一元函数微分学的应用
第二章 一元函数微分学及其应用(2)

因此泰勒中值定理是拉格朗日中值定理的推广. 在不需要余项的精确表达式时, n 阶泰勒公式也 可写成
1 1 (n) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + f ′′( x0 )( x − x0 ) + ⋯ + f ( x0 )( x − x0 )n + o(( x − 2! n!
拉格朗日中值定理的几何意义:
如果在[a,b]上的连续曲线,除端点外处处有不垂直于x轴的 切线,那么在曲线弧上至少有一点(ξ, f (ξ )),使曲线在该点处的 切线平行于过曲线弧两端点的弦线. 弦线的方程为
作辅助函数
即可.
的几何意义为:曲线的纵坐标与曲线弧两端
点连线对应的纵坐标之差.
推论 1 若函数 f (x) 在区间 I 上导数恒为零,则
1 ln x = lim x 解 原式 = lim+ 1 1 x →0+ x→0 − 2 x x
( 0⋅ ∞ )
= lim+ ( − x ) = 0
x→0
2 ∞−∞型 )
例2 解
求 lim (sec x − tan x ) ( ∞ − ∞ ) π
x→ 2
1 − sin x lim(secx − tanx) = lim π π x→ cos x x→ 2 0 2 ( ), − cos x 0= lim = lim cot x = 0 π − sin x π x→ x→
定理3 第一充分条件) 定理3(第一充分条件)
求极值的步骤: 求极值的步骤:
(1) 求出导数 f ′( x );
( 2) 求出 f ( x )的全部驻点,即方程 f ′( x ) = 0 的根; 的全部驻点,
一元函数微分学几何应用(一)--单调性与极值

⼀元函数微分学⼏何应⽤(⼀)--单调性与极值单调性与极值的判别单调性的判别若 y = f(x)在区间I上有f'(x)>0,则 y=f(x)在I上严格单调增加若 y = f(x)在区间I上有f'(x)<0,则 y=f(x)在I上严格单调增加费马引理(极值点的必要条件)⼀阶可导点是极值点的必要条件(极值导数必为0,导数为0不⼀定是极值,如y=x3)设f(x)在x=x0处可导,且在点x0处取得极值,则必有f'(x0)=0判别极值的第⼀充分条件(左右邻域⼀阶导异号)极值点不⼀定是可导点左邻域内,f'(x)<0,⽽右邻域,f'(x)>0,则f(x)在x=x0处取得极⼩值左邻域内,f'(x)>0,⽽右邻域,f'(x)<0,则f(x)在x=x0处取得极⼤值若f'(x)在左右邻域内不变号,则点x0不是极值点判别极值的第⼆充分条件(⼀阶导数=0,⼆阶导数≠0)设f(x)在x=x0处⼆阶可导,且f'(x0)=0,f''(x0)≠0若f''(x0)<0,则f(x)在x0处取得极⼤值若f''(x0)>0,则f(x)在x0处取得极⼩值可以⽤⼀阶导数定义和保号性证明判别极值的第三充分条件(⾼阶导)f(x)在x0处n阶可导,且 f(m)(x0)=0(m=1,2,...,n-1),f(n)(x)≠0(n≥2)f'(x0)=f''(x0)=...=f(n-1)(x0)=0若n为偶数且f(n)(x0)<0时,f(x)在x0处取得极⼤值若n为偶数且f(n)(x0)>0时,f(x)在x0处取得极⼩值拉格朗⽇中值定理推⼴(联系函数与导函数)f(b) - f(a) = f'(ξ)(b - a)f(x) - f(x0) = f'(ξ)(x - x0)。
一元函数微分学

一元函数微分学微积分是数学中一个非常重要的分支,它研究连续与变化。
微分学是微积分中的一部分,它研究一元函数的变化率和切线问题。
在工科、理工科及金融等领域,微分学都是必修的一门学科。
一、导数一个函数的导函数即为该函数的导数。
导数表示函数在某点处的变化率,也可以理解为以该点处斜率为切线的直线方程。
导数的定义如下:$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$其中,f(x)表示函数在x点处的取值,h表示x的变化量。
导数是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。
在求导数时,我们需要注意函数是否连续,导数是否存在,同时还需考虑到函数在自变量为非自然数时的导数。
二、微分微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。
微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。
其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。
可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。
即在当前的点位置,函数的变化量以及对应的变量量。
微分还可以解决一些求和问题和变量替换问题的计算。
三、函数图像的切线函数图像的切线是函数图像在某个点的斜率。
在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。
通过直线方程就可以求出函数图像在该点的切线。
求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。
四、一元函数微分学应用微分学的应用非常广泛。
在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。
在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。
在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。
总之,一元函数微分学是微积分中最基础的内容。
一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
数学分析(一):一元微积分 南京大学 5 第五章微分学的应用 (5.7.1) 常见函数的Taylor展开

