分子荧光的机理和荧光探针原理

合集下载

分子荧光探针的设计及其在细胞成像中的应用

分子荧光探针的设计及其在细胞成像中的应用

分子荧光探针的设计及其在细胞成像中的应用荧光探针是一种广泛应用于生命科学、环境科学和材料科学等领域的功能性化合物。

随着现代研究方法的不断发展,传统的染色剂和荧光探针已经无法满足对微小结构和复杂细胞机制的高要求,因此分子荧光探针应运而生。

本文将介绍分子荧光探针的设计和原理,并重点探讨其在细胞成像中的应用。

一、分子荧光探针的设计原理所谓分子荧光探针,就是将某种荧光基团与目标分子相连而制成的一种探针。

分子荧光探针的设计基础是化学反应的原理,而其荧光探针的特殊结构,则是其实现功能的关键所在。

通常而言,荧光探针的设计包括以下几个方面:1. 氨基酸基团的化学反应氨基酸基团的化学反应是实现分子荧光探针对生物分子的特异性辨别的关键。

其中,包括了一些典型的反应如华夫硫酸反应等。

2. 空间构象的影响空间构象的影响通常是通过三维分子构象的压制实现的。

分子内部的静电作用能够使分子的构象大幅改变,从而引起荧光探针发光。

3. 共振能级耦合结构的优化共振能级耦合结构是分子荧光探针设计中的一项关键因素。

通过一些与结构相关的化学反应,能够通过调整探针的共振能级耦合结构,从而赋予其特定的光谱性质。

二、分子荧光探针在细胞成像中的应用分子荧光探针在细胞成像中的应用主要基于其良好的细胞渗透性、高选择性和稳定性。

这种探针可以通过荧光显微镜等非侵入性手段,在细胞层面上实现对生物活体的实时监测。

1. 细胞膜成像分子荧光探针的主要应用是在细胞膜成像方面。

该领域应用的最常见方法是通过化学修饰细胞膜的荧光探针,从而获取细胞膜的直观图像。

这项技术广泛应用于细胞生物学、药物研发和医学等领域。

2. 细胞内成像除了细胞膜成像,分子荧光探针还可以用于细胞内成像。

在这种应用中,可以通过探针对细胞内部荧光的识别,进一步了解细胞的结构和功能。

同时,这些探针还可以通过与生物分子结合,实现对生物分子水平的高灵敏检测。

3. 生物分子成像生物分子成像是分子荧光探针在生命科学中的常见应用之一。

分子荧光的原理及其应用

分子荧光的原理及其应用

分子荧光的原理及其应用摘要分子荧光是指分子吸收能量后在辐射过程中发出荧光的现象。

本文将介绍分子荧光的原理和机制,并从应用的角度探讨其在化学、生物学和材料科学中的重要性和应用潜力。

1. 荧光原理荧光是一种电磁辐射现象,当分子在吸收能量(通常是光)后,激发态的分子会经过非辐射跃迁返回基态,释放出一个荧光光子。

荧光光子的能量通常低于吸收的能量,这是因为在非辐射跃迁过程中,分子会损失一部分能量。

荧光是一种快速发生的现象,辐射寿命通常在纳秒量级。

2. 荧光机制荧光的发生需要满足以下几个条件: - 分子必须能够吸收能量并进入激发态; - 分子的激发态必须具有较长的寿命,使得非辐射跃迁发生; - 分子的激发态能够发生与基态不同的电子构型。

