人工砂质量指标

人工砂质量指标

人工砂(机制砂)质量指标

1)砂的细度模数范围:2.5-3.2,砂的颗粒级配应符合Ⅱ区砂要求;

2)砂中石粉含量(按干质量计)不得大于10.0%,MB值不得大于

1.0;

3)砂中泥块含量(按干质量计)不得大于0.5%;

4)砂的总压碎值指标不得大于30%;

5)砂中云母含量(按干质量计)不得大于1.0%;

6)砂中轻物质含量(按干质量计)不得大于0.5%;

7)砂中有机物、硫化物及硫酸盐等有害物质含量不得超出现行标

准JGJ52-2006中的规定;

8)天然砂的坚固性指标(按干质量计),采用硫酸钠溶液法进行试

验,砂样经5次循环后其质量损失不得大于8%;

9)砂中氯离子含量(按干质量计)不得大于0.02%;

10)砂中不应混有石块、草根、树叶、树枝、塑料、煤块、炉渣等

杂物;

11)砂到场含水率(按干质量计)不得大于2%,卵石机砂到场含水

率不得大于5%。

人工砂混凝土性能研究

人工砂混凝土性能研究 1胶砂试验 1.1胶砂配合比为了解石灰石粉掺量对胶砂流动度和力学性能的影响,设计胶砂配合比,见表5。其中,标准砂、水的用量不变,分别为 1350g、225g。按GB/T2419-2005《水泥胶砂流动度测定方法》、 GB/T17671-1999《水泥胶砂流动度测定方法》分别测试胶砂的流动度、抗折强度、抗压强度,测试结果见表5。 1.2胶砂试验结果分析石灰石粉掺量对胶砂流动度的影响,如图1所示。由该图可看出,虽然用水量未变,但胶砂流动度依然随着石灰石 粉掺量的提高而增大,故也可认为石灰石粉具有一定的减水作用。图1石灰石粉掺量与胶砂流动度的关系石灰石粉掺量对胶砂的抗压强度、 抗折强度影响。随着石灰石粉的掺量增加,相同龄期的水泥胶砂抗折 强度、抗压强度均有不同程度的降低。 2混凝土试验 2.1混凝土配合比为了解石灰石粉掺量对混凝土拌合物性能和力学性 能的影响,以石灰石粉超掺50%、超掺部分等量取代人工砂设计混凝土配合比,其中,碎石、超塑化剂、水的用量不变,见表6。按 GB/T2419-2005《水泥胶砂流动度测定方法》、GB/T17671-1999《水泥 胶砂流动度测定方法分别测试混凝土的拌合物性能、抗压强度,测试 结果见表7。 2.2混凝土工作性能分析(1)掺入细度10%以内的石灰石粉的坍落度基 本都符合工程应用要求,随着石灰石粉量的增加,坍落度也增加,混 凝土的粘聚性好、泵送效果好、坍落度经时损失小。(2)石灰石粉混凝 土坍落度与扩展度随水胶比减小而增加,这与普通混凝土是一致的。(3)混凝土的坍落度随石灰石粉的掺量增加而增大,当掺量超过10%后,随掺量的增加而减小,而经时损失则随石灰石粉掺量增加而增大。

透水水泥混凝土配合比设计方法

3.3 透水水泥混凝土配合比 3.3.1 透水水泥混凝土的配制强度,宜符合现行业标准《普通混凝土配合比设计规程》JGJ 55的规定。强度怎么计算? 3.3.2 透水水泥混凝土的配合比设计应符合本规程表3.2.1中的性能要求。 3.3.3 透水水泥混凝土配合比设计步骤宜符合一列规定: 1 单位体积粗骨料用量应按下式计算确定: 'g g m αρ=? 3.3.3-1 式中 m g —1m 3透水水泥混凝土中粗骨料质量,kg ,取值1300 kg ~1500 kg ; g ρ'—粗骨料紧密堆积密度,kg/m 3; α—粗骨料用量修正系数,取0.98。 2 胶结料浆体体积 ①当无砂时,胶结浆体体积按下式计算确定: 1(1)1p g void V R αν=-?--? 3.3.3-2 ' (1)100%g g g ρνρ=-? 3.3.3-3 式中 V p —1m 3透水水泥混凝土中胶结料浆体体积(水、砂与胶凝材料的混合物的浆体体积),m 3; νg —粗骨料紧密堆积空隙率,%; ρg —粗骨料表观密度,kg/m 3; R void —设计孔隙率,%,可选10%、15%、20%、25%、30%。 ②当有砂时,胶结料体积按下式计算确定: 1(1)1p g void s V R V αν=-?--?- 3.3.3-4 s s s m V ρ= 3.3.3-5 s s s g m m m β= + 3.3.3-6 式中 V s —1m 3透水水泥混凝土中砂的体积,m 3; ρs —砂的表观密度,kg/m 3; m s —砂的质量,kg ; βs —砂率,在8%~15%范围内选定; R void —设计孔隙率,%,可选10%~20%(路用透水砼)、20%~30%(植生透水砼)。 3 水胶比R W/B 应经试验确定,水胶比选择控制范围为0.25~0.35(0.33)。 4 单位体积水泥用量应按下式确定: /1 P b P W B V m R ρ= ?+ 3.3.3-7

人工砂压碎值指标试验

人工砂压碎值指标试验 一、本方法适用于测定粒级为315μm~5.00μm的人工砂的压碎指标。 二、人工砂压碎指标试验应采用下列仪器设备: (1)压力试验机,荷载300kN; (2)受压钢模:由圆筒、底盘和加压压块组成。其尺寸如下图所示: 受压钢模示意图 (3)天平——称量10Kg或1000g、感量为1g; (4)试验筛——筛孔公称直径分别为5.00mm、2.50mm、1.25mm、630μm、315μm、160μm、80μm的方孔筛各一只; (5)烘箱——温度控制范围为(105±5)℃; (6)其他——瓷盘10个,小勺2把。 三、试样制备应符合下列规定: 将缩分后的样品置于(105±5)℃的烘箱内烘干至恒量,待冷却至室温后,筛分成 5.00mm~2.50mm、2.50mm~1.25mm、1.25mm~630μm、630μm~315μm四个粒级,每级试样质量不得少于