一元微积分与数学分析—常见函数的T aylor展开梅加强南京大学数学系如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.注意:f光滑并不意味着其T aylor展开收敛到自身.例如,考虑函数f(x)=e−1 x2(x=0),f(0)=0,则f在0处的各阶导数均为零,其Maclaurin展开恒为零.问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?定理1(T aylor公式系数的唯一性)设f在x0处n阶可导,且f(x)=nk=0a k(x−x0)k+o(x−x0)n(x→x0),则a k=1k!f(k)(x0),k=0,1,···,n.证明.根据带Peano余项的T aylor公式,f(x)又可写为f(x)=nk=01k!f(k)(x0)(x−x0)k+o(x−x0)n(x→x0).如果令b k=a k−1k!f(k)(x0),k=0,1,···,n,则两式相减可得nk=0b k(x−x0)k=o(x−x0)n(x→x0).首先,在上式中令x→x0即得b0=0.其次,上式两边除以x−x0,再令x→x0可得b1=0.这个过程可以继续,当等式两边除以(x−x0)k并令x→x0时就得到b k=0(0≤k≤n).T aylor展开的运算性质设f,g在x0=0处的Taylor展开分别为∞n=0a n x n,∞n=0b n x n,则(1)λf(x)+µg(x)的Taylor展开为∞n=0(λa n+µb n)x n,其中λ,µ∈R.(2)f(−x)的Taylor展开为∞n=0(−1)n a n x n;(3)f(x k)的Taylor展开为∞n=0a n x kn,其中k为正整数;(4)x k f(x)的Taylor展开为∞n=0a n x k+n,其中k为正整数;(5)f (x)的Taylor展开为∞n=1na n x n−1=∞n=0(n+1)a n+1x n;(6)x0f(t)d t的Taylor展开为∞n=0a nn+1x n+1;例子例11=1+x+x2+···+x n+···,x∈(−1,1).1−x例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例2ln(1−x)=−∞n=1x nn=−x−x22−···−x nn−···,∀x∈[−1,1).(1)对数函数的展开证明.利用积分可得ln(1−x)=−xd t1−t=−x1+t+···+t n−1+t n1−td t=−x−x22−···−x nn−xt n1−td t.如果−1≤x<0,则xt n1−td t≤xt n d t=|x|n+1n+1→0;(n→∞)如果0≤x<1,则xt n1−td t≤11−xxt n d t=x n+1(1−x)(n+1)→0.(n→∞)由此即得(1).将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.例3arctan x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33+x55−x77+···,∀x∈[−1,1].(3)证明.利用积分可得arctan x=xd t1+t2=x−x33+x55+···+(−1)n−1x2n−12n−1+R n(x),其中余项R n(x)=(−1)nxt2n1+t2d t.当x∈[−1,1]时|R n(x)|≤|x|0t2n d t=|x|2n+12n+1→0(n→∞),这说明(3)式成立.特别地,取x=1,我们就重新得到了Leibniz公式π4=1−13+15−17+···.(Leibniz-Gregory)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)证明.e x的各阶导数仍为它自己,由Lagrange余项可得e x=n−1n=0x kk!+R n(x),R n(x)=eθxn!x n,其中θ∈(0,1).此时有如下估计|R n(x)|≤e|x||x|nn!→0(n→∞).这说明(4)式成立.例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)证明.利用sin x=cos x,cos x=−sin x可得sin(2k+1)(0)=(−1)k,sin(2k)(0)=0.由带Lagrange余项的T aylor公式可得sin x=x−x33!+x55!+···+(−1)n−1x2n−1(2n−1)!+(−1)n x2n+1cosθx(2n+1)!,(θ∈(0,1))当n→∞时余项趋于零.cos x的展开类似可得.。
一元函数微积分学在物理学上的应用(1)

