一元函数微分学的基本原理与应用
专升本 第二章 一元函数微分学

第二章讲义2007:36分2008:21分2009:32分2010:42分2011:29分一、导数的概念1、导数的概念左右导数的概念2、可导与连续的关系二、导数的计算导函数导函数基本结果求导法则复合函数的导数隐函数的导数对数求导法参数方程表示的函数的导数高阶导数三、导数的几何意义四、导数的应用1、中值定理1-1中值定理1-2中值定理推论2、单调性、极值与最值2-1单调性及其应用2-2极值2-3最值3、凹凸性、拐点4、洛必达法则5、渐近线一、导数的概念1、导数的概念1.讨论函数()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 23x x xx x f 在0=x 处的可导性. 2.设函数()x f 可导,且()()011lim12x f f x x→--=-,则()1f '=( ) A .2 B .1- C .1 D .2-3.设()x f 在1=x 处可导,且()11='f ,则()()=+--→hh f h f h 121lim 0( ) A .1- B .2- C .3- D .4- 4.设函数()f x 在0x =处满足,()()()03f x f x x α=-+,且()lim0x x xα→=,则()0f '=( )A .1-B .1C .3-D .3 5.函数()x f 在点0x x =处可导,且()10-='x f ,则()()=+-→hh x f x f h 23lim000A .32B .32-C .23- D .236.设()1='x f ,则()()=--+→hh x f h x f h 32lim 0( ) A .4 B .5 C .2 D .17.设()x f 为奇函数,则()30='x f 时,()=-'0x f ________.左右导数的概念2、可导与连续的关系1.函数在某点处连续是其在该点处可导的A .必要条件B .充分条件C .充要条件D .无关条件二、导数的计算导函数导函数基本结果 求导法则复合函数的导数1.设函数5sin 212π--=x y ,则='yA .5cos 212π--x x B .21xx--C .212x x - D . 5cos 52122π---x x2.已知lnsin(12)y x =-,求.dy dx隐函数的导数1.设由方程22e xy e y =- 确定的函数为()x y y =,求.|0=x dx dy2.设 ()y f x =是由方程ln sin 2xy e y y x +=确定的隐函数,求dy dx. 3.由1=++xy y x ①所确定的隐函数()x y y =在1=x 处导数为________. 对数求导法1.已知y x =,求.dx dy2.若函数()()()ln 1xf x x x =>,则()f x '=( ) A . ()1ln x x - B .()()1ln ln ln(ln )x xx x x -+C .()ln ln(ln )xx x D .()ln xx x参数方程表示的函数的导数1.曲线231,21,x t y t t =+⎧⎨=-+⎩则1|t dydx ==________.1. x y sin =的三阶导数是( )A .x sinB .x sin -C .x cosD .x cos -2.设函数()x f 具有四阶导数,且()f x ''=()()4f x =( )A .B C .1 D .3214x --3.设函数()()()()()4321--++=x x x x x f ,则()()=x f 4________. 4.已知()21x f x e -=,则()()20070f =_______.5.若()()x f x f =-,在区间()+∞,0内,()()0,0>''>'x f x f ,则()x f 在 区间()0,∞-内A .()()0,0<''<'x f x fB .()()0,0>''>'x f x fC .()()0,0<''>'x f x fD .()()0,0>''<'x f x f6.设参数方程⎩⎨⎧-=+=.13,122t y t x 所确定的函数为()x y y =,则=22dx yd _______. 7.设函数()y y x =由参数方程33cos ,sin x t y t ⎧=⎨=⎩确定,则224|t d ydx π==( )A .2-B .1-C .D 三、导数的几何意义1.函数31xy x=+在(2,2)点处的切线方程为________. 2.曲线x x y ln =平行于直线01=+-y x 的切线方程是 A .1-=x y B .()1+-=x y C .1+-=x y D .()()11ln -+=x x y 3.曲线x y ln =上点)0,1(处的切线方程为________.4.曲线22y x x =+-在点M 处的切线平行于直线51y x =-,则点M 的坐标为5.过曲线arctan x y x e =+上的点()0,1处的法线方程为( ) A .210x y -+= B .220x y -+= C .210x y --= D .220x y +-=6.曲线sin 2,cos ,x t y t =⎧⎨=⎩在4t π=对应点处的切线方程为( )A .2x =B .1y =C .1y x =+D .1y x =- 四、导数的应用 1、中值定理1-1中值定理1.