电源设计模块芯片资料

合集下载

DCDC模块电源的反馈电路和设计方法

DCDC模块电源的反馈电路和设计方法

DCDC模块电源的反馈电路和设计方法1.设定输出电压:根据所需的应用要求,确定DCDC模块的输出电压。

这个输出电压将是反馈电路中的一个参考值。

2.选择参考源:选择一个合适的参考源来提供稳定的参考电压。

这可以是一个精确的参考源芯片,如LM4140或ADR5040,或者是使用电阻分压电路来生成基准电压。

3.设计误差放大器:误差放大器是反馈电路的核心部分,它将输出电压与参考电压进行比较,并生成误差信号。

这个误差信号将用于调整模块的控制电路。

误差放大器通常使用运算放大器来实现,可以使用标准的运算放大器芯片,如LM358或OPA3414.设计比较器:比较器是用于将输出电压与参考电压进行比较的电路。

它生成一个逻辑信号,表示输出电压是否高于或低于参考电压。

比较器可以使用专门的比较器芯片,如LM393或LM311,或者使用运算放大器来实现。

5.设计控制电路:控制电路根据误差信号和比较器的输出来调整开关管的导通时间。

控制电路可以使用数字控制器、模拟控制器或专门的控制芯片来实现。

这个控制电路应该能够根据误差信号的大小和方向来调整开关管的导通时间。

6.添加过压和欠压保护:为了保护DCDC模块和负载,可以添加过压和欠压保护电路。

这些保护电路可以根据输出电压的水平来触发开关,从而保护模块和负载。

7.优化滤波和稳压电容:为了提高稳定性和滤波效果,可以在输入和输出端添加滤波电容。

这些电容可以帮助去除电源线上的噪音和纹波,并提供稳定的输出电压。

总结起来,设计DCDC模块的反馈电路需要考虑输出电压、参考源、误差放大器、比较器、控制电路、过压和欠压保护、滤波电容等各个方面。

合理的设计反馈电路可以实现对输出电压的精确控制,并提供稳定可靠的电源。

无线传感器网络SoC芯片电源模块LDO的设计

无线传感器网络SoC芯片电源模块LDO的设计
中 图分 类 号 : N T4 文献标志码 : B
De i n o sg fLDO o SN o s s e f rW S C y t m
W ANG i g Pn
( c ol f l t ncId s n nier g J j n nvr t, i i g3 2 0 , h a S h o o Ee r i n ut a dE g ei , ui gU iesy J j n 3 0 5 C i ) co y n n i a i ua n
摘 要 : 用 S I . 8 m C O 采 M C0 1 l M S工 艺 , 计 了一 种 应 用 于 无 线传 感 器 网络 S C芯 片 中射 频 收 发 机 模 块 的 L O。 有低 温 度 系 x 设 o D 具
数 , 静态 电流和高 电源电压抑 制 比。其电源 电压抑 制 比大于 5 d 低 8 B在 t H 。在 一 0一 +8 ℃ 的范 围内 。 度 系数 为 6 kz 4 5 温 .
8 pm 7 p /℃ 。 电源 电压 在 2 0— . V的 变 化 范 围 内 。D 能 提供 18 . 36 LO . V的 稳 定 输 出 电 压 。 0 A 的输 出 电 流 。 芯 片 面 积 为 0 l m O .
18 m , 6 m 最大静态电流为 2 19 。测试 结果表明带隙基准 的输 出电压为 0 4 9 L O的输出电压是 180 。 2 . A .2 V,D .5 V 关键词 : 无线传感器网络 SC; o 线性降压变换器 ; 误差放大器 ; 带隙基准源
e u pyfo 2 0 t . V, a r vd t be o t u otg . V, n up tc re t1 0 r p l r m . o 3 6 ic n p o ie asa l up t l e 1 8 a d o t u u r n 0 mA.T e L s t v a h DO hp a e c i ra i s a o t 1 8 mm a d ma i u q is e tc re ti 2 . p b u 6 0. . n xm m ue c n u rn s2 1 9 A.Th a u e e ut h w h tt e o tu fb d a e me s rd r s l s o t a h up to an g p s rf rn e i . 2 V.a d ta fL eee c s0 4 9 n h t DO s 1 8 0 o i . 5 V.