一元函数微积分学在物理学上的应用 速度、加速度、功、引力、压力、形心、质心[][]1.(),()().3.00(),t t t t T t x m m x θθωθ='='=用导数描述某些物理量速度是路程对时间的导数.加速度是速度对时间的导数。
2.设物体绕定轴旋转,在时间间隔0,t 内转过的角度则物体在时刻的角速度当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度与时间的函数关系为T=T(t),则物体在时刻t 的冷却速度为T (t).3.一根杆从一端点算起,,段干的质量为则杆在点x 处的线密[][](),().5.T C (T )=q (T ).6. (),().Q Q t Q t T w w t t w t ρ'='''=度是(x)=m (x).4.一根导线在0,t 这段时间内通过导线横截面的电量为则导线在时刻t 的电流强度I(t)=某单位质量的物体从某确定的温度升高到温度时所需的热量为q(T),则物体在温度时的比热某力在0,t 时间内作的功则时刻的功率为例1 .2212,5360,(),2M 55,12,360,(),()522cm AB AM M A x g m x xx m k m x x m x xρρ='=====2设有长为的非均匀杆部分的质量与动点到端点的距离的平方成正比,杆的全部质量为则杆的质量的表达式杆在任一点处的线密度(x)=5x解:m(x)=kx 令得所以(x)=变力作功:变力()F x 沿直线运动从a 到b 所作的功()ba w F x dx =⎰51.53[05][05][,]29.83,8828828m m x x x x dx dx x m dx kN dw dx xw x dx πππ+⋅⋅=⋅⋅∴=⋅=⎰例2(1)(功)一圆柱形的注水桶高为,底圆半径为,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作轴如图所示取深度为积分变量,它的变化区间为,相应于,上任一小区间的一薄层水的高度为,因此如的单位为,这薄层水的重力为把这层水吸出桶外需作的功近似为所求的功为25823462()2kJ π⋅⋅≈2.21,2[,1][2,2]R l Rx R x x Rx R x dx x xdx ρρ>=+++++例2(2)(功)设有一半径为,长度为的圆柱体平放在深度为的水池中,(圆柱体的侧面与水面相切,设圆柱体的比重为())现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至处,计算位于上的体积微元移至时所作的微元功。
一元函数积分学及其应用(课件)

18
第、。 二节 不定积分的运算
、
【例 5】求 sin2 x d x 。 2
解
sin2 x d x 1 cos x d x
2
2
1 d x 1 cos x d x
2
2
1 x 1 sin x C 22
1 3
x3
x2
,
所以
1 3
x3
是
x
2
的一个原函数
因此
x2 d x 1 x3 C 。 3
8
第一节 不定积分的概念与性质
【例2】求 1 d x , x (∞,0)∪(0,∞) 。 x
解 当 x > 0 时,由于 (ln x) 1 ,所以 ln x 是 1 在 (0,∞) 内的一个原函数。因此,在 (0,∞)
该性质可推广到被积函数是有限多个函数代数和(差)的情况,即
[ f1(x) f2 (x) fn (x)]d x f1(x) d x f2 (x) d x fn (x) d x 。
法则 2 被积函数中的常数因子可以提到积分号外面,即
kf (x)d x k f (x)d x ( k 是常数, k 0 )。
第、 一节不定积分的概念与性质
、
三、不定积分的性质 求不定积分和求导数(微分)互为逆运算,即当微分号与积分号放在一起时会“抵 消”掉,显然有以下两条基本性质:
性质 4.1 [ f (x)d x] f (x) 或 d f (x)d x f (x)d x ; 性质 4.2 F(x)d x F(x) C 或 d F(x) F(x) C 。
间 I 内的不定积分,记为 f (x)d x ,即
一元函数微积分学在物理学上的应用(1)