下列函数中,在区间[]1,1-上满足罗尔定理条件的是( )A . x y e =B .ln ||y x =C .21y x =-D .21y x =2.函数()22f x x x =--在区间[]0,2上使用拉格朗日中值定理时,结论中的ξ= _______.3.判断:()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b ≠,一定不存在(),a b ξ∈,使得()0.f ξ'=( )4.设()x f 在[],a b 上连续,且不是常数函数,若()()f a f b =,则在(),a b 内( ) A .必有最大值或最小值 B .既有最大值又有最小值C .既有极大值又有极小值D .至少存在一点ξ,使得()0.f ξ'= 5.设()f x '在[],a b 上连续,存在,m M 两个常数,且满足12a x x b ≤<≤,证明: ()()()()212121m x x f x f x M x x -≤-≤-.6.设函数()x f 在闭区间 [ 0 , 1 ] 上连续,在开区间 ( 0 , 1 )内可导,且()().21,00==f f 证明:在 ( 0 , 1 ) 内至少存在一点x ,使得().12+='ξξf1-2中值定理推论1.设[]1,1-∈x ,则=+x x arccos arcsin ( ) A .2π B .4πC .0D .1 2.已知()x xd e f x e dx -⎡⎤=⎣⎦,且()00f =,则()f x =( ) A .2x x e e + B .2x x e e - C .2x x e e -+ D .2x x e e --2、单调性、极值与最值2-1单调性及其应用1.函数()f x x =_______. 2.方程01sin =-+x x 在区间()1,0内根的个数是( ) A .0 B .1 C .2 D .32-2极值1.若函数()2f x ax bx =+在1x =处取得极值2,则a =_______,b =_______.2.下列说法正确的是( )A . 函数的极值点一定是函数的驻点B .函数的驻点一定是函数的极值点C .二阶导数非零的驻点一定是极值点D .以上说法都不对3.若函数()x f 在区间()b a ,内连续,在点0x x =处不可导,()b a x ,0∈ ,则 A .0x 是()x f 的极大值点 B .0x 是()x f 的极小值点 C .0x 不是()x f 的极值点 D .0x 可能是()x f 的极值点 4. 若()()0,000>''='x f x f ,则下述表述正确的是( )A .0x 是()x f 的极大值点B .0x 是()x f 的极小值点C .0x 不是()x f 的极值点D .无法确定0x 是否为()x f 的极值点 2-3最值1.靠一堵充分长的墙边,增加三面墙围成一矩形场地,在限定场地面积为642m 的条件下,问增加的三面墙各长多少时,其总长最小2.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时 用料最省?3.求点()1,0P 到抛物线2x y =上点的距离的平方的最小值.3、凹凸性、拐点1.设()x f 在区间()b a ,内有()()0,0<''>'x f x f ,则()x f 在区间()b a ,内( ) A .单调减少且凹的 B .单调增加且凸的 C .单调减少且凸的 D .单调增加且凹的2.曲线31x y +=的拐点为( )A .()1,0B .()0,1C .()0,0D .()1,1 3.曲线352y x x =+-的拐点是( )A . 0x =B .()0,2-C .无拐点D .0,2x y ==-4.函数sin y x x =-在区间()0,2π内单调________,其曲线在区间0,2π⎛⎫⎪⎝⎭内的凸凹性为________的.5.曲线42246y x x x =-+的凸区间为( )A .()2,2-B .(),0-∞C .()0,+∞D .(),-∞+∞ 6.曲线x xe y -= 的拐点为A .1=xB .2=xC . ⎪⎭⎫⎝⎛22,2e D .⎪⎭⎫⎝⎛e 1,11,4、洛必达法则1.312cos limsin()3x x x ππ→-=-A .1B .0 CD.2.求011lim .1x x x e →⎛⎫- ⎪-⎝⎭3.计算sin 0lim x x x +→4.sin lim sin x x x x x →∞+-(洛必达法则)1cos sin limlim 11cos sin x x x xx x→∞→∞+-===--.()5、渐近线1.曲线2232xx y -=的水平渐近线为( ) A .32=y B .32-=y C .31=y D .31-=y 2.曲线1|1|y x =-( ) A .只有水平渐进线;B .既有水平渐进线,又有垂直渐近线;C .只有垂直渐近线;D .既无水平渐进线,又无垂直渐近线.3.曲线xe y x=( )A .仅有水平渐进线B .既有水平渐进线,又有垂直渐近线C .仅有垂直渐近线D .既无水平渐进线,又无垂直渐近线4.曲线35arctan 2+=xxy A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线5.方程xy 1arcsin = 所表示的曲线( )A .仅有水平渐近线B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线。