电源管理模块功能及原理

电源管理模块功能及原理

电源管理模块功能及原理摘要:在分析了锂离子电池的充电过程与bqTINY-II系列电源管理芯片功能特点的基础上,设计出了一种以bq24020芯片为核心的电源管理模块,并全面介绍了该模块的功能与工作原理。

关键词:锂电池;USB电源;恒流充电;恒压充电0 引言便携式电子产品以电池作为电源。

随着便携式产品的迅猛进展,各类电池的用量大增,同时开发出许多新型电池。

近年来开发的高能量密度的锂离子电池具有体积小、容量大、待机时间长等特性,非常适合便携式系统的应用。

在便携式电子产品的设计过程中,其电源管理模块的设计是十分重要的,由于这关系到整个系统工作的稳固性、持续性及快速恢复的能力问题。

特别是在使用锂电池作为系统电源时,其电源管理模块的作用更加突现。

本文针对锂电池充电的特点,介绍了一种基于bqTINY-II的便携式电子心音检测仪电源管理模块解决方案。

1 锂离子电池充电过程锂系列(锂离子或者锂聚合物)电池的充电过程分为3个阶段,如图1所示。

图1 三阶段充电流程图第一阶段为检验与预充电阶段。

该阶段要紧的任务是:验证电池的温度并将其调整到适合快速充电的范围内;检测电池电压并将其提高到一个安全水平。

温度检验与预充电提高了电池的安全性与使用寿命。

第二阶段将以“1C”或者略低的电流进行恒流充电。

一旦电池达到它的电压限幅4.1V 或者4.2V,则已完成对大约70%的容量的充电,并进入第三阶段充电。

第三阶段是对电池进行恒压充电,为了使安全性与电量达到最大化,需要将充电电压稳固在±1%的精度内。

在恒压充电阶段,充电电流逐步变小,同时在大多数情况下,当这个充电电流接近快速充电电流的10%,即C/10时,充电过程就结束了。

2 基于bqTINY-II的电源管理模块bqTINY-II是TI推出的电池充电管理芯片,它为电源系统设计人员带来一套集成解决方案。

该芯片将自动电源选择、功率FET与电流传感器、高精准度的稳流与稳压能力、充电状态显示与充电中止等功能集为一体。

基于STM32处理器的数控电源设计

基于STM32处理器的数控电源设计

基于ARM处理器的数控电源设计摘要:电源是现代完成产品设计的最基本工具之一。

在现代科学研究和工业生产中, 制作低纹波、高精度的稳定直源有非常重要的意义。

本文详细论述了基于ARM处理器的数控电源设计的设计过程,详细介绍了每个模块的工作原理。

本设计基于ARMv7-M体系结构STM32F130VCT6单片机作为主控制系统,配合12位AD、DA、EEPOM、RTC时钟、设计相应的模拟数字硬件电路。

关键词:数控电源,ARM,12位AD,12位DADigital power supply design based on ARM processorAbstract: Power is the most basic of modern product design to complete one of the tools. In modern scientific research and industrial production, theproduction of low ripple, high accuracy and stability are very importantdirect source of meaning. This paper describes the ARMprocessor-based design of digital control power supply design, detailthe working principle of each module. The design is based onARMv7-M architecture STM32F130VCT6 MCU as the master controlsystem, with 12-bit AD, DA, EEPOM, RTC clock, the appropriatedesign of analog and digital hardware circuit.Key words:digital prower ,arm , 12bitAD, 12bitDA1前言低纹波、高精度稳定直源就是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用,同时对电源控制数字化和智能化, 实时处理大量信息, 实现电压、电流、频率、相位、波形等参数的精确控制和高效率处理来获得高性能的电源是电源设计技术的重要趋势。