1000g 。 四、实验步骤应符合下列规定: 1.置圆筒于地盘上,组成受压模,将一单级砂样约300g ,装入模内, 使试样距底盘面的高度约为50mm 。 2.平整钢模内试样的表面,将加压块放入圆筒内,并转动一周使之与试样均匀接触。 3.将装好试样的受压钢模置于压力机的支承板上,对准压板中心后,开动机器,以500N/s 的速度加荷。加荷至25KN 时稳荷5s 后,以同样速度卸荷。 4.取下受压模,移去加压块,倒出压过的试样并称其质量(m 0),然后用该粒级的下限筛(如砂样为公称粒级 5.0mm-2.5mm 时,则其下限筛指孔径为2.50mm 的方孔筛)进行筛分,称出该粒级试样的筛余量(m 1)。 五、人工砂的压碎指标按下式计算: 1.第i 单级砂样的压碎指标按下式计算,精确至0.1%: δi = m01m m -×100% 式中: δi ——第i 单级砂样压碎值指标(%); m 0 ——第i 单级试样的质量(g ); m 1 ——第i 单级试样的压碎试验后筛余的试样质量(g )。 以三份试样试验结果的算术平均值作为各但立即式样的测定值。

无砂透水混凝土配合比设计

无砂透水混凝土配合比设计 摘要:无砂透水混凝土具有多孔、透水性好、有一定的强度,在挡土墙台背作为排水或反滤结构。本文对无砂透水混凝土的配比设计进行了试验,分析影响无砂透水混凝土强度及渗透系数的因数。 关键词:无砂透水混凝土; 配合比; 渗透系数; 水灰比;孔隙率一、前言 无砂透水混凝土是由粗骨料、水泥和水拌制而成,又称多孔混凝土。它是由粗骨料表面包裹的一层水泥浆相互粘结而形成的孔穴均匀分布的蜂窝状结构,具有一定的强度和渗透性。用在挡土墙台背排水结构中,起到反滤和渗水作用,并可承受适当的荷载。具有透水性和过滤性好、施工简便、省料等优点。目前,无砂透水混凝土的研究及施工经验较少。对无砂透水混凝土的作用及质量的重要性认识不够,施工过程中也存在较多的不规范。 二、原材料的选择及试验方法 1、原材料 无砂多孔混凝土原材料的选择主要是水泥品种和强度等级;粗骨料的类型、粒径及级配 水泥:采用PC42.5普通硅酸盐水泥 2、配合比设计 配合比设计步骤 (1)确定水灰比范围

水灰比既影响无砂透水混凝土强度,又影响其透水性。对不同粒径、不同颗粒形状的骨料,其合理水灰比不同。水灰比过小,水泥浆过稠,水泥浆较难均匀地包裹在骨料颗粒表面,不利于强度提过,反之,如果水灰比过大,水泥浆又会从骨料颗粒表面滑下,包裹粗骨料颗粒表面水泥浆过薄,同样不利于强度的提高,同时由于水泥浆流动性过大,水泥浆可能把透水空隙部分或全部填实,也不利于透水。根据混凝土施工提供经验水灰比0.38~0.50。选择0.36、0.38、0.40、0.42、0.45五个水灰比。通过变动水灰比寻找一个最佳水灰比。 (2)确定骨料用量 1m3无砂透水混凝土的出骨料用量宜取紧密堆积状态下的碎石质量(1490kg/m3)。粗骨料用量过少,灰骨比过大,会使部分粗骨料颗粒漂浮在水泥浆中,影响无砂透水混凝土孔隙率和透水性能。(3)确定水泥用量 参照规范的经验数值250~350kg/m3。选择3个水泥用量水平270、300、330。 (4)试拌成型 将碎石和水泥装入搅拌机,边加水边搅拌,搅拌时间应比普通混凝土延长,本文中搅拌时间4min,以便水泥浆均匀包裹在骨料表面。 3、试验方法 (1)透水系数:采用定水位透水系数测定方法。渗透系数按照以下经验公式计算,精确至1cm/s。

高性能混凝土---试验知识

第一部分 高性能砼试验知识 目 录 1高性能砼的定义 1 2高性能砼的原材料 3 2.1水泥 3 2.2粉煤灰 5 2.3细骨料 6 2.4粗骨料 9 2.5外加剂 12 2.6水 14 3高性能砼配合比的选定依据 15 3.1 砼的强度等级 15 3.2砼耐久性设计参数 15 3.3砼中氯离子 20 4砼配合比换算 20 5施工中砼的检测项目及检验批次控制 21 5.1塌落度 21 5.2含气量 21 5.3施工质量控制 21 第一部分 高性能混凝土试验知识 1 高性能混凝土的定义 高性能混凝土一词是从英文High (高级的、高科技的) Performance (履行、演出、行为) Concrete (混凝土)翻译过来的,简称(HPC)。对于高性能混凝土在不同的国家、不同学者依照各自的认识、实践、应用范围和目的的要求的差异,对高性能混凝土有不同的定义和解释。 美国国家标准与技术研究所(NIST )与美国混凝土协会(ACI )于1990年5月召开的讨论会上提出:高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制的,便于浇捣,不离析,力学性能稳定,早期强度高,具有韧性和体积稳定性能的耐久性的混凝土,特别适用于高层建筑,桥梁以及暴露在严酷环境中的建筑结构。 1992年法国Malier Y A 认为:高性能混凝土的特点在于有良好的工作性、高的强度和早期强度、工程经济性高和耐久性,特别适用于桥梁、港工、核反应堆以及高速公路等重要的混凝土建筑结构。 对于不同的工程和应用部门对于高性能混凝土也有不同的要求,会提出不同的性能指标。例如: 1.1 公路工程应满足下列要求 A 水胶比不大于0.35; B 耐久性指数大于80% C 4h 抗压强度高于17.2Mpa,或24h 抗压强度高于34.5Mpa,或28d 抗压强度高于68.9Mpa 。 1.2 桥梁工程 A 水胶比不大于0.4; B 强度高于41.4Mpa;