第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。
一元函数微分学

一元函数微分学微积分是数学中一个非常重要的分支,它研究连续与变化。
微分学是微积分中的一部分,它研究一元函数的变化率和切线问题。
在工科、理工科及金融等领域,微分学都是必修的一门学科。
一、导数一个函数的导函数即为该函数的导数。
导数表示函数在某点处的变化率,也可以理解为以该点处斜率为切线的直线方程。
导数的定义如下:$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$其中,f(x)表示函数在x点处的取值,h表示x的变化量。
导数是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。
在求导数时,我们需要注意函数是否连续,导数是否存在,同时还需考虑到函数在自变量为非自然数时的导数。
二、微分微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。
微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。
其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。
可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。
即在当前的点位置,函数的变化量以及对应的变量量。
微分还可以解决一些求和问题和变量替换问题的计算。
三、函数图像的切线函数图像的切线是函数图像在某个点的斜率。
在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。
通过直线方程就可以求出函数图像在该点的切线。
求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。
四、一元函数微分学应用微分学的应用非常广泛。
在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。
在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。
在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。
总之,一元函数微分学是微积分中最基础的内容。
(完整版)一元函数微分学课件

(一)求曲线的切线方程与法线方程
当
≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0
即
y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
一元函数微积分的基本原理与方法

一元函数微积分的基本原理与方法微积分是数学中非常重要的一门学科,是数学中的一种基础理论,又是现代科学的一种重要工具。
一元函数微积分是微积分中最基本的部分之一,掌握一元函数微积分的基本原理与方法是学习微积分的第一步。
一、导数与微分导数是微积分的核心概念之一,是函数在一个点上的变化率或斜率。
在一元函数微积分中,导数有多种不同的定义方式,但它们都是等价的。
设 $f(x)$ 在点 $x_0$ 的某个邻域内有定义,当 $x$ 充分接近$x_0$ 时,$$f'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$$如果这个极限存在,则称 $f(x)$ 在 $x_0$ 处可导,并把它的导数记为 $f'(x_0)$。
导数的几何意义是曲线在 $x_0$ 点处的斜率。
对于一元函数 $y=f(x)$,如果在某一点 $x_0$ 处导数$f'(x_0)$ 存在,则称 $f(x)$ 在 $x_0$ 处可导。
函数在 $x_0$ 处的导数 $f'(x_0)$ 也可以表示为$$\dfrac{dy}{dx}\bigg|_{x=x_0}$$它表示在点 $x_0$ 处函数 $y=f(x)$ 的每单位 $x$ 的变化量,也就是函数的瞬时变化率。
微分是导数的一种应用。
设 $y=f(x)$,$x$ 发生一个无限小的增量 $\Delta x$,相应地 $y$ 也发生了一个无限小的增量 $\Delta y=f(x+\Delta x)-f(x)$,则称 $dy=f'(x)dx$ 为 $y=f(x)$ 的微分。
它表示在 $x$ 处函数值的微小增量与 $x$ 的微小增量之比。
在微积分中,微分是一种将无限小的变化转换为实际的数值计算的技术方法。
二、函数的基本性质函数是微积分的基础,掌握函数的基本性质对学习微积分非常重要。
1. 连续性一个函数如果在某一点连续,则表明函数在该点的值可以通过函数在该点的极限来确定。
《大学数学课件一元函数微积分学》

曲线长度与曲率
曲线长度公式
曲线长度的计算需要对曲线进行参数化,然 后对其微分求和。实数的曲线长度困难,函 数的曲线长度一般参数化之后再求积分。