dcdc开关电源管理芯片的设计

dcdc开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计引言电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性;而开关电源更为如此,越来越受到人们的重视;目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源;目前电力电子与电路的发展主要方向是模块化、集成化;具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便;从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点;在这样的前提下,设计开发开关电源DC-DC 控制芯片,无论是从经济,还是科学研究上都是是很有价值的;1. 开关电源控制电路原理分析DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压;在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制PWM法;PWM从控制方式上可以分为两类,即电压型控制voltage mode control和电流型控制current mode control ;电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号;从控制理论的角度来讲,电压型控制方式是一种单环控制系统;电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流;二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作;图1即为电压型控制的原理框图;图1 电压型控制的原理框图电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化;电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统;是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统;信号;从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成;在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值;电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压;因此电流型控制模式具有比起电压型控制模式大得多的带宽;图2 电流型控制原理框图电流型控制模式有不少优点:线性调整率电压调整率非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义;当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差;对噪声敏感,抗噪声性差等等;对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法;2.芯片内部模块的设计本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环电压环和电流环一阶控制系统的电流模式PWM控制电路, 在该集成模块内将包括控制、驱动、保护、检测电路等;最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究;系统方面的设计以及系统框图和各个功能模块的设计思想图3 系统模块原理框图下面分别的介绍系统各个功能模块:①误差放大电路误差是用于调整变换器的高增益差分放大器;放大器产生误差信号,他被供给PWM比较器;当输出电压样本与内部电压基准比较并放大差值时产生误差信号;误差放大器的2号脚Vref就是基准电压产生的固定基准;② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断;③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波;时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加;④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态;来自锁存器的低输出电平把它断开;正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位;⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点;设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的;⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器;⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期;3.设计中必须要考虑的几点细节问题①关于斜波补偿这是在上文提到过的电流控制型开关变换器中存在的根本性问题;电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管;下面分析斜波补偿的原因;如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图;图4 斜坡补偿原理分析其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率;由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了;所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善;因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流;这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值;这是很关键的一步;②关于软启动问题DC/ DC开关电源在启动过程中 ,容易产生浪涌电流 ,可能对电子系统产生损伤;为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是 ,当输出电压的阈值未达到时 ,发生浪涌电流现象可能对电子系统造成损伤 ,而且在输出电压达到阈值之后 ,也可能因为偶然的过流使得电源多次重新启动;因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动;如图5图5 软启动电路4.总结本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现;,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义;。

ob2262设计资料

ob2262设计资料

2. OB2269内部模块图
O
n -
B r
i g h t
c o n
f i d
e n
t i a
l t
o M
a x i w
o r
l d
端各电压门限相对应的系统工作状态为系统在空载或轻载时工作在间歇模式下的为环路开环,过功率保护或短路保护时FB 的短路电流典型值为采用传统的电流模式结构设计,其关断时间根据峰值电流调整,通过与主开关管转化成电压反馈到具有如下关系式: 端的电压。

与主开关管MOSFET 源极相连接的电流反馈电阻阻值的时间或VF B<1.0V 典型值时系统工作在间歇工作模式,如果系统出现可听及的异音,请先检查
系统是否工作正常,如果你确认无误,请检查系统缓冲吸收回路中的电容材质,如果使用的是普通压电陶瓷电容,那么当系统工作在间歇工作状态时电容由于发生压电效应而产生异音是很可能的。