碎石或卵石压碎值指标试验

检验名称:碎石或卵石压碎值指标试验. 试验依据:JGJ52-2006《普通混凝土用砂、石质量及检验方法标准》 主要仪器:1、压力试验机(荷载300KN); 2、压碎指标测定仪 3、称-称量5Kg,感量5g; 4、试验筛-筛孔公称直径为10.0mm和20.0mm的方孔筛各 一只。 注意事项:1、标准试样一律采用公称粒级为10.0~20.0mm的颗粒,并 在风干状态下进行试验。 2、对多种岩石组成的卵石,当其公称粒径大于20.0mm颗粒 的岩石分与10.0~20.0mm粒级有显著差异时,应将大于 20.0mm的颗粒应经人工破碎后,筛取10.0mm以下及 20.0mm标准粒级另外进行压碎值指标试验 3、将缩分后的样品先筛除试样中的公儿粒径10.0mm以下 及20.0mm的颗粒。再用针状和片状规准仪剔除针状和片状颗粒,然后称取每份3Kg的试样3份备用。 4、试验完毕必须清理试验现场。 试验步骤:1、置圆筒于底盘上,取试样一份,分二层装入圆筒。每装 完一层试样后,在底盘下面垫放一直径为10mm的圆钢筋,将筒按信,左右交替颠击地面各25下。第二层颠实后,试样表面距盘底的高度应控制为100mm左右。 2、整平筒内试样表面,把加压头装好(注意应使加压头保

持平衡),放到试验机上在160~300s内均匀地加荷到200KN,稳定5s,然后卸荷,取出测定筒。倒出筒中的试样并称其质量(m0),用公称直径为2.50mm的方孔筛筛除被压碎的细粒,称量剩留在筛上的试样质量(m1)。 计算方式:碎石的压碎值指标按下式计算;精确至1% δa=m0-m1/m0×100% 式中 δa-压碎指标值(%); m0-试样的质量(g); m1-压碎试验后筛余的试样质量(g); 试验结果:以三次试验结果的算术平均值作为压碎指标测定值。

透水混凝土配比公式完整版

肿SyS昨O^C

透水混凝土配合比设计方法 3材料⑷ 原材料 水泥应釆用强度等级不低于级的硅酸盐水泥或普通硅酸盐水泥,质量应符合现行国家标准《通用硅酸盐水泥》GB 175的要求。不同等级、厂牌、品种、出厂日期的水泥不得混存、混用。 外加剂应符合现行国家标准《混凝土外加剂》GB 8076的规定。 透水混凝土采用的增强料按表选用。 透水混凝土粗骨料 表粗骨料的性能指标 细骨料

植生透水混凝土性能符合发下表 表路用透水混凝土的性能

透水水泥混凝土配合比 透水水泥混凝土的配制强度,宜符合现行业标准《普通混凝土配合比设计规程》JGJ 53的规 定。强度怎么计算? 透水水泥混凝土配合比设计步骤宜符合一列规定: 1单位体积粗骨料用量应按下式计算确定: 式中zz∕-lm 3透水水泥混凝土中粗骨料质量,kg,取值 瓦一粗骨料紧密堆积密度,kg/m 3; 。一粗骨料用量修正系数, 2胶结料浆体体积 ①当忙砂!时,胶结浆体体积按下式计算确定: 式中Ji-Im 3透水水泥混凝土中胶结料浆体体积(水、砂与胶凝材料的混合物的浆体体积),m 3; 乙一 粗骨料紧密堆积空隙率,%; 厲一粗骨料表观密度,kg/m 3; 血L 设计孔隙率,%,可选10%X 15%、20%、25%、30%o ②当■时,胶结料体积按下式计算确定: 式中K-Iln 3透水水泥混凝土中砂的体积,m 3; PZ —砂的表观密度,kg/m 3; 血L 设计孔隙率,%,可选10%^20% (路用透水磴) %"30% (植生透水磴)。 3水胶比尽B 应经试验确定,水胶比选择控制范围为~()|。 4单位体积水泥用量应按下式确定: 式中3透水水泥混凝土中胶凝材料(水泥+掺合料)质量,kg∕m 3,植生混凝土约 150~250kg,路基或路面透水混凝土约300kg'450kg∣; Za=-Im 3透水水泥混凝土中水泥质量,kg : Λ?-Im 3透水水泥混凝土中掺合料质量,kg ; ZBr-Im 3透水水泥混凝土中水的质量,kg : 1300 kg ?1500 kg 皿一砂的质量, 仗一砂率,在 范圉内选定;

机制砂高性能混凝土在贵广高铁的应用实践

机制砂高性能混凝土在 贵广高铁的应用实践 曾军试验室主任 中铁二局一公司贵广高铁一项目部 摘要:就地取材用洞渣生产优质机制砂,碎石,用25% 95级矿微粉,25%Ⅱ级粉煤灰50% 42.5 P.O水泥,掺聚羧酸减水剂,配制C20-C40等级混凝土,用水量为150-160 kg/m3,,水胶比0.5-0.38,总胶凝材料为300-408,设计选定配合比,加上强有力的施工管理,使混凝土结构高性能化,满足100年耐久性技术标准要求。 关键词:技术条件、机制砂、水洗、配合比成分、耐久性 一、引言 混凝土是工程建设最主要、用量最多的工程材料,混凝土的耐久性直接关系到工程结构物的使用寿命,是关系着国家建设千秋功业的大事。 近代混凝土应用技术经历着许多挫折和变革,挫折反应在不少混凝土结构是不耐久的,设计使用寿命为50年,而在严酷的条件下经20年、10余年或更短的时间就劣化、破坏,需要维修、加固,甚至拆除重建,造成巨大的浪费和环境压力,挫折促使混凝土工作者、建造师们在普通混凝土基础上研究、发展高性能混凝土技术,使之成为混凝土技术发展的主要方向。 铁道部从80年代末立项研究混凝土劣化,历经高强混凝土研究阶段,高性能混凝土研究和应用阶段,特别是经过青藏铁路的工程实践,对高性能混凝土的推广应用有较为明确的认识。强调高性能是与耐久性相关的,高铁混凝土工程必须将耐久性放在首位,无论混凝土强度等级高低,都应满足高性能混凝土技术条件,达到耐久性指标。 二、工程概况 贵广高铁设计行车速度250km/h(预留进一步提速条件),设计使用年限100年。中铁二局一项目部管段线路全长36.39km,共有桥梁工程9301m/37座,其中特大桥4861.6m/6座,隧道21017m/15座,其中平寨隧道7. 1km,太阳庄隧道4. 5km,且为一级风险隧道。该管段桥、隧相连工程艰巨,混凝土数量大,仅高性能砼一项就达105万方。管段内分设八个施工队,建9个搅拌站利用隧道出碴或就近建砂石场制备砂、碎石,配制机制砂高性能混凝土。 三、混凝土技术条件及基本要求 1、混凝土强度满足设计要求