计算曲率
曲率定义为在曲线某一点处曲线凝聚程度的 量,凡是具有确定的曲率的曲线上的点组成 的集合,成为曲线的曲率线。
微积分的实际应用举例
金融领域应用
微积分在金融等经济学领域中有广泛的应用,能 够帮助我们更好地理解时间价值、股市价格、股 息、衍生证券等。
龙虾曲线
一种分段光滑的曲线,通过迭代形成,是高阶 导数比较经典的应用之一。
复分析
复函数又叫做复变量函数,它是一个变量为一 个复数的函数。复分析是以复函数为研究对象 的数学分支。
不定积分的概念与求法
基本积分法
通过多种方法计算不定积 分:代换法、分部积分法、 三角函数积分法、有理函 数积分法、分式分解。
应用于牛顿第二定律
在物理领域中,微积分的应用非常广泛,牛顿第 二定律是牛顿—莱布尼茨公式的一个重要应用例 子。
定积分的概念与性质
定积分概念
在一定区间内,用先进(上)的近似值与落后(下)的近似值的平均数来逐 渐缩小误差范围的整个过程,那么最后这个误差的范围越来越小。
牛顿—莱布尼茨公式
定积分的本质意义就是计算曲线下对应的面积,和物理中的质量、体积密度、 功力密度有关,是牛顿—莱布尼茨公式的重要应用场景。
极限概念
当自变量趋近于某个值时,函数值趋近于一个限的极限。
高阶导数及其应用
高阶导数的定义
高阶导数指的是对导数的导数(即二阶导数、三阶导数……)
泰勒展开式
泰勒公式是一个非常重要的工具.利用泰勒公式,可以把函数转化成为一些比较简单的多项式的和的 形式,从而来研究一些不易计算的函数。
考研微积分学习指导-一元函数微分学
1.3 导数与微分一、知识要点(一) 导数概念1. 设函数()x f y =在点0x 的某邻域内有定义,当自变量x 在0x 处取得改变量x ∆(0≠∆x )时,函数相应取得增量00()()y f x x f x ∆=+∆-()()xx f x x f x ∆-∆+→∆000lim存在,则称函数()y f x =在点0x 处可导,0x 为()x f y =的可导点,并称此极限为函数()y f x =在点0x 处的导数,记为 00000()()limlimx x x x f x x f x yy x x=∆→∆→+∆-∆'==∆∆ 或0()f x ',x x dy dx=,()x x df x dx =2.如果令x x x ∆+=0,则当0→∆x 时,0x x →,于是,导数0()f x '的定义又可以表示为()()()000limx x x f x f x f x x →-='→3.若上述极限不存在,则称()x f 在0x 点处不可导或不存在导数,0x 为()x f 的不可导点.特别当上述极限为无穷大时,此时导数不存在,或称()x f 在点0x 处的导数为无穷大.4.如果函数()x f y =在开区间()b a ,内每一点处都可导,则称()x f y =在()b a ,内可导.此时,对于任意的()b a x ,∈,都存在唯一确定的导数()x f '.因此,()x f '是x 的函数,称为()x f 的导函数,简称为导数.导函数()x f '也可记为y '或dx dy 或()dxx df(二)导数的几何意义1.函数()x f y =在点0x 处可导,则其导数()0x f '为曲线()x f y =在点()()00,x f x 处的切线斜率.特别的,若()00='x f ,则曲线()x f y =在点()()00,x f x 的切线平行于OX 轴;若()∞='0x f ,则曲线()x f y =在点()()00,x f x 的切线垂直于OX 轴.2.曲线()x f y =在点()()00,x f x 处的切线方程为()()000x x x f y y -'=-当()00='x f 时,切线方程为00=-y y 当()∞='0x f 时,切线方程为00=-x x 3.曲线()x f y =在点()()00,x f x 处的法线方程为()()0001x x x f y y -'-=- ()()00≠'x f (三)函数的可导性与连续性的关系1.函数()x f y =在0x 处可导,则在0x 处连续. 因()xyx f x ∆∆='→∆00lim存在,故有()00lim lim lim lim 00000=⋅'=∆∆∆=⎪⎭⎫⎝⎛∆∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x . 因此,()x f 在点0x 连续.2.函数()x f 在点0x 连续,()x f 在点0x 不一定可导.(四)求导法则设函数()x u 和()x v 在点x 处可导,则()()u x v x ±、()()u x v x ⋅和()()u x v x 也在该点可导(对于商的情形,要求()0v x ≠)且有。
一元函数微分学内容概要总结
一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。
以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。
微分是函数在某一点附近的线性近似,常用符号表示为dy。
2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。
3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。
