冷却塔空冷器设计计算及翅片管传热系数计算

合集下载

冷却塔设计选型与计算方法

冷却塔设计选型与计算方法

冷却塔设计选型与计算方法一、关于冷却塔冷却塔是利用空气同水的接触(直接或间接)来冷却水的设备。

是以水为循环冷却剂,从一个系统中汲取热量并排放至大气中,从而降低塔内温度,制造冷却水可循环使用的设备。

冷却塔的结构构成及功能:支架和塔体:外部支撑;填料:为水和空气供给尽可能大的换热面积;冷却水槽:位于冷却塔底部,接收冷却水;收水器:回收空气流带走的水滴;进风口:冷却塔空气入口;百叶窗:平均进气气流,保留塔内水分;淋水装置:将冷却水喷出;风机:向冷却塔内送风;轴流风扇用于诱导通风冷却塔;轴流/离心风扇用于强制通风冷却塔。

二、冷却塔的选型与计算01选型须知1、请注明冷却塔选用的实在型号,或每小时处理的流量。

2、冷却塔进塔温度和出塔水温。

3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。

4、若需要备品备件及其他配件,有无其他要求等请注明。

5、特别条件使用请说明使用环境和实在情况,以便选择适当的冷却塔型号。

6、特别情况、型号订货时请标明,以双方合同、技术协议商定专门进行设计。

冷却塔认真选型:1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。

2、确定使用设备或者可以依照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。

3、依据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。

(一般取1.2—1.25倍)。

4、多台并联时尽量选择同一型号冷却塔。

其次,冷却塔选型时要注意:1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装搭配精准明确。

2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。

3、冷却塔淋水填料的型式符合水质、水温要求。

4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有充足的强度。

风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。

5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。

冷却塔设计计算举例

冷却塔设计计算举例

冷却塔设计计算举例冷却塔是一种常用的热交换设备,主要用于将热水冷却至一定温度。

其设计计算是为了保证冷却效果和安全性能。

下面以一个简单的冷却塔设计计算举例进行说明。

一、设计参数确定1.冷却介质:假设为水,需要冷却至25℃。

2.进口温度:假设为70℃。

4.气象条件:温度为35℃,湿度为80%,周围空气压力为101.325千帕。

二、冷却介质流量计算根据热负荷和进出口温差可以计算出冷却介质的流量,常用的公式为:Q = m * Cp * (Tout - Tin)其中,Q为热负荷,m为流量,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。

假设冷却介质的比热容为4.18千焦/千克.摄氏度,则可以得到:解得冷却介质的流量m为641.76千克/小时。

三、冷却风量计算冷却塔利用气流将冷却介质中的热量带走,所以需要计算冷却风量。

冷却风量的计算公式为:Q = ρ * Qa * (h - 1) / (ρa * Cp * (Tout - Tin))其中,Q为热负荷,ρ为冷却介质的密度,Qa为冷却介质的流量,h 为感温系数,ρa为空气密度,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。

假设冷却介质的密度为1000千克/立方米,空气的密度为1.225千克/立方米,则可以得到:解得感温系数h为0.743四、塔高计算根据冷却风量的计算结果和冷却介质的温度变化,可以通过查表或者利用经验公式计算出塔高。

假设根据经验公式计算得到塔高为20米。

五、填料选择填料可以增加冷却面积,提高冷却效果。

根据冷却塔的设计参数,可以选择适合的填料。

假设选择波纹板填料。

六、风机功率计算风机功率的计算公式为:P = Qa * h * ρ * (Pout - Pin)其中,P为风机功率,Qa为冷却介质的流量,h为感温系数,ρ为冷却介质的密度,Pout为塔顶的绝对压力,Pin为塔底的绝对压力。

假设塔顶的绝对压力为101.325千帕,塔底的绝对压力为101.425千帕,则可以得到:P=641.76*0.743*1000*(101.325-101.425)解得风机功率P为739.32千瓦。

翅片管式冷凝器计算

翅片管式冷凝器计算

翅片管式冷凝器计算翅片管式冷凝器是一种常见的热交换设备,常用于空调系统、工业冷却等领域。

它由内管、外管和连接翅片组成,通过流体相互传热来实现冷凝过程。

在设计和计算翅片管式冷凝器时,需要考虑到热传导、换热面积、传热系数等因素。

下面将介绍翅片管式冷凝器的计算方法。

1.确定冷凝器的工作参数:在进行翅片管式冷凝器计算前,首先需要明确工作参数,包括冷却介质的流量、进口温度、出口温度,以及冷却介质的性质,如密度、比热容、粘度等。

2.选择合适的翅片管:根据冷凝器的工作参数和设计需求,选择合适的翅片管。

一般翅片管可以分为平面翅片管和螺旋翅片管两种类型。

3.计算翅片管的换热面积:翅片管的换热面积是冷凝器设计的重要参数,它与热传导、流体流量和传热系数等因素有关。

翅片管的换热面积可以通过以下公式计算:A = N * pi * De * (L - Dp)其中,A为换热面积,N为管子的根数,pi为圆周率,De为外管直径,L为管子的有效长度,Dp为管子对外径。