J66-粗骨料的作用及压碎指标值检测

三、混凝土生产教学案例 (一)粗骨料的作用及压碎指标值检测 2.相关知识点 ⑴砂、石检测一般规定

①使用单位应按砂或石的同产地同规格分批验收。采用大型工具(如火车、货船、汽车)运输的,以400m3或600t 为一验收批。采用小型工具(如拖拉机等)运输的,应以200m3或300t 为一验收批。不足上述数量者,应按-验收批进行验收。每验收批砂石至少应进行细度模数、颗粒级配、含泥量、泥块含量检验。对于碎石或卵石,还应检验针片状颗粒含量;对于海砂或有氯离子污染的砂,还应检验其氯离子含量;对于海砂,还应检验贝壳含量;对于人工砂及混合砂,还应检验石粉含量。对于重要工程或特殊工程,应根据工程要求,增加检测项目。对其它指标的合格性有怀疑时,应予以检验。 ②当砂或石的质量比较稳定、进料量又较大时,可以1000t为一验收批。 ③当使用新产源的砂或石时,供货单位应按JGJ52-2006标准第3章的质量要求进行全面的检验。 ④每验收批取样方法应按下列规定执行:在料堆上取样时,取样部位应均匀分布。取样前先将取样部位表层铲除。然后由各部位抽取大致相等的砂共8 份,石子为16份,组成各自一组样品;从皮带运输机上取样时,应在皮带运输机机尾的出料处用接料器定时抽取砂 4 份、石8份组各自一组样品;从火车、汽车、货船上取样时,应从不同部位和深度抽取大致相等的砂8 份,石16份组成各自一组样品。 ⑤除筛分析处,当其余检验项目存在不合格项时,应加倍进行复验。当复验仍有一项不满足标准要求时,应按不合格品处理。 ⑵粗骨料的作用 粗骨料是混凝土的主要成分,占混凝土的体积含量的50%以上,在混凝土中占有很重要的地位。从普通混凝土与高强混凝土断裂面可见,普通混凝土断裂处基本发生在水泥浆与粗骨料的交界面,是水泥浆与粗骨料的界面和砂浆本身的强度控制混凝土的断裂,粗骨料的抗压强度对普通混凝土的断裂并没有什么影响。而高强混凝土则不同,由于水泥浆与粗骨料的界面和砂浆本身的强度很高,断裂处往往贯穿于粗骨料中间,因此粗骨料的抗压强度对高强混凝土强度

混凝土配合比

混凝土配合比 轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。轻混凝土的主要特点为: 1.表观密度小。轻混凝土与普通混凝土相比,其表观密度一般可减小1/4~3/4,使上部结构的自重明显减轻,从而显著地减少地基处理费用,并且可减小柱子的截面尺寸。又由于构件自重产生的恒载减小,因此可减少梁板的钢筋用量。此外,还可降低材料运输费用,加快施工进度。 2.保温性能良好。材料的表观密度是决定其导热系数的最主要因素,因此轻混凝土通常具有良好的保温性能,降低建筑物使用能耗。 3.耐火性能良好。轻混凝土具有保温性能好、热膨胀系数小等特点,遇火强度损失小,故特别适用于耐火等级要求高的高层建筑和工业建筑。 4.力学性能良好。轻混凝土的弹性模量较小、受力变形较大,抗裂性较好,能有效吸收地震能,提高建筑物的抗震能力,故适用于有抗震要求的建筑。 5.易于加工。轻混凝土中,尤其是多孔混凝土,易于打入钉子和进行锯切加工。这对于施工中固定门窗框、安装管道和电线等带来很大方便。 轻混凝土在主体结构的中应用尚不多,主要原因是价格较高。但是,若对建筑物进行综合经济分析,则可收到显著的技术和经济效益,尤其是考虑建筑物使用阶段的节能效益,其技术经济效益更佳。 一、轻骨料混凝土 用轻粗骨料、轻细骨料(或普通砂)和水泥配制而成的混凝土,其干表观密度不大于1950kg/m3,称为轻骨料混凝土。当粗细骨料均为轻骨料时,称为全轻混凝土;当细骨料为普通砂时,称砂轻混凝土。 (一)轻骨料的种类及技术性质 1.轻骨料的种类。凡是骨料粒径为5mm以上,堆积密度小于1000kg/m3的轻质骨料,称为轻粗骨料。粒径小于5mm,堆积密度小于1200kg/m3的轻质骨料,称为轻细骨料。 轻骨料按来源不同分为三类:①天然轻骨料(如浮石、火山渣及轻砂等);②工业废料轻骨料(如粉煤灰陶粒、膨胀矿渣、自燃煤矸石等);③人造轻骨料(如膨胀珍珠岩、页岩陶粒、粘土陶粒等)。 2.轻骨料的技术性质。轻骨料的技术性质主要有松堆密度、强度、颗粒级配和吸水率等,此外,还有耐久性、体积安定性、有害成分含量等。