4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。
5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。
6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。
7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。
以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。
希望能对你有所帮助。
一元函数微分学总结
一元函数微分学总结一元函数微分学是微积分学中的一个重要分支,用于研究一元函数的变化率和极值问题。
它是微分学的基础,对于理解和应用微积分具有重要的意义。
一元函数的微分学主要涉及函数的导数、极值和曲线的图像等内容。
其中,函数的导数是函数在某一点的变化率,它可以表示为函数的斜率或者切线的斜率。
函数的导数可以帮助我们研究函数在不同点的变化规律,了解函数的增减性、凹凸性、极值等特征。
在一元函数微分学中,求导是一个重要的操作。
通过求导,我们可以得到函数的导数表达式,从而可以计算函数在任意一点的导数值。
求导的基本规则包括常数导数规则、幂函数导数规则、指数函数导数规则、对数函数导数规则等,这些规则可以帮助我们快速计算导数。
另外,函数的导数还可以用于研究函数的极值。
通过求导,我们可以找到函数的极值点,即导数为零或者不存在的点。
极大值点对应函数的局部最大值,极小值点对应函数的局部最小值。
通过求导,我们可以判断一个函数在某一点的极值类型,并且可以进一步确定函数的增减区间和凹凸区间。
函数的导数还可以用于研究函数的图像。
通过求导,我们可以得到函数在不同点的斜率,进而可以画出函数的切线和曲线的大致形状。
通过分析切线和曲线的关系,我们可以了解函数的增减性和凹凸性,从而更加深入地理解函数的性质。
总而言之,一元函数微分学是微积分学中的重要分支,它研究一元函数的变化率和极值问题。
通过求导和分析导数,我们可以了解函数的增减性、凹凸性和极值等特征,从而更好地理解和应用微积分。
在实际应用中,一元函数微分学广泛应用于物理、经济、工程等领域,为实际问题的建模和求解提供了有力的工具和方法。
一元函数微分学的应用最全版
第四章 一元函数微分学的应用第一节 柯西(Cauchy )中值定理与洛必达(Hospital L ')法则思考题 :1. 用洛必达法则求极限时应注意什么?答:应注意洛必达法则的三个条件必须同时满足.2. 把柯西中值定理中的“()x f 与()x F 在闭间区[]b a ,上连续”换成“()x f 与()x F 在开区间()b a ,内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图象)说明.答:不成立.图像如下:习作题:1. 用洛必达法则求下列极限:(1)11lim 21--→x x x , (2)xxx sin lim 1→,(3)()πππ--→x x x sin lim , (4)x x x x x x x --+-→4240sin 23lim .解:(1)11lim 21--→x x x =)1(lim 1+→x x =2,(2)xxx sin lim0→=x x cos lim 0→=1,(3)()ππsin lim π--→x x x =()1πcos lim π-→x x =1,(4)x x x x x x x --+-→4240sin 23lim =14cos 264lim 330--+-→x x x x x = 1012--=1-. 2. 用洛必达法则求下列极限:(1)xx x +→0lim , (2)()xx x 11lim +→.解 :(1)x x x +→0lim =xxx ln 0elim +→=xx x10ln lime+→ =xx -+→0lim e=1,(2)()xx x 101lim +→=xx x 1)1ln(0elim +→ =xx x )1ln(lime+→=11lim0e+→x x =e .3. 设()x x x f -=2,直接用柯西中值定理求极限()xx f x sin lim 0→. 解:()00=f , 00sin =,()xx f x sin lim 0→∴ =()()0sin sin 0lim 0--→x f x f x =()()ξξn si lim0''→f x (ξ在0与 x 之间) =ξξξcos 12lim-→=1-.第二节 拉格朗日)Lagrange (中值定理及函数的单调性思考题:1.将拉格朗日中值定理中条件()x f “在闭区间[]b a ,上连续”换为“在开区间()b a ,内连续”后,定理是否还成立?试举例(只需画图)说明.答:不成立.如下图:2. 罗尔中值定理是微分中值定理中一个最基本的定理,仔细阅读下面给出的罗尔中值定理的条件与结论,并回答下列问题.罗尔中值定理:若()x f 满足如下3条: (1)在闭区间[]b a ,上连续;(2)在开区间()b a ,上可导;(3)在区间[]b a ,端点处的函数值相等,即)()(b f a f =,则在开区间()b a ,内至少存在一点ξ,使得()0='ξf .