这时,请更换电容的材质,如MYLA 容;考虑成本及电容体积大小的因素,我们推荐使用n
n
t i a
l。

scm630芯片设计手册

scm630芯片设计手册SCM630芯片是一款高性能、低功耗的集成电路芯片,广泛应用于各种电子设备中。

本手册旨在为芯片设计工程师提供详细的技术规格和设计指南,以便他们能够充分发挥SCM630芯片的潜力,设计出高质量的电子产品。

第一章:芯片概述本章介绍了SCM630芯片的基本特性和功能。

包括芯片的封装形式、工作电压、主要功能模块等。

同时,还介绍了芯片的应用领域和市场前景,以帮助设计工程师更好地理解芯片的价值和潜力。

第二章:电气特性本章详细介绍了SCM630芯片的电气特性,包括工作电压范围、电流消耗、时钟频率等。

同时,还介绍了芯片的输入输出特性和电源管理功能,以帮助设计工程师在设计过程中合理选择电源和优化功耗。

第三章:功能模块本章详细介绍了SCM630芯片的各个功能模块,包括处理器核心、存储器、外设接口等。

对于每个功能模块,都给出了详细的技术规格和设计指南,以帮助设计工程师充分了解和应用这些功能模块。

第四章:设计指南本章提供了一些实用的设计指南,帮助设计工程师在使用SCM630芯片进行电路设计时避免一些常见的问题。

包括电路布局、信号完整性、电磁兼容性等方面的设计要点,以及一些优化技巧和经验分享。

第五章:应用示例本章提供了一些典型的应用示例,展示了SCM630芯片在不同领域的应用。

包括智能家居、工业自动化、物联网等方面的应用案例,以帮助设计工程师更好地理解和应用SCM630芯片。

第六章:常见问题解答本章列举了一些常见的问题和解答,帮助设计工程师在使用SCM630芯片时遇到问题能够快速解决。

包括芯片的兼容性、软件开发工具、技术支持等方面的问题。

第七章:附录本章提供了一些附加的技术资料和参考文献,以帮助设计工程师进一步深入了解SCM630芯片的相关知识。

包括芯片的数据手册、应用笔记、参考设计等。

通过阅读本手册,设计工程师可以全面了解SCM630芯片的技术规格和设计指南,从而更好地应用这款芯片进行电路设计。

LM324中文资料

LM324中文资料如下:四运算放大器LM324可工作在单电源下,电压范围是3.0V-32V或+16V.1.短跑保护输出1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324中文资料之管脚图LM324中文资料之应用电路图:1.LM324电压参考电路图2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器7.LM324滞后比较器电路图LM324中文资料单元电路的设计与参数计算1.系统电源模块在图1中,220V市电经220V/40V变压器降压后得到的40V交流电压,经过一个全波整流滤波后可得到+48V左右的电压供给调整管,作为电源对外输出。

另外使用的辅助电源经三端稳压器LM7812、LM7912得到+12V、-12V,再经过LM7805、LM7905得到+5V、-5V的电压。

-5V提供给OP07的负电源,+12V、-12V提供给LM324工作。

辅助电源位芯片提供工作电流及系统本身的工作电源。

另外OP07的正电源由33V稳压管提供。

系统电源模块原理2.电压调整模块该稳压电源中的电压调整模块电路如图2所示。

其中调整管采用场效应管组成,以实现大电流输出,由于该设计要求Iomax=5A,Iomin=0A,Pm=(Vimax-Vomin)Iomax=(30×5)=150W,因此,本电路中的调整管可选TL431电路的比较放大采用运放OP07,CPU通过DAC控制输出电压,再由R9、R10、RP组成的取样电路进行电压采样。

场效应管和OP07、LM324及取样电路构成的负反馈电路可实现调节输出电压的目的(稳压)。

电压调整模块原理3.过流保护电路的设计电路中的过流保护由电流采样经LM324比较器来控制继电器断合组成。

DCDC 电源芯片内部结构全解

作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet 的应用页面,按照推荐设计搭建外围完事。

如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。

今天以一颗DC/DC 降压电源芯片LM2675 为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC 行业的同学随便看看就好,欢迎指教!LM2675-5.0 的典型应用电路打开LM2675 的DataSheet,首先看看框图这个图包含了电源芯片的内部全部单元模块,BUCK 结构我们已经很理解了,这个芯片的主要功能是实现对MOS 管的驱动,并通过FB 脚检测输出状态来形成环路控制PWM 驱动功率MOS 管,实现稳压或者恒流输出。

这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS 管。

下面咱们一起来分析各个功能是怎么实现的一、基准电压类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。

这个基准电压要求高精度、稳定性好、温漂小。

芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。

这个值为1.2V 左右,如下图的一种结构:这里要回到课本讲公式,PN 结的电流和电压公式:可以看出是指数关系,Is 是反向饱和漏电流(即PN 结因为少子漂移造成的漏电流)。

这个电流和PN 结的面积成正比!即Is-》S。

如此就可以推导出Vbe=VT*ln(Ic/Is)!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1 是正温度系数的,而Vbe 是负温度系数的,再通过N 值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。