4.计算翅片管的传热系数:翅片管的传热系数是指翅片管内外流体之间的热传导能力,它是冷凝器设计的关键参数之一、翅片管的传热系数可以通过以下公式计算:1/U = 1/ho + Σ(1/hi)其中,U为总传热系数,ho为外部对流传热系数,hi为内部对流传热系数。

5.确定冷却介质的热负荷:根据冷却介质的流量、进口温度和出口温度,计算冷却介质的热负荷。

热负荷可以通过以下公式计算:Q = m * Cp * (Tin - Tout)其中,Q为热负荷,m为冷却介质的流量,Cp为冷却介质的比热容,Tin为进口温度,Tout为出口温度。

6.计算实际换热面积:根据冷却介质的热负荷和传热系数,计算实际换热面积。

实际换热面积可以通过以下公式计算:Aa = Q / U / (Tin - Tout)其中,Aa为实际换热面积。

7.根据实际换热面积选择合适的翅片管:根据实际换热面积和已选的翅片管,检查实际换热面积是否符合要求,如果不符合要求,需要重新选择合适的翅片管。

烟气冷却翅片换热器计算方法

烟气冷却翅片换热器计算方法

烟气冷却翅片换热器计算方法
烟气冷却翅片换热器的计算方法主要基于热力学原理和翅片散热器的特性。

以下是一个简单的计算步骤:
1、确定需要冷却的烟气量和入口温度,以及冷却后的出口温度。

2、根据翅片换热器的几何尺寸和材料特性,计算出翅片的热传导系数和散热面积。

3、结合翅片散热器的传热效率,计算出翅片换热器的散热量。

4、根据散热量、烟气量和冷却后出口温度,计算出翅片换热器的热交换效率。

5、根据翅片换热器的结构和工作条件,考虑散热器的压力损失和流体阻力等因素,进行综合评估和优化设计。

需要注意的是,烟气冷却翅片换热器的计算方法是一个复杂的过程,需要考虑多种因素,如翅片材料、烟气的物理性质、冷却介质的特性等。

在实际应用中,可能需要借助专业的热力学软件或咨询专业工程师进行详细计算和分析。

翅片管热交换器设计计算

翅片管热交换器设计计算

图!"’
几种机械连接的翅片管
— )’( —
第三篇
高效间壁式热交换器设计计算
图 ! " # 比较了几种翅片管的传热性能。由图可见, 绕片式较差, 主要是接触 热阻的存在, 特别是在运行时, 绕片式的翅片张力随温度的增加而迅速下降, 使接 触热阻也迅速增加。焊片式传热性能最好。套片式性能也属最好, 因为翅片紧套 于管表面上后再加以表面热镀锌。双金属轧片传热性能类似于镶片式, 因为它是 在套装后再轧出翅片。
& 型绕片式 % % % ! % $
— ()( —
第四章
翅片管热交换器设计计算
翅片管管子常为圆形, 空冷器中为强化传热也用椭圆管。椭圆管的管外对流 换热系数比光管约可提高 !"# , 而空气阻力约可降低 $"# % !"# 。翅片管的基本 几何尺寸包括: 其壁厚应自沟槽底部计算其内 !基管外径和管壁厚对于镶片管, 但却使翅片效率下降, 壁。"翅片高度和翅片厚度增加翅高使翅片表面积增加, 因而使有效表面积 (即翅片表面积乘以翅片效率) 的增加渐趋缓慢。图 & ’ ( 表示 了单位有效翅片表面积的价格对于翅高的关系, 供选用翅高时参考。翅片厚度主 要考虑其强度、 制造工艺和腐蚀裕量, 国产铝翅片 (绕片式、 镶片式) 和钢翅片 (套 片式) 一般均选用 )*" % $*!++。 # 翅片距翅片距的数值会影响到翅化面积的大 小, 但对管外对流换热系数的影响极小。翅片距的选择取决于管外介质, 国产用 于空冷器的翅片管的翅片距常为 !*,++。 $ 翅化比它是指单位长度翅片管翅化 表面积与光管外表面之比。对于空冷器, 因为管外介质已经确定为空气, 所以翅 化比的选择应根据管内介质对流换热系数大小而定。当此值小时, 应选用较小翅 化比。若选用的翅化比过大并不能有效地增强传热, 反而会使以翅化表面积为基 。随着翅化比的增加, 空冷器单位尺寸的换热 准的传热系数迅速降低 (见表 & ’ !) 面积将增加, 但制造费用也增加。实践表明, 翅化比的最佳值约为 $- % !(。我国 生产的空冷器翅片管的翅化比有两种: 高翅片为 !,*&, 低翅片为 $-*$。对于低肋 螺纹管的翅化比不属此例。 % 管长国内空冷器翅片管长系列为 ,, &*", ., /+ 四 种。表 & ’ , 列出了国产翅片管的特性参数, 供读者参考。