需回答的问题:(1)罗尔中值定理与拉格朗日中值定理的联系与区别?答:罗尔中值定理是拉格朗日中值定理的一个特殊情况.反之,拉格朗日中值定理是罗尔中值定理的推广.(2)罗尔中值定理中条件(1)换为“在开区间()b a ,内连续”,定理的结论还成立吗?画图说明.答:不成立.如下图:(3)不求()()()()()4321----=x x x x x f 的导数,说明方程()0='x f 有几个实根,并指出它们所在的区间.答:方程()0='x f 有3个实根, 分别在区间(1, 2)、(2, 3)、(3, 4)内. 原因: 0)4()3()2()1(====f f f f , 据罗尔定理即可得出结果.3. 举例说明罗尔中值定理与拉格朗日中值定理的条件是充分的而非必要的(可采用画图方式说明).答:如下图所示.)(x f 在],[b a 内不连续)(x f 在0=x 处不可导习作题:讨论函数2e x y -=的单调性.解:函数2e x y -=的定义域为),(+∞-∞,2e 2x x y --=', 令0='y , 得0=x ,用0=x 把),(+∞-∞ 分成两部分)0(),0,(∞+-∞,当)0,(-∞∈x 时0)(>'x f , 当),0(+∞∈x 时0)(<'x f , 因此2e x y -=在)0,(-∞上单调递增, 在),0(+∞上单调递减.第三节 函数的极值与最值思考题:1. 画图说明闭区间上连续函数)(x f 的极大值与最值之间的关系. 答:图像如下由图可知, 函数)(x f 的极值与最值的关系为:)(x f 的极值为可能为最值,最值在极值点及边界点上的函数值中取得.2. 可能极值点有哪几种?如何判定可能极值点是否为极值点?答:对连续函数来说,可能极值点有驻点及函数一阶导数不存在的点(尖点)两种. 利用极值的第一充分条件或第二充分条件判定.习作题:1. 求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f .∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.2. 求函数x x y -+=1在]1,5[-上的最大值. 解:xy --='1211, 令0='y , 得43=x . ∵45)43(=y , ()565-=-y , ()11=y , 比较可知 x x y -+=1在]1,5[-上最大值为45=y .第四节 曲率思考题:1. 对圆来说,其半径与其曲率半径相等吗?为什么? 答:相等.因为:曲率半径r r s R s s =∆⋅∆=∆∆=→∆→∆ααα00lim 1lim 1. 2. 是否存在负曲率,为什么?答:不存在.因为曲率定义为:sk s ∆∆=→∆α0lim ,故可知曲率为非负的值.习作题:1. 求立方抛物线()03>=a ax y 上各点处的曲率, 并求a x =处的曲率半径.解:23ax y =', ax y 6='', 于是曲率 ()2321y y k '+''==()2342916x a ax+,当 a x =时曲率 ()2362916a a k +=,故曲率半径()26691123a a k R +==.2. 曲线()03≥=x x y 上哪一点处曲率最大,求出该点的曲率. 解:23x y =', x y 6='', 故曲率 ()())0(916916232344≥+=+=x x xx xk ,对k 关于x 求导, 得()23444916)91541(d d x x x x k ++-=, 令0d d =xk且0≥x 得4451=x . <≤x 04451时, 0d d >xk ; 4451>x 时, 0d d <xk , ∴曲线()03≥=x x y 上,)45,45(4341--处曲率最大 , 最大曲率为44535⋅=k .第五节 函数图形的描绘思考题:1. 若))(,(00x f x 为连续曲线弧()x f y =的拐点,问: (1)()0x f 有无可能是()x f 的极值,为什么? 答:可能.如:()⎪⎩⎪⎨⎧>≤=,0,,0,2x x x x x y)0,0(为()x y 的拐点且()0y 为)(x y 的极值.(2)()0x f '是否一定存在?为什么?画图说明答:不一定. 如31x y = 图像如右:()0,0点为曲线31x y =的拐点,但d d =x xy2. 根据下列条件,画曲线:(1) 画出一条曲线,使得它的一阶和二阶导数处处为正.解:如下图.(2) 画出一条曲线,使得它的二阶导数处处为负,但一阶导数处处为正.解:如下图.(3) 画出一条曲线,使得它的二阶导数处处为正,但一阶导数处处为负.解:如下图.(4)画出一条曲线,使得它的一阶、二阶导数处处为负.解:如下图.习作题:1. 设水以常速s /m 3a (0>a )注入图4—19所示的容器中,请作出水上升的高度关于时间t 的函数()t f y =的图像,阐明凹向,并指出拐点.在区间[]1,0t 上函数()t f y =的图像上凹, 在区间[]21,t t 上函数()t f y =的图像下凹, 点()()11,t f t 为函数图像的拐点.2. (1)()x f '的图像如图4—20所示,试根据该图像指出函数)(xf 本身拐点横坐标x 的值.答:拐点横坐标为3x x =与4x x =. (2)在图4—21的二阶导数()x f ''的图像中,指出函数()x f 本身拐点横坐标x 的值. 