规模已经达到数十亿美元,并且预计在未来几年内会继续保持较高的增长率。
这主要得益于以下几个因素:1.塑料工业的快速发展:塑料是聚烯烃的主要应用领域之一,随着全球塑料需求的增加,对聚烯烃催化剂的需求也在增加。
2.新能源车辆的兴起:随着全球对环境保护的重视,电动汽车等新能源车辆的兴起势头良好。
聚烯烃催化剂在新能源车辆的制造过程中扮演着重要角色,这进一步推动了聚烯烃催化剂市场的发展。
3.新技术的应用:随着科技的不断进步,新型聚烯烃催化剂的研发和应用不断推进。
这些新技术不仅可以提高聚烯烃生产的效率和质量,还可以减少对环境的污染,吸引了更多的投资和市场需求。
目前,聚烯烃催化剂市场存在着激烈的竞争格局,主要有国际知名化学企业和一些专业催化剂公司参与。
这些企业通过不断加大研发投入、优化产品结构、提供技术支持等方式来提升市场竞争力。
此外,一些新兴市场也开始崭露头角,它们通过本土化战略、定制化产品和更具竞争力的价格来吸引客户。
这种新兴市场的崛起给传统催化剂企业带来了巨大的压力,促使他们不断提高产品质量和服务水平。
行业挑战及解决方案尽管聚烯烃催化剂市场发展迅猛,但仍面临一些挑战:1.成本压力:聚烯烃催化剂的生产成本较高,这限制了企业的竞争力。
解决这一问题的方法包括提高生产工艺效率、降低原材料成本和寻求创新技术等。
2.环境压力:聚烯烃生产过程中常常会产生大量有害物质和废水,这对环境造成了一定的污染。
为了应对环境压力,企业需要加强环保意识,采取低污染生产工艺,并加强废水处理等环境保护措施。
工业催化工艺课程论文——聚烯烃反应过程中的催化剂及其发展状况资料

聚烯烃反应过程中的催化剂及其发展状况研究背景随着我国经济建设的快速发展,我们对聚烯烃合成树脂材料特别是高性能聚烯烃产品的需求量正持续地增长,但目前国内的生产量远不及我们的需求量;与欧、美、日等国的聚烯烃的研发及产业化相比,我国起步晚了大约有10年之久,导致我国的催化技术基础比较薄弱。
而且我国生产的聚烯烃产品还存在产品结构不合理,中低档聚烯烃产品的比例过大,高性能聚烯烃产品却开发不足的一系列问题;同时我国又缺少具有自主知识产权的聚烯烃工艺生产技术以及对核心技术的开发;这些都是目前我国聚烯烃产业亟待解决的难题,我们需要有针对性地进行深入广泛地研发。
目前我国政府、工业界及学术界都将注意力着重放在加快对聚烯烃材料科学与技术的自主创新上,努力提高聚烯烃产品的性能,实现聚烯烃产品的结构优化,并把提高聚烯烃产品的合成技术与实现产品的专用化及功能化作为聚烯烃类产品下一步发展的重要目标。
近四十年来,世界各国的聚烯烃产业都有了飞速的发展,而这正是由于聚烯烃催化剂技术的研发取得了突破性进展,且它的发展和进步也最大程度地推动了其工业应用技术的快速发展以及聚烯烃理论的深入研究。
因此催化技术的研发是聚烯烃产品实现更新换代以及优化其性能的原动力,同时它也是拥有自主知识产权及研发核心技术的关键所在。
基于催化剂扮演的重要角色以及聚烯烃产业巨大的经济利益与社会需求,使烯烃聚合用催化剂研究领域中的竞争极其激烈。
1聚合反应1.1聚合反应的定义聚合反应是由单体合成聚合物的反应过程。
有聚合能力的低分子原料称单体,分子量较大的聚合原料称大分子单体。
若单体聚合生成分子量较低的低聚物,则称为齐聚反应(oligomerization),产物称齐聚物。
一种单体的聚合称均聚合反应,产物称均聚物。
两种或两种以上单体参加的聚合,则称共聚合反应,产物称为共聚物。
1.2 聚合反应的分类1929年,W。
H。
卡罗瑟斯按照反应过程中是否析出低分子物,把聚合反应分为缩聚反应和加聚反应。
聚烯烃催化剂技术进展

聚烯烃催化剂技术进展文章摘要:聚烯烃工业技术进展很大程度上得益于催化剂的进步,世界大约3/4的线性聚乙烯是用钛基齐格勒-纳塔催化剂生产的,其余的份额主要是铬基催化剂。
20世纪90年代初推出的茂金属催化剂将带来聚合工业的重大变革。
文章概述了齐格勒-纳塔催化剂、铬基催化剂和茂等单中心催化剂的应用现状和发展趋势,概述了国产化聚乙烯和聚丙烯催化剂的研发和应用现状,指出聚烯烃催化剂仍将是今后我国石油化工的研发重点。