机制砂高性能混凝土在桥梁工程中的应用

机制砂高性能混凝土在桥梁工程中的应用 发表时间:2019-04-28T09:57:27.140Z 来源:《基层建设》2019年第6期作者:李卫华 [导读] 摘要:近年来,伴随我国建筑工程行业的不断发展,工程建设中对于各类资源的需求量也在不断增加,过度的开采和使用使得天然砂的数量和质量都在下降。 浙江省隧道工程集团有限公司浙江杭州 310000 摘要:近年来,伴随我国建筑工程行业的不断发展,工程建设中对于各类资源的需求量也在不断增加,过度的开采和使用使得天然砂的数量和质量都在下降。同时,一些地区的政府也提出了天然砂的限采规定,这就使得天然砂与混凝土用砂的供需矛盾进一步加剧。为了有效解决这一情况,机制砂应运而生,其在高性能混凝土中的应用进一步提升了混凝土的性能,同时也减少了对天然砂的开采。鉴于此,文章对机制砂高性能混凝土在桥梁工程中的应用进行了研究,以供参考。 关键词:机制砂;高性能混凝土;桥梁工程;应用措施 1机制砂高性能混凝土的性能分析 1.1力学性能 混凝土的基本力学性能主要表现在抗弯曲力、抗拉力、粘结力度以及抗折断性等,在混凝土中添加机制砂可以有效提升混凝土的力学性能,因为机制砂多有岩石破碎而成,与天然砂相比,其质地更为坚硬,且机制砂的表面更加粗糙、棱角较多,对于提升界面的粘结力作用明显。除此之外,机制砂所含的石粉也可以对混凝土中的空隙进行有效改善,从而进一步提升混凝土的力学性能[1]。 1.2耐久性 耐久性指的是混凝土在使用过程中,抵抗特殊气候和环境腐蚀以及荷载压力的性能。混凝土的空隙与混凝土自身的抗冻结性能和抗渗性能有着直接的关系,混凝土的密实度高则空隙也相对较小,其抗渗和抗冻结能力也就相对较强。在混凝土中应用机制砂可以有效减少混凝土内部的空隙,提升混凝土整体密实性,从而使混凝土的抗渗、抗冰冻和抗腐蚀性能得到有效提升。通过相关实验的对比,机制砂高性能混凝土的耐久性较普通混凝土而言,高出了30%~50%左右。 2机制砂高性能混凝土在桥梁工程中的应用 2.1配合比设计要点 2.1.1高性能机制砂混凝土配合比设计 配合比计算结合清华大学矿渣硅灰高强混凝土配置方法,通过更改和修改部分假设参数来实现混凝土的配合比计算。 (1)配合比参数假设:单位用水量170kg;混凝土含气量1.0%;水泥:掺和料体积比=3:1;硅灰:矿粉体积比=2:3;机制砂砂率0.39。 (2)配合比计算:水泥质量432kg/m3;矿粉的质量70kg/m3;硅灰质量40kg/m3。细骨料用量682kg/m3;粗骨料用量1080kg/m3。得到高性能机制砂混凝土的初始配比。水泥:砂:碎石:矿粉:硅灰:水=432:682:1080:70:40:170。根据配合比的计算结果,按 GB/T50080—2002测试方法和L型流动仪进行适配混凝土性能测评[2]。 2.1.2试配和调整 配合比的调整关键点是减水剂的用量减水剂用量过低,混凝土的工作性能较差,过高则容易出现离析、泌水等现象表1为经过重复配合比调整后的高性能混凝土各项性能表。 对表1各性能参数分析可知,在试验的前三次,随减水剂的增加,混凝土的流动速度和坍落度和扩展度都在增加;从第四次开始,混凝土开始出现泌水现象,同时坍落度和扩展度还是保持一定增加;第五次试验开始提高砂率,有效的缓解了泌水现象,混凝土坍落度和扩展度都未再出现增长,但混凝土流动速度出现下降,减水剂饱和点保持在1.9%左右,若再提高减水剂的掺加量容易造成离析危险。从五次试验中可以看出,第三次试验配比所得到的混凝土性能最佳。因此,本文中根据砂:碎石:矿粉:硅灰:水:减水剂=432:682:1080:70:40:170:10.3混凝土配比试验。 2.3机制砂高性能混凝土浇筑要点 在桥梁工程的混凝土浇筑环节,主要包括摊铺、振捣和修整等工序。混凝土的浇筑质量也会直接影响到桥梁工程的建设质量和使用寿命,所以施工企业在进行混凝土浇筑时,应严格遵照施工规范进行。混凝土的浇筑作业应严格控制高性能混凝土的入模温度,同时还要控制混凝土的坍落度和含气量。浇筑过程中,通常采用分层浇筑的方法,机制砂高性能混凝土的摊铺厚度不易超过600mm,此外,分层浇筑的间隔时间也要进行合理控制。在振捣环节需要注意的是,机制砂高性能混凝土的流动性较大,在振捣环节需要应用高频振捣棒或附着式平板振捣器等设备配合作业。振捣过程中,振捣器插入深度不能大于50mm,振捣作业应保持均匀,尽可能避免振捣设备与模板或钢筋发生碰撞,通常情况下,混凝土表面没有浮浆或气泡时,方可停止振捣作业[3]。 2.4高性能新型混凝土的养护 在桥梁工程混凝土施工中,对于混凝土浇筑完成后的养护工作也是保证混凝土施工质量的重要环节,所以,桥梁工程的施工企业应对高性能混凝土的养护工作引起足够重视。在桥梁施工中,低温养护和水养护是较为常见的养护方式。适宜的养护措施可以有效防止机制砂高性能混凝土出现过开裂或是过度硬化的现象。在开展养护工作时,施工人员应注意以下几方面内容:首先,要科学安排混凝土养护时间,通常情况下是在混凝土浇筑完成之后的10h进行喷水养护,这样可以保证混凝土的表面湿度,防止混凝土裂缝的出现[4];第二,对于混凝土的养护要做到持续性,同时还要根据实际的天气情况及时调整养护方法,例如在气温较低的时候,应对混凝土表面进行覆盖,以防止因温差变化产生裂缝。 结语 综上所述,伴随我国城市化进程的不断深化,各地区的路桥工程建设数量也有了明显增加,同时,人们对于路桥工程的施工质量也提

机制砂的压碎指标对混凝土抗压强度的影响【最新版】

机制砂的压碎指标对混凝土抗压强度的影响 机制砂是由机械破碎、筛分制成的,粒径小于4.75mm的岩石颗粒,但不包括软质岩、风化岩石的颗粒。机制砂的坚固性采用压碎指标法进行试验,是为机制砂的压碎指标。 《建筑用砂》GB/T14684-2011(以下简称国标)规定: 说明:Ⅰ类(20%)宜用于强度等级大于C60的混凝土;Ⅱ类(25%)宜用于强度等级C30~C60及抗冻、抗渗或其他要求的混凝土;Ⅲ类(30%)宜用于强度等级小于C30的混凝土。《普通混凝土用砂、石质量及检验方法标准》JGJ52-2006规定:机制砂的总压碎指标值应小于30%。那么,机制砂的压碎指标对混凝土的抗压强度有着怎样的影响呢?我们试验如下: 1.试验原材料 水泥:海鑫P·S32.5矿渣硅酸盐水泥。矿粉:彤阳S105级矿渣粉。 粉煤灰:河津Ⅱ级粉煤灰。 砂1:河底机制砂,Ⅱ区中砂,颗粒级配基本符合规定;石粉含