TLV5616资料总结

高精度D/A转换芯片—TLV5616TLV5616 是12 位电压输出的4 线可变串行接口的数模转换器。

4 线串行接口无缝接入TMS320,SPI,QSPI 和Microwire 串行接口。

电源供电电压范围2.7V~5.5V。

LTV5616 采用16 位串行串编程,其中包含4位控制位和12 位的数据位.为了适合范围较宽的供电电压。

1.TLV5616的引脚图及其说明:电阻串输出电压被2×a 的增益的轨至轨输出缓冲器。

缓冲器能够提高一个AB 类的输出级的稳定性和减少结束的时间。

DAC 的结束时间是可编程的以此来允许设计者对比电源的损耗设计最佳的速度。

通过输入串行的16 位中的控制位来选择结束的时间。

高阻抗缓冲集成在REFIN 端来减少对低源阻抗驱动端口的需要。

2.TLV5616的功能模块图:3. TLV5616的接口图当REF 是参考电压CODE 是在0x000~0xFFF 范围内的数字输入值时,上电复位初始复位外部触发器到一个固定的状态(全为0)。

串行接口说明数据的转换:首先器件必须设置/CS 为低电平时器件有效,然后在FS 的下降边缘开始一位一位转移数据(开始是高位有效位)在SCLK 的下降边缘转移到内部寄存器。

在16 位都被转换后或FS 上升时,转移寄存器的内容移到DAC 的触发器使其输出电压更新到一个新的电平。

TLV5616 串行接口可以采用两个基本模式:. 四线(包括片选). 三线(不包括片选)使用片选(四线模式)使得多个器件连接到串行口的数据源(DSP 或微控制器)成为可能。

接口是TMS320 类兼容的,下图给出了2 个TLV 5616 直接连接到TMS320DSP 上的例子。

如果串行总线上只有一个器件,那么/CS 可以接低电平,16 给出了TLV5616 如何在SPI 或图Microwire 接口三线引脚下连接到一个TMS320 上的例子。

注意SPI 和Microwire:在控制器开始转换数据之前软件必须在FS 连接的I/O 引脚上产生一个下降缘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7805稳压电源电路图
7805管脚图
7805典型应用电路图:
78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。

IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。

当输出电较大时,7805
应配上散热板。

下图为提高输出电压的应用电路。

稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo 得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。

VD2是输出保护
二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。

下图为输出电压可在一定范围内调节的应用电路。

由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。

调节电位器RP,即可一定范围内调节输出电压。

当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。

下图为扩大输出电流的应用电路。

VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。

R1为偏置电阻。

该电路最大输出电流取决于VT2的参数。

7905概述
下图为提高输入电压的应用电路。

78XX稳压器的最大输入电压为35V(7824为40V),当输入电压高于此值时,可采用下图所示的电路。

VT、R1和VD组成一个预稳压电路,使得加在7800稳压器输入端的电压恒定在VD的稳压值上(忽略VT的b-e结压降)。

Ui端的最大输入电压仅取决于VT的耐压。

集成稳压器还可以用作恒流源。

下图为78XX稳压器构成的恒流源电路,其恒定电流Io等于78XX稳压器输出电压与R1的比值。

79XX系列集成压器是常用的固定负输出电压的三端集成稳压器,除输入电压和输出电压均为负值外,其他参数和特点与78XX系列集成稳压器相同。

79XX系列集成稳压的三个引脚为:1脚为接地端,2脚为输入端,3脚为输出端。

79XX系列集成稳压器的应用电路也很简单。

下图所示为输出-5V直流电压的稳压电源电路,IC采用集成稳压器7905,输出电流较大时应配上散热板。

同时运用78XX和79XX稳压器,可以组成正、负对称输出的稳压电路。

下图所示为±5V稳压电源电路,I C1采用固定正输出集成稳压器7805,IC2采用固定负输出集成稳压器7905,VD1、VD2为保护二极管,用以防止正或负输入电压有一路未接入时损坏集成稳压器。

相关文档
最新文档