关键词聚烯烃催化剂聚乙......1 前言几十年来聚烯烃工业技术进展很大程度上得益于催化剂的进步,催化剂的活性明显提高,活性中心的控制手段明显改进,催化剂对于聚烯烃树脂的微观和宏观结构都有重要影响,这些结构又决定了在目标应用中的产品性能。
目前用于生产线性聚乙烯(HDPE和LLDPE)的催化剂主要有3种类型;即铬基催化剂、齐格勒-纳塔催化剂(主要是钛基催化剂)和茂金属等单中心催化剂。
世界上大约3/4的线性聚乙烯是用钛基齐格勒-纳塔催化剂生产的,其余的份额主要是Phillips 公司的铬基催化剂(主要用于HDPE)。
20世纪90年代初推出的茂金属催化剂预计会像20世纪50年代发现齐格勒-纳塔催化剂一样,带来聚合物工业的重大变革。
2002年世界聚乙烯和聚丙烯的产量大约为8850×104 t/a,相应需要催化剂约6000t左右。
催化剂只占制造成本很小的一部分,一般只占聚合物销售额的1%~2%,但对聚合物的市场价值却有重大的影响。
2 占世界HDPE产量1/2以上的Phillips环管工艺采用铬基催化剂铬基催化剂主要用于Phillips环管工艺和Dow化学的Unipol工艺,最初用于生产HDPE,后来被改进,也可用于乙烯和α烯烃的共聚反应,用这种催化剂生产的乙烯和α烯烃的共聚物有非常宽的分子量分布(MWD),重均分子量和数均分子量之比(Mw/Mn)为12~35。
现在Phillips公司正在开发十几种不同的铬基催化剂,有些已实现工业化,用来生产高性能的吹塑制品、管材和薄膜。
聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。
关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。
众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。
所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。
在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。
目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。
1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2/三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。
茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。
因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。
聚烯烃技术的发展趋势及我国的现状

表 $ 世界 E>?@供需现状
地域或国家 "77+年H<9 $)))年H<9 $))$年H<9 产能 需求 产能 需求 产能 需求
亚洲 北美 欧洲 全球
A$’’ 47’’ A’+A A(+A A7$7 (47$ ’"7, A++" ’A)( ((,, ’A7’ ’$$, 4+() 4(+" A$+) A)$’ A4A) A4"A "7("’ "+"++ $"’(" $)4A) $$,7( $$’$,
着 技 术 的 发 展 #每 一 种 催 化 剂 都 要 经 历 它 的 发 生 期 /
成长期和成熟期#形成催化剂自身的生命周期0图 "
! 收稿万日期方.数$)据), "" $)
作者简介.寇栓虎%"7’) -#男#陕西黄陵县人#延安大学讲师#硕士0
第 $期
寇 栓 虎 8景 振 华 >聚 烯 烃 技 术 的 发 展 趋 势 及 我 国 的 现 状
聚 烯 烃 树 脂 性 能 优 异 #价 格 低 廉 #广 泛 应 用 于 国 民 经 济和人民生 活 的 各 个 领 域#其 生 产 能 力 和 需 求 标志着一个国家的石化工业水平和人民的生活水