3. 分子荧光的应用领域3.1 化学分析荧光分析技术已经在化学分析领域得到广泛应用。

通过使用荧光探针,可以实现对化学样品中目标分子的高灵敏度和高选择性检测。

例如,荧光染料可以用于生物分子的定量分析,如DNA、蛋白质、细胞等。

3.2 生物学研究在生物学研究中,分子荧光技术广泛应用于结构和功能的研究。

荧光标记的生物分子可以通过荧光显微镜观察、跟踪和定量化,用于研究细胞、生物分子相互作用、细胞信号传导等过程。

此外,基于荧光的流式细胞仪也可以用于细胞分析和分选。

3.3 材料科学分子荧光在材料科学中的应用也引起了广泛的兴趣。

研究人员利用荧光材料制备出具有特殊功能的材料,如荧光传感器、荧光显示器、荧光标记纳米颗粒等。

这些荧光材料可以用于检测色素、金属离子、环境中的有害物质等,具有重要的环境和生化分析应用价值。

4. 总结分子荧光是一种重要的物理现象,具有广泛的应用潜力。

在化学分析、生物学研究和材料科学等领域,荧光技术正在发挥着重要作用。

进一步的研究和应用将使我们能够更好地理解分子荧光机制,并开发出更多的创新应用。

注:本文为示例,内容仅供参考。

实际撰写时,请结合相关文献和资料进行阐述,并详细描述分子荧光的各个方面。

荧光探针技术原理及应用

荧光探针技术原理及应用

荧光探针技术原理及应用荧光探针技术是一种在生物、医学、环境等领域中广泛应用的分析技术,其原理是利用特定荧光物质(荧光探针)对目标物进行特异性的识别和检测。

荧光探针技术的原理主要包括激发、激发态寿命和荧光发射三个基本过程。

首先,通过合适的激发源,荧光探针被激发到激发态,从而产生激发态寿命。

接着,部分激发态的荧光探针经历非辐射转移回到基态,这个过程称为非辐射损失。

最后,剩余的激发态荧光探针会通过放射转移激发态能量,在发射光子过程中产生荧光。

荧光探针技术的应用非常广泛。

在生物学领域,荧光探针技术可用于细胞成像、分子诊断、蛋白质研究等方面。

例如,在细胞成像中,可以通过给目标物标记荧光探针来实现对细胞、细胞器以及生物分子的实时可视化;在分子诊断中,可以通过标记特定的荧光探针来检测特定的基因突变、DNA合成以及蛋白质表达水平等。

此外,荧光探针技术也被广泛应用于药物筛选、生物传感器、基因芯片等领域。

荧光探针技术的应用还扩展到医学领域。

例如,在肿瘤诊断与治疗中,可以设计特定的荧光探针来检测和定位肿瘤细胞,实现早期诊断和精确治疗;在药物输送和释放研究中,荧光探针可以作为载药系统的标记,用于追踪药物的分布和释放过程。

在环境领域,荧光探针技术可以用于监测和分析水体、土壤和大气中的污染物。

例如,可以设计针对特定污染物的荧光探针,通过检测目标物的荧光强度变化或荧光光谱变化来实现对污染物的高灵敏度检测和定量分析。

随着荧光探针技术的不断发展,也出现了许多新的应用领域。

例如,荧光探针技术可以应用于纳米材料表面的检测和修饰,用于纳米材料的生物传感、药物传递等方面;荧光探针技术还可以与其他分析技术相结合,例如质谱、红外光谱等,实现更加灵敏和准确的分析。