量:4.0%;压碎指标值:17.9%(Ⅰ类砂);总压碎指标值:14.7%。 砂2:裴社机制砂,Ⅱ区中砂,颗粒级配基本符合规定;石粉含量:3.8%;压碎指标值:22.7%(Ⅱ类砂);总压碎指标值:20.3%。 砂3:侯马机制砂,Ⅱ区中砂,颖粒级配基本符合规定;石粉含量:2.6%;压碎指标值:28.5%(Ⅲ类砂);总压碎指标值:22.1%。 碎石:岭西东碎石,5mm~31.5mm连续级配。外加剂:泵送剂; 减水率:20%以上;凝结时间:12小时~14小时。 2.试验及试验结果。 配合比(1~6)如下:分别选用砂1、砂2、砂3,试验结果如下:

3.试验结论 对C60等高强度等级的混凝土来说,随着所用机制砂压碎指标值的降低,混凝土的28天抗压强度值亦相应降低。配合比1和配合比3的28天抗压强度值相差竟然高达5.4MPa。 对C30等低强度等级的混凝土来说,随着所用机制砂压碎指标值的降低,混凝土的28天抗压强度值无明显变化。配合比4和配合比6的28天抗压强度值相差仅为0.7Mpa。 《普通混凝土用砂、石质量及检验方法标准》条文说明有:“经试验证明,中、低强度等级混凝土的强度不受压碎指标的影响,机制砂的压碎指标对高强度等级混凝土抗冻性无显著影响,但导致耐磨性明显下降,因此将压碎指标值定为30%。” “规定采用4个粒级的筛分分别进行压碎,然后将四级砂样进行总的压碎指标值计算。试验证明5mm~10mm颗粒级的压碎指标比其他粒级要明显大,总的趋势是粒径越大压碎指标越小。 鉴于砂的定义,公称粒径4.75mm以下的颗粒为砂,所以取公称粒径 4.75mm以下的颗粒分成公称粒径 4.75mm~2.36mm、2.36mm~1.18mm、1.18mm~600μm、600μm~300μm4个粒级。”

浅谈C20无砂透水混凝土配合比设计以及在预拌商品混凝土企业生产应

浅谈C20无砂透水混凝土配合比设计以及在预拌商品混凝土企业生产应用与行业现状分析 发表时间:2017-07-18T14:15:59.673Z 来源:《建筑知识》2017年16期作者:位森[导读] 本文通过无砂透水混凝土配合比工程案例分析,介绍了无砂透水混凝土的原材料选取,设计和步骤。 (河南省周口项城市鑫鼎商砼有限公司河南周口 466200)【摘要】本文通过无砂透水混凝土配合比工程案例分析,介绍了无砂透水混凝土的原材料选取,设计和步骤,在商品混凝土企业中生产运输该注意的事项。仅供同行参考。【关键词】无砂透水混凝土;配合比合计;现状分析;生产运输;施工养护【中图分类号】TU528 【文献标识码】A 【文章编号】1002-8544(2017)16-0026-03 1.前言 住建部2014年10月编制印发《海绵城市建设技术指南》提出六字箴言“渗”“滞”“蓄”“净”“用”“排”据海西晨报记者报道,厦门建设海绵城市获国家连续三年每年4亿专项补助资金。计划在海沧马銮湾片区以及翔安新城南部区域试点建设“城市海绵”让城市道路拥有像海绵一样的蓄水能力,并强化城市渗水能力,净化城市水资源。传统的城市规划及设计习惯于将地面降雨尽快排入城市雨水管网。城市道路也几乎被水泥、柏油、花岗岩、大理石、釉面砖等不透水的地面所覆盖。不仅阻隔了雨水向地下土壤的渗透,也极大的浪费了雨水资源。 行业现状分析: 无砂透水混凝土属于特种混凝土,传统施工都是以现场搅拌形式进行。随着我国预拌混凝土十几年的快速发展工地现场搅拌的现象也几乎消失。住建部于2015年新颁布实施的建筑业企业资质标准规定,预拌商品混凝土不在分等级,承包工程范围从原来的可以生产C60以下强度等级的混凝土,放宽到可以生产各种强度等级的混凝土和特种混凝土。这也预示着无砂透水混凝土作为特制品在预拌商品混凝土企业也可作为一种新的产品对市场进行销售。 预拌商品混凝土行业由于技术门槛相对较低,且生产没有特殊性,属于非常简单的加工。虽然前期投入资金较大,但可以通过分期付款购买设备,而且建设周期也短,一般建一条生产线2-3月,其它行业的投资者很容易进入。我市属于河南周口地区的一个县级市级别城市,近几年来,预拌商品混凝土企业出现“井喷”势头,企业数量从2010年的一家到2016年底迅速增长到近20家。其中规模较大的离市区都比较近有7家,其余大都分布在省道及106国道旁和各个乡镇。企业为了争夺工程项目,不惜使用低价策略,“打价格战”。一个工地多家竞标,竞相压低竞标价格。恶劣的竞争直接降低了企业的利润,影响了企业的健康稳定发展。针对预拌商品混凝土企业在发展中存在的问题以及行业所面临的市场行情,企业想长期稳定发展,占领市场,掌握市场主动权,就必须不断地开发新的产品,面对市场需求大力推广特制品混凝土。 2.工程实例 此次工程位于我市城南新区,距离搅拌站7公里约15~20分钟车程。设计要求基层为C20透水混凝土,面层为彩色透水砖。透水系数≥5mm/s设计孔隙率≥20%。全长3公里,宽7.5米,厚度15cm需用透水混凝土约3000立方。 3.无砂透水混凝土特点 无砂透水混凝土是指无细骨料混凝土,按其粗骨料的种类可分为普通无砂透水混凝土和轻骨料无砂透水混凝土两类。普通无砂透水混凝土是用碎石、卵石或重矿渣等配置而成。宜选用单粒径。一般用作透水层。轻骨料无砂透水混凝土是用陶粒、浮石等配置而成。有时为了提高强度也可掺入少量细骨料和增强料。普通无砂透水混凝土表观密度在1500~1900kg/m3之间,抗压强度为3.5~35MPa。它的导热系数小,保温性能较好,收缩一般比普通混凝土小30%~50%,抗冻性良好。 4.原材料的选取 4.1 水泥 无砂透水混凝土的最重要的环节就是水泥浆体与粗骨料的粘结强度。本次选用的是强度较高,性能较平稳的P.O42.5中联水泥,密度3100kg/m3。 4.2 粗骨料 本次工程设计要求透水层为C20混凝土,面层为彩色透水砖。为了达到更好的透水效果选取单一粒径的碎石。产地为驻马店确山,压碎值为8%,针片状颗粒含量为6%,含泥量为0.9%,表观密度为2620kg/m3紧密堆积密度为1480kg/m3紧密堆积孔隙率为44%。 4.3 增强料 由于骨料和水泥的热胀冷缩比不同,透水混凝土由于变形可能会出现裂缝,造成道路断裂损坏。为提高透水混凝土抗冻性和弯拉性能在混凝土中掺入适量增强料。它会与其它物料发生系列物理和化学反应生成钙矾石针状结晶体,并相互连接成网络,把粗骨料包裹其中,从而固结成整体板块,大幅提高了透水混凝土的强度和粘结力。本次选用的是江苏同基环保材料有限公司TJG-N型透水道路增强固化剂。 4.4 外加剂 因本工程在4月份施工日最高气温以达到20度,所以选用减水率较高,质量较稳定的瑞泰聚羧酸系高性能HPWR-R缓凝型外加剂,在掺量1.8%的情况下减水率达到26%。 5.无砂透水混凝土配合比设计 5.1 计算配置强度 (依据JGJ55-2011规范要求当强度等级≦C20时选取标准差为4MPa) Fcu.o=fcu.k+1.645σ =20+1.645×4 =26.6(MPa) 5.2 单位体积粗集料用量 WG=a·ρG =0.98×1480 =1450kg/m3