准0"77$年世界聚乙烯生产能力为 4)89#"77’年 达到了 4789#$))$年超过了 ("89#年均增长率为 4&(: 0 而 亚 洲 是 生 产 能 力 及 需 求 增 长 最 快 的 地 区 # 仅 "77’; $))$年 间 生 产 能 力 就 增 加 了 ,+4"<9#增 幅达 ,(&4:0世界聚丙烯工业生产也一直保持着较 高 的 增 长 率 0 由 于 世 界 经 济 复 苏 #市 场 较 旺 #价 格 坚 挺 #供 需 平 衡 #利 润 上 升 #因 此 #今 后 聚 丙 烯 生 产 能 力 仍将以每年 (:;"):的速度发展0聚烯烃树脂#尤 其 是 聚丙烯和聚 乙 烯#是 我 国 急 需 发 展 的 重 要 合 成 材 料0$))$年我国 =>?@的产量为 ,",)<9#需求量 为 4(47<9#仅此一项的缺口就达 "A"7<90
2023年聚烯烃催化剂行业市场环境分析

2023年聚烯烃催化剂行业市场环境分析聚烯烃催化剂是一种催化剂,具有促进聚合反应发生的作用。
聚烯烃催化剂在石油化工、塑料制造和合成橡胶等领域广泛应用。
本文将对聚烯烃催化剂行业市场环境进行分析。
一、行业市场概述随着全球经济的不断发展以及各行各业的迅速发展,聚烯烃催化剂市场需求量也不断增加。
聚烯烃催化剂的市场应用范围广,主要使用于聚乙烯、聚丙烯、塑料、橡胶等产业。
二、市场增长因素1.市场需求增加:由于全球化的影响,国内外聚烯烃催化剂市场的需求量在不断增加,尤其是在亚太地区,由于人口多、工业化程度低,增长的潜力更大。
2.新技术的不断发展:随着科技的进步,新的聚烯烃催化剂技术也得到了广泛的应用。
新技术的出现带来了更高的效率和更低的成本。
3.环保意识升级:环保已经成为全球性难题,在这种趋势下,环保型、低污染的聚烯烃催化剂会成为市场主流。
三、市场发展趋势1.研发新技术:全球市场的竞争越来越激烈,企业只有通过研发新技术、新材料、新工艺才能够在市场上居于领先地位。
2.加强环保:环保已经成为全球性难题,在这种趋势下,环保型、低污染的催化剂应会成为市场主流。
3.跨境合作:跨境合作对企业来说是一个重要的跨越发展的机遇。
常规的市场开发已经不能满足现代企业的需求,必须借助国内外的合作,提高企业的核心竞争力。
4.提高产品质量:在市场竞争激烈的情况下,提高产品质量成为企业发展的关键之一。
企业必须重视该方面,积极采取措施提高产品质量,满足客户的需求。
总之,聚烯烃催化剂行业市场前景广阔,企业只需跟随市场发展趋势,重视科技研发、环保、国际化合作和提高产品质量等方面,才有可能在市场上获得成功。
聚烯烃催化剂研究进展及需求预测

遐
乙 工 2 , 1 31 烯 业 0 1 )1 5 08 6(
E THY EN 嗍 L E S RY I
聚 烯 烃 催 化 剂研 究进 展 及 需 求预 测
杨茹欣 , 赵 燕,李 玮, 何 颖
( 中国石油兰州石化研究院, 甘肃 , o6 ) 7 oo 3
几种不同的铬系催化剂 , 有的 已实现工业化 , 用来
生产高性能的吹塑制品、 管材和薄膜 。Bs l 司 al e公 开发的聚烯烃催化剂包括新型 的铬系催化剂 A . vn C系列 , at 用于生产 H P , D E 并正在多个国家生产
此 种新 型催化 剂 。
催化剂残渣减少 , 制得的薄膜需要较少的添加剂 ,
收。该院还成功开发出 I 一1 型硅胶载体 , 其主 要性能指标与进 口同类产 品的性能指标 相当。作
2 世纪 9 0 0年代初推 出的茂 金属催化剂从根 本上改变了聚烯烃 的分 子结构 , 创造 了新 的应用
为载体 , 其负载型茂 金属催化 剂 的活性 与进 口硅
胶制成的负载型催化剂 活性相当 , 在茂金属 催化 剂负载工艺研究开发 中确定 了两步负载工艺路线
经过几年 的努力 , 中国石油 兰州石化公司研
最近又开发 了一 系列 的乙烯 聚合催化剂 J可用 ,
一
究院在茂金属催化剂及其催化 乙烯 聚合方面 , 先 后合成 出了二氯二茂锆 、 茚基环戊二烯基二氯化 锆等 7 种茂金属主催化 剂 ; 合成 了助催化 剂 甲基 氯氧烷 ( A ) M O 及含硼 阳离子引发 剂, 并对 主、 助催 化剂进行 了系统评价。其模试和 中试研究于 20 04