总的来说,荧光探针技术以其高灵敏度、高选择性和实时可视化的特点,在生物、医学、环境等领域发挥着重要的作用。

随着技术的不断发展和创新,相信荧光探针技术在更多领域中将发挥更大的应用潜力。

荧光探针法的原理

荧光探针法的原理

荧光探针法的原理
荧光探针法是一种常用的分析方法,用于检测和测量样品中的化学物质的存在和浓度。

其原理基于荧光现象,即某些物质在激发后能够发出特定的波长的荧光信号。

荧光探针法的原理是利用荧光分子作为化学指示剂,通过与待分析物发生特异性的反应,使荧光分子的发光性质发生变化,从而实现待分析物的检测与测量。

首先,需要选择一个合适的荧光探针分子。

这种分子应具有以下特性:能够与待分析物发生特异性的反应,产生可观测的光谱变化;荧光信号强度随待分析物浓度的变化呈线性关系;对其他干扰物质不敏感。

当待分析物存在于样品中时,荧光探针分子与待分析物发生特异性的相互作用。

这种相互作用可以是共价结合、离子键或氢键的形成,也可以是物理吸附或包结等方式。

这种相互作用使得荧光探针分子的荧光性质发生变化,产生与待分析物特异性相关的荧光信号。

通过测量和记录荧光信号的强度或光谱变化,可以推断出待分析物的存在和浓度。

一般情况下,荧光信号的强度与待分析物的浓度成正比关系,可以通过标准曲线或其他定量方法进行浓度的计算。

荧光探针法具有灵敏度高、选择性好、操作简便等优点,因此在生物医学研究、环境监测、食品安全等领域得到广泛的应用。

不过,荧光探针法也存在一些局限性,如有些荧光信号易受其他环境因素干扰,对样品的预处理要求较高等。

因此在具体应用时需要综合考虑其适用性和实际情况。

荧光探针的研究及应用

荧光探针的研究及应用

荧光探针的研究及应用随着科技的不断发展,荧光探针逐渐成为生命科学研究领域中不可缺少的重要工具。

荧光探针是一种能够发射出荧光信号的分子,在分子生物学、生物医学和化学生物学等领域中有着广泛的应用。

它们可以被用来研究细胞内的分子相互作用、识别生物分子、分析细胞功能,并可以在体内用作活体成像和药物筛选的工具。

本文将简要介绍荧光探针的基本原理、常见的荧光探针类型和其在生物学研究中的应用。

一、荧光探针的基本原理荧光探针的基本原理是荧光共振能量转移(FRET),其通过将荧光分子与生物分子(生物样品)耦合,使两者之间发生相互作用,从而产生能量转移。

FRET 能量转移是从能量接受者的激发态到另一个分子的荧光染料的发射态的一种非辐射性能量转移。

在FRET中,激发荧光染料的光子会被共振耦合到另一个染料的激发态,从而使其发出荧光光子。

这样,在激发荧光染料的时候,可以用荧光染料的荧光光子来检测另一个染料的存在和位置。

荧光探针对于荧光光子的发射特征和其它的生化参数是很敏感的,所以它们可以被用来探测各种细胞和分子。

二、常见的荧光探针类型1. 荧光染料:荧光染料是最常见的荧光探针类型之一,它们有着广泛的应用,可以被用来标记蛋白质、核酸等生物分子。

常见的荧光染料包括荧光素、草铵膦、偶氮染料等。

2. 荧光蛋白:荧光蛋白是一种具有自发荧光性质的蛋白质,其最早源自于水母Aequorea victoria。

荧光蛋白可以用来跟踪胞内或胞外的重要过程,如蛋白质、核酸合成、信号传递等。

3. 量子点:量子点是一种半导体纳米粒子,具有窄的发射光谱、强的光稳定性和较大的荧光量子产率。

这些特点使得量子点成为新一代高亮度及高灵敏度的荧光探针。

三、荧光探针在生物学研究中的应用荧光探针广泛地应用于细胞内信息传递、化学生物学、生物传感、药物筛选和临床诊断等方面。

以下为举几个常见的案例:1. 细胞内信息传递:荧光探针可被用于研究细胞内信号转导、磷酸化和蛋白质相互作用等过程。

小分子g-四链体荧光探针

小分子g-四链体荧光探针

小分子g-四链体荧光探针小分子g-四链体荧光探针是一种新型的荧光探针,以其高灵敏度、高特异性和易于修饰等优点在生物检测领域受到广泛关注。

本文将详细介绍小分子g-四链体荧光探针的原理、应用以及未来发展前景。

一、小分子g-四链体荧光探针的原理g-四链体是一种具有特殊结构的核酸分子,由两个相互作用的DNA双链组成,形成一个稳定的发夹状结构。

在特定条件下,g-四链体可以猝灭荧光团,从而实现对生物小分子的灵敏检测。