6-从2017年砂石价格飙升看机制砂和人工砂的优劣

从2017年砂石价格飙升看机制砂和人工砂的优劣 2017年3月,长江流域河砂产地上船价一个月内四连涨,给砂石骨料行业掀起了不小的震动。 以黄浦江龙吴路靠岸砂价为例,2016年4月5日龙吴路靠岸中砂价格为50元/吨,到2017年2月底,龙吴路河砂到岸价已达65元左右,而根据最新报价,3月13日粗砂报价已经达到90元/吨,在短短两星期时间上涨近50%,接近2015年平均价格的3倍! 一方面,四个月的统一禁渔期制度开始实施,多地禁渔期严禁开采河砂,另一方面,年后众多大型基建项目扎堆开工,河砂供不应求,成为炙手可热的大宗商品,接近2015年平均价格的3倍。随着水利部加大对河砂开采的打击力度,河砂开采限制重重,天然砂有市无货。在这一背景下,机制砂市场作为其替代品,价格从30多元迅速涨到了超60元/吨。砂石市场的这一骤变在传达着一个很强烈的讯号——高品质机制砂替代天然砂是未来砂石行业发展不可阻挡的趋势。 火热的市场背后,机制砂相对天然砂有着诸多优势,替代天然砂的地位有着许多必然性: 首先,相对天然来说,机制砂具有原料廉价易得、来源广泛的优势 随着基础设施建设的日益发展,特别是近十年超常规、跨越式发展,我国很多地区有限的经过几十万年形成的天然砂资源几乎用尽,影响了建设工程的进展,其不可再生性导致天然砂的成为了稀缺资源,价格一路走高。而机制砂则不存在不可再生性,其可以以石料厂废弃石屑、矿山尾矿、建筑垃圾等为原料,通过高品质机制砂设备加工成优质机制砂,且这些原材料价格都极其低廉。 其次,相对天然砂,机制砂更复合越来越高的混凝土技术标准 随着混凝土技术的迅速发展,高性能混凝土和结构性高强度混凝土的耐久性等综合性能对砂石骨料的质量要求越来越高,要求骨料具有稳定的质量,良好的级配和粒型。而能满足其要求的天然砂数量越来越少,甚至没有,严重的制约了我国高性能混凝土的发展,影响了混凝土的耐久性,进一步造成能源和资源的浪费。 而机制砂是人为选定的原料,材质均一、稳定,矿物成分和化学成分与原料是一致的,没有天然砂那样复杂。砂粒清洁,无泥质和其他有害杂质,性能稳定,粒度级配良好。机制砂一个细度模数,只对应一个级配,它的细度模数和单筛的筛余量成线性关系。只要通过测定,建立线性关系式,测一个单筛的筛余量,便可准确、快速地求出细度模数。这更有利于发展高性能混凝土。 最后,相对天然砂,机制砂更符合国家环保政策 在巨大经济利益的驱动下,过去10年里,天然砂存在严重乱采乱挖情况,改变了河道走向,影响河堤安全,破坏鱼类生存环境,影响防洪,污染地下水质,并影响景观。为了改变这一现状,政府先后出台了系列环保政策以改变这一情况。在2017年3月的两会上,环保部部长陈吉宁表示,今年环保部将继续加大执法力度,对环境违法行为零容忍,坚决治理大气、水、和土壤污染。可以预见,绿色环保产业在接下来将享受更多政策红利,而天然砂的开采将受到越来越严重的政策限制。