年 3 通过 了中 国石油 股份公 司组 织 的技 术验 月
2023年聚烯烃催化剂行业市场前景分析

2023年聚烯烃催化剂行业市场前景分析随着世界经济的不断发展和技术的不断进步,聚烯烃材料的需求不断增加,聚烯烃催化剂作为聚烯烃生产过程中不可或缺的关键原料,市场需求也在逐年增长。
本文将从聚烯烃催化剂行业市场现状、发展趋势及机遇等方面进行分析。
一、聚烯烃催化剂行业市场现状聚烯烃催化剂行业一直是化工行业中的重要组成部分。
在市场需求的驱动下,全球聚烯烃催化剂行业市场规模不断扩大。
据市场研究机构的数据显示,全球聚烯烃催化剂市场规模从2017年的103.8亿美元增长到2019年的123.2亿美元,复合年增长率达到了5.7%。
预计到2024年,全球聚烯烃催化剂市场规模将达到152.6亿美元。
目前,全球聚烯烃催化剂行业的主要市场集中在亚太地区和北美地区。
亚太地区由于经济快速发展和人口增长,聚烯烃需求增长迅速,聚烯烃催化剂市场规模也在不断扩大。
北美地区则在聚烯烃新工艺研发方面处于领先地位,聚烯烃催化剂技术也在逐渐升级。
二、聚烯烃催化剂行业发展趋势1. 高端化、特色化方向发展。
由于市场竞争的加剧,聚烯烃催化剂行业将逐渐向高端化、特色化方向发展,寻求差异化竞争,增加产品附加值和利润水平。
2. 环保节能方向发展。
随着环保意识的增强和政策的支持,聚烯烃催化剂行业将逐渐向环保节能方向发展,加快产品技术升级和优化。
3. 新型聚烯烃催化剂技术研发。
新型聚烯烃催化剂技术的研发将成为行业发展的重点,提高催化效率、降低生产成本、改善产品性能,将成为新型催化剂技术研发的重要目标。
三、聚烯烃催化剂行业机遇1. 产业链的优化与提升。
随着聚烯烃产业的发展和产业链的不断优化,聚烯烃催化剂行业将迎来更广阔的市场前景。
2. 区域市场的开拓。
未来,亚太地区和非洲地区的聚烯烃需求增长速度将更快,将成为新兴市场和发展机遇。
3. 政策环境的优化。
政策环境的优化将推动聚烯烃催化剂行业的发展,为行业的技术研发、生产和市场销售提供更加稳定的政策保障。
综上所述,聚烯烃催化剂行业市场前景广阔,虽然存在诸多挑战和风险,但未来发展空间巨大,将带来更多的市场机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚烯烃催化剂的发展现状与趋势摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。
关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。
众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。
所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。
在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。
目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。
1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2/三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。
茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。
因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。
正是由于茂金属聚烯烃所具备的优异性能,才使得茂金属催化剂自八十年代中期逐步成为聚烯烃工业中的研究热点,世界各大聚烯烃生产厂家都纷纷投入到茂金属催化剂技术开发和应用大潮之中,相继在不同品种上达到了商业化规模。