冷却塔的设计与计算

冷却塔的设计与计算

冷却塔的设计与计算冷却塔是一种用于降温的设备,主要用于工业生产中的热量排放以及空调系统中的冷却。

它通过水和空气之间的传热来实现降温效果。

在设计和计算冷却塔时,应注意以下几个方面。

首先是冷却塔的设计参数。

这些参数包括冷却塔的高度、直径、填料类型和填料高度。

这些参数的选择取决于需要处理的冷却负荷以及水和空气流量。

根据实际情况,冷却塔的高度一般在10米到30米之间,直径一般在3米到10米之间。

填料类型和填料高度影响冷却效率,常用的填料材料包括塑料、木材和金属。

其次是冷却塔的水流和空气流动模式。

冷却塔可以采用不同的流动模式,如逆流、交流和异流模式。

逆流模式是最常见的模式,水和空气在相反方向流动。

交流模式是水和空气在相同方向流动。

异流模式是水和空气在不同方向流动。

选择合适的流动模式可以提高冷却效率。

第三是冷却塔的传热计算。

冷却塔的传热主要是通过水和空气之间的对流、辐射和蒸发传热来实现的。

对流传热是指水经过填料后与空气产生传热,辐射传热是指塔体表面的热辐射与空气产生传热,蒸发传热是指水在冷却塔内蒸发时与空气产生传热。

根据这些传热方式,可以建立传热模型进行传热计算,以确定冷却塔设计的热负荷和传热效率。

最后是冷却塔的风阻计算。

冷却塔在运行过程中会产生一定的风阻,这会影响冷却效果。

计算风阻可以根据空气的流体力学原理来进行。

主要考虑到填料的压降、冷却塔的构造和风机的效率。

通过风阻计算可以确定合适的风机功率和风阻损失,以保证冷却塔的正常运行。

以上是冷却塔设计与计算的基本要点。

在实际应用中,还需要考虑到冷却水质量的要求、冷却塔的防腐蚀措施以及与其他系统的配合等方面。

通过合理的设计和计算,可以实现冷却塔的高效运行,达到降温的目的。

横流式冷却塔简化热力计算方法

横流式冷却塔简化热力计算方法

横流式冷却塔简化热力计算方法首先,我们需要确定一些冷却塔的基本参数。

这些参数包括:冷却塔的入口水温(Tw1)、出口水温(Tw2)、入口空气温度(Ta1)、空气湿球温度(Ta2)、塔的冷却水流量(Qw)和空气流量(Qa)。

这些参数将用于后续的计算中。

第一步,我们需要计算冷却水的冷却量(Qc)。

冷却量可以通过下式计算得到:Qc=Qw*(Tw1-Tw2)其中,Qw代表冷却水流量,Tw1和Tw2分别代表冷却水的入口温度和出口温度。

第二步,我们需要计算冷却塔的传热量(Qh)。

传热量可以通过下式计算得到:Qh=Qa*(Ta1-Ta2)其中,Qa代表空气流量,Ta1和Ta2分别代表空气的入口温度和湿球温度。

第三步,我们可以根据热力学原理得到冷却塔的热效率(η)。

热效率可以通过下式计算得到:η=Qc/Qh第四步,我们可以通过已知的参数来计算冷却塔的传热面积(A)。

A = Qh / (U * ΔTlm)其中,U代表传热系数,ΔTlm代表对数平均温差。

传热系数的取值与具体的冷却塔结构、材料和工况等因素有关。

ΔTlm可以通过下式计算得到:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)其中,ΔT1和ΔT2分别代表冷却塔的温度差,可以通过Tw1、Tw2、Ta1和Ta2来计算得到。