小分子g-四链体荧光探针利用这一原理,通过设计特定的核酸序列,使荧光团与g-四链体结合,从而实现对目标分子的检测。

二、小分子g-四链体荧光探针的应用1.生物传感器:小分子g-四链体荧光探针可作为一种高灵敏度的生物传感器,用于检测各种生物小分子,如金属离子、氨基酸、核苷酸等。

2.疾病诊断:利用小分子g-四链体荧光探针的高特异性,可以用于疾病相关生物标志物的检测,为临床诊断提供便捷、灵敏的方法。

3.环境监测:小分子g-四链体荧光探针可用于环境中有害物质的检测,如重金属、农药等,为环境保护提供技术支持。

4.生物成像:小分子g-四链体荧光探针可以用于活体生物成像,实现对细胞、组织内部结构的实时观察。

三、未来发展前景1.探针优化:通过进一步优化核酸序列设计和荧光团的选择,提高小分子g-四链体荧光探针的灵敏度和特异性,使其在更广泛的生物检测领域得到应用。

2.多功能探针:开发具有多种功能的小分子g-四链体荧光探针,如信号放大、光激活、温度敏感等,以满足不同应用场景的需求。

3.生物传感器的集成:将小分子g-四链体荧光探针与其他生物传感器集成,构建高性能的生物检测平台,实现对多种目标分子的快速、准确检测。

4.临床应用:随着小分子g-四链体荧光探针技术的不断发展,其在临床诊断、治疗监测等方面的应用前景广阔。

总之,小分子g-四链体荧光探针作为一种新型生物检测方法,具有巨大的应用潜力。

通过对探针原理的深入研究和对检测技术的不断创新,小分子g-四链体荧光探针将在生物科学、医学、环境监测等领域发挥重要作用。

分子荧光探针技术在生物学中的应用

分子荧光探针技术在生物学中的应用

分子荧光探针技术在生物学中的应用随着生物学科学的发展,越来越多的科研工作者在寻找新的方法探索生物领域中的秘密。

其中,分子荧光探针技术已经成为一种重要的工具,被广泛应用于细胞生物学、分子生物学和神经生物学等领域。

本文将详细探讨分子荧光探针技术的基本原理和在生物学领域中的应用。

一、分子荧光探针技术的基本原理分子荧光探针技术,是指利用分子的荧光现象来研究生物大分子的结构和功能,也叫做生物荧光技术。

其中,荧光探针是一种由发射体(荧光物质)和载体(荧光标签)组成的化合物。

发射体是光吸收着色剂,通过受激发后能向外辐射能量的分子。

载体是指在生物学分析中被利用的化学分子,可提供其它的物理化学特性和反应性质,使分子荧光探针能与生物学大分子结合。

然后,研究者通过荧光现象的各种技术手段,如光谱学、荧光显微镜等,来分析样品中含有的生物分子,如蛋白质和核酸等。

分子荧光探针技术有很多种,根据具体的原理或应用领域不同,可分为荧光共振能量转移(FRET)技术、荧光原位杂交技术、荧光定量PCR技术、单分子荧光技术等。

二、分子荧光探针技术在生物学中的应用2.1 细胞生物学领域分子荧光探针技术在细胞生物学领域中的应用非常广泛。

比如,科学家们可以通过荧光显微镜直接观察活细胞内分子的运动和相互作用,研究各种细胞过程的分子机制。

而在这个过程中,分子荧光探针就是显微镜成像技术的重要辅助工具。

例如,采用荧光原位杂交技术,可以调查细胞减数分裂过程中染色体对战具体的情况;若采用基于FRET技术,可以定量检测细胞内不同蛋白质间的相互作用程度等。

2.2 分子生物学领域在分子生物学领域中,分子荧光探针技术同样发挥着重要作用。

例如,荧光定量PCR技术,是一种快速、准确、敏感的基因分析方法。

PCR试验后,通过荧光探针检测PCR产物内的DNA分子,来确认靶基因是否存在。

这种方法既可以作为分析基因表达或定量遗传DNA的方法,也提高了染色体半不相合分离的效率。

2.3 神经生物学领域神经生物学领域是应用的重要领域之一。

荧光探针的原理及应用

荧光探针的原理及应用

荧光探针的原理及应用1. 荧光探针的定义荧光探针是一种用于检测分子或离子存在和活动的化学试剂。

它们基于荧光现象,通过发射和吸收特定波长的光来揭示目标分子的存在和特性。

荧光探针已成为生物学、药物研究和环境监测等领域中常用的工具。

2. 荧光探针的原理荧光探针的原理基于以下几个方面:2.1 发射和吸收光荧光探针能够吸收特定波长的光能,激发其电子到较高能级。

随后,这些电子以非辐射的方式退回到基态,并且在这个过程中会发射一个较长波长的荧光光子。

2.2 荧光强度与浓度的关系荧光探针的荧光强度与其所探测物的浓度成正比关系,利用这种关系可以定量地测量目标物。