随着茂金属催化剂的开发应用,九十年代中后期,在聚烯烃领域里又出现了非茂有机金属烯烃聚合催化剂,它与茂金属催化剂和齐格勒-纳塔催化剂的不同之处在于其主催化剂的中心原子不光是第四副族元素,而是包括了几乎所有过渡金属元素,尤其是第八副族元素(如铁、钴、镍、钯等)。
这类催化剂也是单活性中心均相催化剂,因此可以按照预定的目的极精确地控制聚合物的链结构。
近几年来,非茂型催化剂的研究十分活跃,尽管目前还没有工业化应用,但对试验样品的分析和表征表明,这类催化剂所得的聚烯烃产品性能优良,而且成本也较低。
1 齐格勒-纳塔催化剂1.1齐格勒-纳塔催化剂的定义广义的齐格勒-纳塔催化剂是指周期表Ⅰ至Ⅲ族金属烷基化物与Ⅳ至Ⅷ族过渡金属盐的混合物。
但实际上,只有几个烷基Ⅰ至Ⅲ族的金属化合物是有效的,其中烷基铝是最常用的烷基金属化合物,而其它几种金属如锌、镁、铍和锂的烷基化合物已证明效率是相当低的。
而研究较多的过渡金属盐是以钛、钒、铬、钴和镍金属为基础的金属盐类。
对一种单体具有聚合活性的催化剂,并不意味着它对所有单体都有活性。
实际上,一种烷基金属化合物和过渡金属盐的特有组合方法的选择,主要取决于聚合单体的结构。
例如,以Ⅷ族过渡金属盐,如AlEt2Cl+CoCl2为基础的齐格勒-纳塔催化剂容易使二烯烃(如丁二烯)聚合,但它却不能使乙烯或者α-烯烃聚合。
另一方面,以Ⅳ、Ⅴ和Ⅵ族过渡金属为基础的催化剂,如 Ti、V、Cr为基础的催化剂,对二烯烃和α-烯烃都有活性。
这里还要说明的一点是,根据齐格勒-纳塔催化剂的定义,只有由过渡金属组分和烷基Ⅰ至Ⅲ族的金属化合物共同组成的催化剂才能称之为齐格勒-纳塔催化剂。
若催化剂中没有加入烷基Ⅰ至Ⅲ族的金属化合物,就不能称之为齐格勒-纳塔催化剂,而把它定名为“无烷基金属化合物催化剂” [1]。
1.2齐格勒-纳塔催化剂的历史起源及其发展1953年以前,K.齐格勒教授一直在西德Mulheim的Max Planck Institute的煤研究室致力于聚乙烯以及乙烯和丙烯共聚物的研究。
1953年底,他和他的学生们进行用乙烯与AlEt3及锆的乙炔酮反应的实验室工作,发现充满釜中的白色粉末是高分子量的线性聚乙烯,这是齐格勒催化剂的第一个例子。
随后齐格勒开展了更深入的研究工作,他以及他的合作者进一步考察了一系列过渡金属盐与AlEt3的络合作用,发现过渡金属盐Ⅳ-Ⅵ族较为活泼,而活性最高的催化剂是由TiCl4和AlEt3组成的。
这就是以后发展为大规模生产高密度聚乙烯树脂的催化剂。
由于齐格勒在Max Planck Institute的煤研究室中一直从事乙烯聚合的研究,而当时丙烯、较高级的α-烯烃和二烯烃的聚合是由另外一些人进行研究的,所以TiCl4/AlEt3这种新型催化剂催化烯烃聚合的潜力并没有在齐格勒研究室中被发现。
齐格勒的发明引起了意大利化学家纳塔教授的注意,纳塔着手研究了这种催化剂,1954年初,他发现将TiCl4/AlEt3用于催化丙烯聚合时,生产出来的产物是无定型和结晶聚丙烯的混合物,当用其它钛的氯化物,特别是在高温下用氢还原TiCl4制备的α-TiCl3代替TiCl4时,可以很容易地合成出丙烯、1-丁烯、苯乙烯的高结晶聚合物。
纳塔和Corradini确定,聚合物链是由相同构型的单体单元构成的长链段组成的,纳塔将这种聚合物叫做“等规立构聚合物”。
起初有些人为了把低价态与高价态的催化剂区别开来,就把含有最高价态的过渡金属即TiCl4、VCl4的催化剂称为齐格勒催化剂,而将含有较低价态过渡金属盐即TiCl3、VCl3的催化剂称为纳塔催化剂。
后来,人们又将此类催化剂统称为齐格勒-纳塔催化剂。
齐格勒-纳塔催化剂使得以前不可能发生的α-烯烃聚合得以实现,至于等规立构聚合就更不必说了,为此,瑞典皇家科学院给K. 齐格勒教授和G.纳塔教授颁发了1963年度的诺贝尔化学奖。
四十多年来,齐格勒-纳塔催化剂不断地完善,经历了四代的改进,催化剂的更新换代带来了聚烯烃工业的飞速发展。
第一代催化剂是由3TiCl3.AlCl3的固体部分组成,其中的TiCl3是用AlEt2Cl处理TiCl4而生成的。
这种催化剂用于工业生产效率很低,聚合物等规度也很低,在聚丙烯生产中需要脱灰和脱无规物工序。