机制砂压碎指标

主要用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,是衡量石料力学性质的指标,以评定其在公路工程的适用性. 主要参数: 承压桶内径77㎜承压桶高度70㎜压头直径75㎜ T 0350--2005细集料压碎指标试验 1目的与适用范围 细集料压碎指标用于衡量细集料在逐渐增加的荷载下抵抗压碎的能力,以评定其在公路工程中的适用性。 2仪具与材料 (1)压力机:量程50kN~1000kN,示值相当误差2%,应能保持1kN/s的加荷速率。 (2)天平:感量不大于1g。 (3)标准筛。 (4)细集料压碎指标试模:由两端开口的钢制圆形试筒、加压块和底板组成,其形状和尺寸见图T0350-1,压头直径75㎜,金属筒试模内径77㎜,试模深70㎜。试筒内壁、加压头的底面及底板的上表面等与石料接触的表面都应进行热处理硬化,并保持光滑状态。 (5)金属捣棒:直径10㎜,长500㎜,一端加工成半球形。 3试验准备 3.1采用风干的细集料样品,置烘箱中于105℃±5℃条件下烘干至恒重,通常不超过4h,取出冷却至室温。后用 4.75㎜、2.36㎜至0.3㎜各档标准筛过筛,去除大于4.75㎜部分。分成4.75㎜~2.36㎜、2.36㎜~1.18㎜、1.18㎜~0.6㎜、0.6㎜~0.3㎜4组试样,各组取1000g备用。 图T0350-1 细集料压碎指标试模(尺寸单位:㎜) a)圆筒;b)底盘;c)加压头 3.2称取单粒级试样330g。准确至1g。将试样倒入已组装成的试样钢模中,使试样距底盘面的高度约为50㎜。整平钢模内试样表面,将加压头放人钢模内,转动1周。使其与试样均匀接触。 4试验步骤 4.1将装有试样的试模放到压力机上。注意使压头摆平,对中压板中心。 4.2开动压力机,均匀地施加荷载,以500N/s的速率,加压至25kN,稳压5s,以同样的速率卸荷。 4.3将试模从压力机上取下,取出试样,以该粒组的下限筛孔过筛(如对4.75㎜~2.36㎜以2.36㎜标准筛过筛)。称取试样的筛余量(m1)和通过量(m2),准确至1g。 5计算 按式(T0350-1)计算各组粒级细集料的压碎指标,精确至1%。 Yi= (T0350-1) 式中:Yi ——第i粒级细集料的压碎指标值(%); m1——试样的筛余量(g); m2——试样的通过量(g)。 6报告 6.1每组粒级的压碎指标值以3次试验结果的平均值表示,精确至1%。 6.2取最大单粒级压碎指标值作为该细集料的压碎指标值。

机制砂高性能混凝土的施工技术

机制砂高性能混凝土的施工技术 一、机制砂高性能土搅拌工艺 搅拌是指将两种或两种以上不同物料相互分散而达到均匀混合的过程。搅拌对于混凝土来说,除了将混凝土中各组分均匀混合,还起到一定的塑化、强化作用。 搅拌工艺要求搅拌站必须严格掌握混凝土材料配合比,并在搅拌机旁挂牌公布,便于检查。并在正式搅拌混凝土前,先调试设备,并进行混凝土首盘试拌。 搅拌混凝土前应严格测定粗细骨料的含水率,准确测定天气变化而引起的粗细骨料含水率的变化,以便及时调整施工配合比。一般情况下,含水率每班抽测2次,雨天应随时抽测,并按测定结果及时调整混凝土的配合比。 混凝土应充分搅拌,应使混凝土的各种组成材料混合均匀、颜色一致,搅拌时间应根据搅拌机的类型及混凝土拌合料和易性的不同而异,在实际生产过程中,应根据混凝土拌合料要求的均匀性、混凝土强度增长的效果及生产效率等因素,规定合适的时间。混凝土生产投料顺序为:混凝土原材料计量后,宜先向搅拌机投入细骨料,水泥和矿物掺合料,搅拌均匀后,加水并将其搅拌成砂浆,再向搅拌机投入粗骨料,充分搅拌后,再投人外加剂、,并搅拌均匀为止。自全部材料装入搅拌机开始搅拌起,至开始卸料时止,延续搅拌混凝土的最短时间应经过试验确定。搅拌掺用外加剂或矿物掺合料的混凝土时,搅拌时间应适当延长;当使用车运输混凝土时,可适当缩短搅拌时间,但不应少于2min;搅拌机装料数量不应大于搅拌机核定容量的80%;混凝土搅拌时间不宜过长,每一工作班至少应抽检2次。 化学外加剂可采用粉剂和液体外加剂,当采用液体外加剂时,应从混凝土用水量中扣除溶液中的水量;当采用粉剂时,应适当延长搅拌时间,延长时间不宜少于30s。 拌制第一盘混凝土时,可增加水泥和砂子用量10%,并保持水灰比不变,以便搅拌机挂浆。 机制砂高性能混凝土的拌制必须采用卧轴强制式搅拌机,要求计量准确,并且按照规定的投料顺序和搅拌程序进行。每次拌和量应在搅拌机最大容量的30%~90%,且不得少于0.03m3,总搅拌时间≥180s,实验室小搅拌机卸料后还需进行人工翻拌3遍,保证拌合物的均匀性,从生产各环节着手,消除高强混凝土工作性不稳定、强度离散较大的问题,具体按照拌制程序进行。 冬季和夏季高温施工时应对混凝土搅拌温度进行调整。混凝土冬期施工应优先选用强度等级较高的硅酸盐水泥和普通硅酸盐水泥,也可使用混凝土防冻剂或使用热搅拌混凝土。夏季高温施工应使用水化热较低、水化速度较慢的掺混合材的水泥,可掺入缓凝型减水剂、降低拌合

C无砂混凝土配合比设计说明书

C15无砂混凝土配合比设计说明书 一、使用部位:志丹东隧道治理工程隧道路面基层 二、设计依据: 1.JGJ55-2011《普通混凝土配合比设计规程》 2.JTG F60-2009《公路隧道施工技术规范》 3.JTG E42-2005《公路工程集料试验规程》 4.JTG E30-2005 《公路工程混凝土试验规程》 三、原材料选用: 水泥:铜川声威P.O42.5水泥 碎石:山西河津文星石料场10-20mm碎石 水:孙岔村饮用水 四、配合比设计原则 根据已知材料性能及所需强度等级和密度,在确保混凝土稠度的前提下,以采用最小的水泥用量为原则,进行配合比设计。大孔混凝土单位体积的质量应为1m3紧装状态的集料密度和单方水泥用量及水泥化水质量总和。 五、设计步骤及计算公式(设计强度要求为C15Mpa)

1、计算试配强度fcu.o=fch/1-1645*Cv=15/1-1.645*15%=19.9Mpa Cv施工水平应根据施工单位以往积累的数据分析确定,若没有这方面的数据,也可根据施工单位管理水平从表中查找。 2、根据配制强度:估算出每m3无砂混凝土所需水泥用量 Mco=69.36+784.93*fcu.o/fce =69.36+784.93*19.9/(1.15*42.5)=388kg/m3 通常水泥用量在350-400kg/m3范围内,根据以往施工经验值选定为380kg/m3。3、确定水泥用量,估算其合理水灰比 w/c=0.58-0.000715*mco=0.58-0.000715*380=0.305 采用水灰比为0.305 4、依上述水灰比,求其用水量 mwo=w/c*mco=0.305*380=116kg/m3 5、每m3无砂混凝土的碎石,经检测为1509kg/m3 六、试拌,调整工作性

相关文档
最新文档