2.3 荧光寿命荧光探针的荧光寿命是指其从较高能级退回到基态所需的时间。

不同的荧光探针具有不同的荧光寿命,可以利用这个特性来区分不同的物质。

3. 荧光探针的应用荧光探针在许多领域都有广泛的应用,以下是一些常见的应用:3.1 生物分子检测荧光探针可以用于检测生物分子,如蛋白质、核酸和糖类等。

通过将荧光探针与目标分子结合,可以通过测量荧光强度或荧光寿命来研究生物分子的结构和功能。

3.2 细胞成像荧光探针可以用于细胞成像,通过标记特定的细胞结构或代谢物,可以实现对细胞内过程的实时观察。

这在生物学和医学研究中具有重要意义。

3.3 药物筛选荧光探针可以用于药物筛选和评价。

通过将荧光探针与药物结合,可以测量药物对目标分子的影响,从而评估药物的活性和选择性。

3.4 环境监测荧光探针可以用于环境监测,例如检测水中的污染物或土壤中的重金属。

通过选择适合的荧光探针可以实现快速和敏感的分析。

3.5 医学诊断荧光探针可以用于医学诊断。

例如,在癌症诊断中,可以利用荧光探针来检测肿瘤标记物,从而早期发现和诊断肿瘤。

4. 荧光探针的发展趋势随着科学技术的不断进步,荧光探针的研究也在不断发展。

以下是一些目前的研究方向:4.1 高灵敏度和高选择性研究人员致力于开发具有更高灵敏度和更高选择性的荧光探针,以实现更准确和可靠的检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3荧光分子探针识别机理
1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET)
典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。

其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。

PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。

PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。

由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。

图1-1 PET荧光探针的一般原理图LUMO
图1-2 PET荧光探针的前线轨道原理图
已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。

de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。

化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。

钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。

de Silva研究小组利用类似于EDTA
结构的氨羧酸基团设计的化合物3是螯合型PET荧光分子探针,识别基羧酸基团形成一个小的空穴,可以有效螯合碱土金属Ca2+和Mg2+。

大多数PET荧光分子探针的设计是基于受体与客体结合,使光诱导电子转移作用受到抑制,荧光团发射出强烈荧光的原理,但是当与过渡金属作用时,结果有时会发生变化。

由于过渡金属3d电子的氧化还原行为,可以发生从荧光团到键合过渡金属的电子转移,或者从过渡金属到荧光团的电子转移,因此可以通过无辐射能量转移导致荧光淬灭。

化合物4受体冠醚为硫杂冠醚,众所周知,硫杂冠醚与Cu2+有强的亲和能力,该分子设计也是基于PET过程,但不同的是,与Cu2+键合后产生了从荧光团到金属离子的PET过程,导致荧光淬灭。

1.3.2分子内电荷转移(Intramolecular Charge Transfer,ICT)
典型的ICT荧光分子探针是荧光团上分别连接强推电子基和吸电子基,是一个强推-拉电子体系,推电子基和吸电子基、荧光团共轭相连,在光激发下会产生从电子给体向电子受体的电荷转移。

ICT荧光探针的识别基团往往是推-拉电子体系整体中的一部分,当识别基团与客体结合时,会对荧光团的推-拉电子作用产生影响,减弱或是强化分子内电荷转移,从而导致荧光光谱的变化,如光谱发生蓝移,或是红移(图1-3)。