第二代催化剂是对TiCl3催化剂添加路易斯碱,大大提高了催化剂的定向能力。
第一代和第二代催化剂中的TiCl3是由钛原子层和氯原子层交替组成的晶体,其中仅有很少比例的钛原子起活性中心作用,大部分钛原子只能起载体作用,因此这种催化剂活性中心浓度不高,活性较低,大量催化剂残留在产品中作为灰分而使得聚合物需要脱灰处理。
为解决这一问题,第三代齐格勒-纳塔催化剂即高效载体型催化剂便应运而生,它是在70年代出现于聚丙烯工业生产中的,第三代催化剂的突出优点是高催化效率和高定向能力,可省去脱灰和脱无规物工序。
第四代催化剂除具有高活性和高定向能力的特点外,还提高了聚合物颗粒的平均直径(0.2-5.0nm),颗粒分布窄,呈球形,从而可省去造粒工序。
据报道[2],意大利蒙埃公司最近开发了聚合过程中直接生产大颗粒球形聚丙烯的技术,已在费拉拉和布林迪两个工厂建有月产1.6kt的装置。
1.3齐格勒-纳塔催化剂的组成1.3.1过渡金属化合物1.3.1.1过渡金属及其氧化态齐格勒-纳塔催化剂的过渡金属一般是第四周期过渡金属元素,如 Ti、 V、Cr、Ni等。
在烷基铝的作用下,过渡金属的氧化态在一些反应中是在不断变化的。
例如在TiCl4/AlEt3体系中, Ti+4、Ti+3、Ti+2可能同时存在,且随着时间的增长,低价态组分不断增加。
随着过渡金属价态的降低,电负性增加,而使金属-碳键更为极化,从而有利于烯烃的插入反应。
以TiCl4与γ-Al2O3在庚烷中反应制得的催化剂而言,Ti+4、Ti+3、Ti+2对乙烯聚合具有活性;Ti+3对其他烯烃的聚合也具有活性,而Ti+4的活性不太突出,这是Ti+4的电负性较Ti+3减小所致。
因此,使用不同的催化体系和不同的聚合体系时,钛的氧化态对催化剂活性的影响是不同的[1]。
1.3.1.2过渡金属配位体过渡金属配位体选择是控制催化剂活性和选择性的主要因素。
配位体一般都是电子授体,它不限于直接与过渡金属作用,有时也可以通过和助催化剂作用,间接影响过渡金属的催化行为。
配位体作用通常是用它的电子效应和空间效应来解释,以哪种效应为主,要根据不同情况作具体分析。
例如,使用球磨法制备的催化剂 MgCl 2-TiX 4 [X=N(C 2H 5) 2、OC 6H 5、Cl],在三异丁基铝存在下进行乙烯聚合时,催化剂的活性随N(C 2H 5)2 < OC 4H 9 < OC 6H 5 < Cl 顺序增加,和这些配位体释电子能力的顺序相反。
1.3.2助催化剂齐格勒-纳塔催化体系中常用的助催化剂是烷基铝化合物。
烷基铝在反应过程中主要起烷基化作用,生成活性物种,并能起到清除系统杂质的作用,此外尚有链转移剂和还原剂的作用,它可以调节各基团反应的速度,甚至控制反应的途径,选择合适的铝化合物可使催化剂活性呈数量级提高。
例如:使用TiCl 3作主催化剂催化丙烯聚合时,聚合速率随AlEt 3 > Et 2AlCl > Et 2AlCl 2顺序增加,但以Et 2AlCl 的立体选择性最好,所以常选它作助催化剂。
1.3.3载体目前多数催化剂采用非均相载体体系,催化剂负载后有利于其分散,大幅度提高催化剂的有效利用率。
另外,它还提高了聚合物的立体规整性,使催化剂及其聚合物的颗粒形态更好,因而可省去聚合物脱灰和脱无规物的工序。
经特殊处理的MgCl 2是最常用的载体,这是因为MgCl 2与TiCl 3在晶体结构及离子半径方面很相似[3],这样MgCl 2能提供最多的反应位置,使得活性点浓度增加,因此能提高催化剂的活性。
对不同金属氯化物MCl x 的研究发现[4],影响催化剂活性的主要因素是这些氯化物中的金属M 的电负性。
当M 的电负性小于Ti +3的电负性(10.5)时,会增加聚合速率;当M 的电负性大于Ti +3的电负性,则会降低聚合速率。
金属氯化物对聚合速率的改善是由于它对过渡金属提供电子从而使得活性钛种子上电子密度增大而引起的。
在活性种子中包含的金属氯化物通过诱导效应影响活性钛种子的电子结构,使用电负性小的氯化物会引起活性钛种子上电子密度的增加,通过返还一个电子而使一个烯烃单体的配位稳定,导致在金属离子-聚合物键间后续插入的加速。