一元函数微积分学在物理学上的应用(1)
一元函数微积分学是数学中重要的一类方法,在自然科学研究中也发挥着重要作用。
在物理学中,一元函数微积分学可以用于研究运动物体的位置、速度、加速度等以及物体
的力、能量等问题。
首先,在运动的物体的位置、速度、加速度等问题中,一元函数微积分学可以提供对
该问题方面更多的解释。
比如,在利用微积分学研究动力学时,是把动力学研究成微分方
程的形式。
在考虑了力学运动模型中的惯性、阻力、重力等因素的影响后,可以从一元微
分方程的解获得动力学运动的位置、速度和加速度的时变关系,从而对物体的不同状态有
更深入的分析。
其次,一元函数微积分学也可以用于研究物体的力以及物体的能量的变化情况。
比如,在电磁学中,一元微积分可以用来描述电磁场中物体的受力情况。
有了物体受力的情况,
就可以运用动量定理、动能定理以及动量守恒定律来分析物体在受到力的作用下物体的动
能是如何变化的,从而深入研究物体的运动特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (1 ) f (2 ) f (3 ) 0 即 f (x) 0 至少有三个实根 (i I=1,2,3)
又 f (x) 0是三次方程,它至多有三个不同的实根,综上所
述 f (x) 0 有三个实根,分别位于 区间(1,2)(2,3)
例2 证明:当 x>0时, x ln(1 x) x 1 x
证:设f(x)=ln(1+x) 显然f(x)在[0,x]
上满足拉格朗日定理,因而有
f(x) f (0) f ( )(x 0) (0< <x)
Q f(0)=0 f (x)= 1 ln(1+x)= x
1+x
1+
2
(2) 同理可证
返回
三﹑柯西中值定理 定理 如果函数f(x)与 F(x)满足:
在闭区间[a,b]上连续 在开区间(a,b)内可导 F ( x)在(a,b)内的每一点处均不为零。
则在(a,b)内至少存在一点 ,使得
f ( ) f (b) f (a) F( ) F (b) F(a)
x
2
2
证:(1)设f (x) arcsin x arccos x,则在开区间
(-1,1)内 恒有f(x)=0,由推论1知
在(-1,1)内 f(x) c,
因为f(0)= ,所以c= 又f(-1)=f(1)=
2
2
2
所以在[-1,1]上恒有arcsinx+arccosx=
第三章 一元函数微分学的应用
本章简介:
本章将在建立了导数概念和解决了导数计算的基础上 学习微分中值定理,并由此引出计算未定型极限的方 法—洛必塔法则,并以导数为工具,讨论函数及其图形的 性态,解决一些实际问题.
本章重点: 微分中值定理;洛必塔法则;函数的极值、最值及 其求法
本章难点: 微分中值定理;函数的最值及其应用;函数的凹凸 区间及拐点求法
第一节
本节内容提要:
中值定理
一、罗尔定理
二、拉格朗日中值定理
三、柯西中值定理
本节重点 罗尔定理、 拉格朗日中值定理的条件和结论 、几何意 义及应用 本节难点 罗尔定理、拉格朗日中值定理的应用 教学方法 启发式 教学手段 多媒体课件和面授讲解相结合 教学课时 2课时
一、罗尔定理
定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导。 (3)f(a)=f(b)。 则在(a,b)内至少存在一点ξ,使得 f ( ) 0 几何意义:在每点都有切线的一段曲线上,若两端点的高度 相同,则在该曲线上存在一条水平切线. 注:(1)ξ点不一定唯一。
(2)定理的条件是充分的,但非必要的
例1:不用求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明 方程 f (x) 0 有几个实根,并指出它们所在的区间。
解:f(x)是一个边续可导函数,且f(1)=f(2)=f(3)=f(4)=0
f(x)在[1,2],[2,3],[3,4]上都满足罗尔定理的条件。
即f(x1) f (x2 ) 由x1,x2的任意性知, f(x)在(a,b)内是一个常数
推论2 设函数f(x)和g(x)在(a,b)内可导,且 f (x) g(x),
则f(x)和g(x)相差一个常数c,即 f (x) g(x) c 例3:证明(1)在[-1,1]上恒有 arcsin x arccos (2)对任何实数恒有 arctan x arc cot x
(3,4)内
f(x)满足: (1)在闭区间[a,b]上连续。 (2)在开区间(a,b)内可导。 则在(a,b)内至少存在一点ξ,使得
f ( ) f (b) f (a)
ba
注:若拉格朗日中值定理满足f(a)=f(b),即为罗尔定理 几何意义:在每点都有切线的一段曲线上至少存在一点P (ξ,f(ξ)) 使曲线在该点的切线平行于两端点的连线。
Q 0< <x
x x x
1+x 1
即
x 1+x
<ln(1+x)<x
推论1 设函数f(x)在(a,b)内可导,且 f (x) 0, 则 f(x)在区间(a,b)内是一个常数 证: 任取x1,x2 (a,b),不妨设x1<x2,
在[x1 ,x2 ]上应用拉格朗日定理有
f(x2 ) f (x1) f ( )(x2 x1) Q f ( ) 0 f(x2 ) f (x1) 0
注:三个中值定理的关系: 柯西中值定理F(x)x拉格朗日定理 罗尔定理。 f (a) f (b)
返回