化合物5为典型的ICT荧光探针,氮杂冠醚既是识别基团,同时也是推-拉电子体系的电子给体。

当冠醚与碱土金属离子如Ca2+络合时,由于金属离子的拉电子效应,降低了冠醚氮原子的供电子能力,因此发生荧光蓝移,且荧光增强。

识别基团6为电子受体的典型ICT 荧光探针化合物6,二甲氨基为推电子基,当识别基团与碱土金属Ca2+结合后,拉电子能力增强,发生荧光红移。

化合物7为螯合型的ICT荧光分子探针,可以选择性地与Mg2+络合。

多数ICT荧光探针在结合客体后,光谱都有明显移动,但荧光强度变化不明显。

然而化合物8是一个例外,与Li+络合后荧光增强90倍,与Mg2+络合增加2250倍。

1.3.3激发单体-激基缔合物(Monomer-Excimer)
当两个相同的荧光团,如多环芳烃萘、蒽和芘等连接到一个受体分子的合适位置时,其中一个被激发的荧光团(单体)会和另一个处于基态的荧光团形成分子内激基缔合物。

它的发射光谱不同于单体的发射光谱,表现为一个新的、强而宽、长波、无精细结构的发射峰。

由于形成这种激基缔合物需要激发态分子与基态分子达到“碰撞”距离(约35纳米),因
此荧光团间的距离是激基缔合物形成和破坏的关键。

所以用各种分子间作用力改变两个荧光
团间的距离,用结合客体前后单体/激基缔合物的荧光光谱变化表达客体被识别的信息。

萘、蒽、芘等荧光团由于具有较长的激发单线态寿命,易形成激基缔合物,常常被用于此类探针中。

化合物9,通过乙二胺连结两个萘分子,Hg2+的加入导致激基缔合物荧光增强;化合物10具有双芘荧光发色团,能以不同的方式选择性响应Cu2+和Hg2+;化合物11是两个萘荧光团通过聚醚链连接的荧光化合物,碱土金属离子Ca2+、Ba2+可以与氧乙烯链上的多个氧原子以及酯键上的氧原子络合,造成链的收缩,使两个萘环得以靠近,促进激基缔合物的形成,使萘单体发射荧光强度减弱。

1.3.4荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)
当能量给体荧光团(D)与能量受体荧光团(A)相隔的距离远大于D-A的碰撞直径时,只要D与A的基态和第一激发态两者的能级间能量差相当,或者说D的发射光谱与A的吸收光谱能有效重叠,就可能发生从D到A的非辐射能量转移。

实际上D-A发生能量转移两者除了光谱重叠外,还必须以适当的排列方式,A可以是荧光团,也可以是荧光淬灭团。

前一种情形,激发D时,由于能量转移,将观察到A的荧光发射;而后一种情形,则只能观察到D的荧光变化,多用于核酸的检测。

化合物12中有两个不同的荧光团,分子中的脂肪叔胺能够通过PET淬灭蒽的荧光,在
酸性条件下,该PET过程被禁阻,但蒽被激发后并不发射荧光,而是将能量转移给查耳酮使其发射荧光。

1.3.5基于其他原理的荧光分子探针
大多数阳离子荧光分子探针是基于上述原理设计的,还有少量探针是按照其它原理设计的,也许有些是意外所得,但常常有出奇制胜的效果。

化合物13的乙腈溶液中加入汞离子后荧光显著增强(34倍)并红移,进一步用质谱检测发现生成了脱硫产物14。

化合物13是对汞离子有选择性的化学反应荧光探针,这类不可逆的化学计量性识别分子也被称为化学计量剂。

化合物15在pH=4.75的缓冲溶液中,加入Cu2+后荧光淬灭,溶液颜色从橙色变为黄色,该识别过程被称为光学双通道识别。

化合物16在中性缓冲溶液中,加入Ag+后黄绿色荧光淬灭,溶液颜色从浅黄色变为红色。

化合物17在水溶液中,加入Hg2+后荧光淬灭。

这些双通道识别具有很好的选择性,另外,也为这些离子的检测提供了方便、直观的方法。

相关文档
最新文档