答:拐点横坐标为1x x =和2x x =. 3. 求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',图4—19令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.4.求曲线()()213--+=x x x y 的渐近线.解:()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .第六节 一元函数微分学在经济上的应用思考题:1. 回答下列问题:(1) 为什么说需求价格弹性一般为负值?答:因为需求价格弹性()p Q p Q p Ep EQ d d ⋅=中,pQd d 是需求量关于价格的导数, 而一般情况下,需求函数()p Q Q =是价格p 的单凋递减函数,即一般地0d d <pQ, 所以说需求价格弹性一般为负值.(2)设生产x 个单位产品时,总成本为()x C ,问这时每单位产品的平均成本是多少?答:平均成本()xxCxC=)(.(3)用数学语言解释“某项经济指标的增长速度正在逐步加快”或“某项经济指标的增长速度正在逐步变慢”,并画图说明.答:设u 表示某项经济指标,t 表示时间,)(t u u =二阶可导,则“经济指标的增长速度正在逐步加快”,即指t u d d 是递增函数,所以0d d 22>t u ,也即)(t u u =的图像上升且上凹(如下图1);相反“经济指标的增长速度正在逐步变慢”,即指0d d ,0d d 22<>tut u ,也即)(t u u =的图像上升且下凹(如下图2).2. 一般情况下,对商品的需求量Q是消费者收入x 的函数,即)(x Q Q =,试写出需求Q 对收入x 的弹性——需求收入弹性数学公式,并分析其经济意义.答:需求收入弹性()xQx Q x Ex EQ d d ⋅=. 因为一般情形下,需求Q 是收入x 的增函数, 故0d d >x Q 从而Ex EQ >0. 若ExEQ=1,则表明需求的变动幅度与收入的变动幅度是同步的,若>Ex EQ1,则表明需求变动的百分比高于收入变动的百分比.若0<ExEQ <1,则表明需求变动的百分比低于收入变动的百分比.习作题:1. 某厂商提供的总成本和总收入函数如右图,试画出下列对于产品数量q 的函数图象.(1)总利润;(2)边际成本;(3)边际收入解:(1)总利润L=)()(q C q R -,图像如下图(1),tu(2)边际成本c M =)('q C , 图像如下图(2), (3)边际收入R M =)('q R , 图像如下图(3).2. 求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=.(2)(2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元函数微分学的基本原理与应用
微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理
微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的
微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:
dy = f'(x0)dx
其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:
f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)
导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数
表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线
微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到
导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
在此例中,我们可以求得函数 f(x) 的最小值为 1。
2. 曲线的切线:求解曲线在某一点的切线方程。
切线是曲线在某一点处的近似线性逼近。
对于一元函数 f(x),切线的斜率可以通过导数 f'(x) 求得。
假设曲线经过点 P(a, f(a)),则切线方程的一般形式为 y = f'(a)(x - a) + f(a)。
举例来说,对于函数 f(x) = sin(x),若要求函数在点(π/6, 1/2) 处的切线方程,我们可以求得导数 f'(x) = cos(x)。
然后,代入x = π/6,f'(π/6) = cos(π/6) = √3/2,代入(a, f(a)) = (π/6, 1/2),得到切线方程y = (√3/2)(x - π/6) + 1/2。
三、结论
本文介绍了一元函数微分学的基本原理和应用。
微分学是数学中重要的分支之一,通过导数和微分的概念,可以研究函数的变化率、极值、切线等问题。
应用方面,微分学可以用来求解极值问题和曲线的切线方程等实际问题。
微分学的基本原理和应用对于理解数学和应用数学于实际问题具有重要意义。