最后,我们可以通过上述结果来判断冷却塔的热力性能。

如果热效率较高且传热面积较小,则说明冷却塔的散热效果较好;反之,则说明冷却塔的散热效果较差。

综上所述,通过以上的简化热力计算方法,我们可以估算横流式冷却塔的热力性能。

然而,需要注意的是,这些简化方法仅能提供初步的估算结果,实际的热力计算可能需要考虑更多的因素和参数。

因此,在实际应用中,我们应该根据具体情况来选择适当的计算方法,并进行实际的测试和验证。

冷却塔的热力计算

冷却塔的热力计算

冷却塔的热力计算冷却塔是一种用于降低流体温度的设备,广泛应用于石油化工、电力、空调等行业。

其基本原理是通过风和水的热交换来降低水的温度,以实现对流体的冷却。

首先,进行冷却塔热力计算时需要确定进出口流体的温度差,即冷却塔进口水温和出口水温的差值。

该温度差是衡量冷却效果的主要指标之一、通常情况下,冷却塔的设计师会根据具体需求和设备参数来确定这个温度差。

其次,需要确定进出口流体的流量。

流量是冷却效果的另一个重要指标,它直接影响到热负荷的大小。

通常情况下,冷却塔的设计师会根据设备和系统的需求来确定流量。

接下来,需要确定冷却塔的换热特性。

冷却塔的换热特性是指冷却塔的热传导效果。

在冷却塔的设计中,通常会采用一些换热器,如填料、喷淋装置等,来提高冷却效果。

根据填料的形状、材料和布置方式等因素,可以计算出冷却塔的换热特性。

在进行热力计算时,还需要考虑环境因素。

冷却塔通常通过与周围环境空气的接触来实现热交换。

因此,环境温度、湿度和风速等因素都会对冷却效果产生影响。

一般情况下,冷却塔的设计师会通过考虑这些因素来确定冷却塔的热力计算参数。

最后,通过以上参数的计算,可以得到冷却塔的热力计算结果。

这些结果包括冷却塔的热效率、冷却塔的工作量和冷却塔的能效比等。

根据这些结果,可以评估冷却塔的工作状态和性能,并进行必要的调整和优化。

冷却塔的热力计算是冷却塔设计和使用过程中的重要环节。

只有正确地进行热力计算,才能确保冷却塔的正常运行和达到预期的效果。

在实际应用中,还需要结合其他因素,如材料选择、环保要求等,进行综合考虑,以满足具体需求。

总之,冷却塔的热力计算是一项复杂而重要的任务。

合理的热力计算结果可以有效地指导冷却塔的设计和使用,提高冷却效果,降低能耗,并确保冷却塔的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Vmax Db Vmax Db
μ
−0.316
S1 S1
−0.927
Db
−0.927
μ
Db
S1
0.515
S2
f = 0.316Re−4
0.718
μ
Pr
1
3
Y
0.296
H
mL =
9、以基管表面为基准传热系数 h o = h ηf β 10、计算管内换热系数 Do ρv Re = μs λs Di ρv 0.8 n hi = 0.023 ( ) Prs Di μs 流体被加热 n 取 0.4 11、上述计算可求得总热阻,进而求得总传热系数 K。
0.667
V o Ao
o −A f −A d
,继而计算管外 Re=
D o V max μ
பைடு நூலகம்

μ
Pr
1
3
Y
0.164
H
(Y t)0.075
对于高翅片管 Df = 1.7~2.4 Db = 12~41mm Db h = 0.1378 λ D b 8、 翅片效率 ηf = tanh mL mL 2h L λt λ 为翅片导热系数 Db Vmax
A f +A b Ao
基管导热热阻 R w =
4、 选定翅片管,计算翅化比 β = 5、 设计排管形式。

6、 根据布管形式计算最窄截面风速Vmax = A 7、 计算翅片管传热系数 对于低翅片管 Df = 1.2~1.6 Db = 13.5~16mm Db h = 0.1507 λ D b Db Vmax
12、根据换热量可求得实际需求换热面积 Ac=K Δ t 13、根据布管形式可求得现有翅片管面积Ao 当A0 > Ac 时,设计满足要求 14、校核风阻 ΔP=f
NV 2 max 2ρ −0.316
Q
m
等边三角形时f = 37.86 等腰三角形时f = 37.86 15、校核管阻 Δp = f
Lρ s v 2 2D i
1、 换热三等式:Cs Ls t1 − t 2 = Ca Ga θ2 − θ1 = KAΔ t m ; 2、 假定出口水温可计算总可换热量 Q,继而求出空气的出口温度,当传热系数 K 确定后可 计算出所需翅片管面积。 3、 K = R
1

R 总 = R o + R i + R w + R fo + R fi 基管外部热阻 R o = 基管内部热阻 Ri = 1 ho Do 1 Di h Do Do ln 2λ Di
相关文档
最新文档