振动波动习题课80题
大学物理--振动波动试题

振动、波动部分1.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ ]2.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为(A) m k 32π1. (B) m k2π1. (C) m k 32π1. (D) m k62π1. [ ]3.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T/2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ] 4.一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) /6. (B) 5 /6. (C) -5 /6. (D) - /6.(E) -2 /3.[ ]5.一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为(A) E1/4. (B) E1/2.(C) 2E1. (D) 4 E1 . [ ]6.一质点作简谐振动,其振动方程为)cos(φω+=t A x .在求质点的振动动能时,得出下面5个表达式:(1))(sin 21222φωω+t A m . (2) )(cos 21222φωω+t A m .(3))sin(212φω+t kA . (4) )(cos 2122φω+t kA .(5))(sin 22222φω+πt m A Tmvv21其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.这些表达式中 (A) (1),(4)是对的. (B) (2),(4)是对的. (C) (1),(5)是对的. (D) (3),(5)是对的. (E) (2),(5)是对的 .[ ]7.机械波的表达式为y = 0.03cos6 (t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]8.一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) ]2)(cos[π+'-=t t b u a y . (B) ]2)(2cos[π-'-π=t t b u a y . (C)]2)(cos[π+'+π=t t b u a y . (D)]2)(cos[ππ-'-=t t b u a y . [ ]9.如图所示,两列波长为 的相干波在P 点相遇.波在S1点振动的初相是 1,S1到P 点的距离是r1;波在S2点的初相是 2,S2到P 点的距离是r2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk rr =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ. (D ) π=-π+-k r r2/)(22112λφφ. [ ]10.两相干波源S1和S2相距 /4,( 为波长),S1的相位比S2的相位超前π21,在S1,S2的连线上,S1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D) π23. [ ]11.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A/2处,且向负方向运动,则初相为______.SS 1S 2Pλ/412.一物体作简谐振动,其振动方程为)2135cos(04.0π-π=t x (SI) .(1) 此简谐振动的周期T =__________________;当t = 0.6 s 时,物体的速度v =__________________.13.一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 Hz .t = 0时x = -0.37 cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.14.一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为____________.振动方程为______________________________.15.一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图示.设摆动很小,则单摆的左右 两方振幅之比A1/A2的近似值为_______________.16.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x __________(SI)17.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x1 = 10.0 m 和x2 = 16.0 m 的两质点振动相位差为__________.18.一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)c o s (φω+=t A y ,若波速为u ,则此波的表达式为__________.19.在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,则这两列波的振幅之比是A1 / A2 = ____________________.20.两相干波源S1和S2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S1距P 点3个波长,S2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.t0.45 m-21.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m-1. (1) 求振动的周期T 和角频率 .(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v0及初相 . (3) 写出振动的数值表达式.22.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ; (2) 加速度的最大值am ;(3) 振动方程的数值式.23. 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;(4) 平均动能和平均势能.24.一简谐振动的振动曲线如图所示.求振动方程.25.在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.-26.一质点同时参与两个同方向的简谐振动,其振动方程分别为x1 =5×10-2cos(4t + /3) (SI) , x2 =3×10-2sin(4t - /6)(SI)画出两振动的旋转矢量图,并求合振动的振动方程.27.一简谐波沿x轴负方向传播,波速为1 m/s,在x轴上某质点的振动频率为1 Hz、振幅为0.01 m.t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x轴的原点.求此一维简谐波的表达式.28.已知一平面简谐波的表达式为)37.0125cos(25.0xty-=(SI)(1) 分别求x1 = 10 m,x2 = 25 m两点处质点的振动方程;(2) 求x1,x2两点间的振动相位差;(3) 求x1点在t = 4 s时的振动位移.29.一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ,波速为u,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O点分别为 / 8和3 / 8 两处质点的振动方程.(3) 求距O点分别为 / 8和3 / 8 两处质点在t = 0时的振动速度.x uOy30.如图所示,S1,S2为两平面简谐波相干波源.S2的相位比S1的相位超前 /4 ,波长 = 8.00 m,r1 = 12.0 m,r2 = 14.0 m,S1在P点引起的振动振幅为0.30 m,S2在P点引起的振动振幅为0.20 m,求P点的合振幅.31.设入射波的表达式为)(2cos1TtxAy+π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式;(2) 合成的驻波的表达式;(3) 波腹和波节的位置.P SS2。
大学物理振动波动例题习题

振动波动一、例题(一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。
2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。
在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。
已知原点的振动曲线如图所示。
求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差。
3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。
S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。
振动波动习题汇编(学生版)

一、填空题1.1一质点做简谐振动的振动方程为0.5cos 3x t ππ⎛⎫=+ ⎪⎝⎭(SI ),则该质点振动的振幅A = m ,周期T = s ,初相0ϕ= ,1t =s 时的相位ϕ= ,0t =时刻该质点的位置坐标0x = m ,速度方向沿x 轴 (选填“正向”或“负向”)。
1.2 一个沿x 轴做简谐振动的弹簧振子,其振动方程用余弦函数表示,0t =时质点过平衡位置向负向振动,则该振动的初相0ϕ= 。
(初相在(,]ππ−内取值)1.3 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,其振动方程用余弦函数表示,0t =时质点过2Ax =向正向振动,则该振动的初相0ϕ= 。
(初相在(,]ππ−内取值)1.4 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取做0t =,则该振动初相0ϕ= (初相在(,]ππ−内取值)1.5 一水平弹簧振子做简谐振动,已知振动周期3T s =,则质点从平衡位置振动到振幅一半位置处所需的最短时间为 s 。
1.6 一质点在x 轴做简谐振动,振幅4A cm =,周期2T s =,取其平衡位置为坐标原点,若0t =时刻质点第一次过2x cm =处且向x 轴正方向运动,则质点第二次通过2x cm =处的时刻为 s 。
1.7 已知一水平弹簧振子做简谐振动的振幅为A ,弹簧劲度系数为k ,则该谐振子系统的总能量E = ,以平衡位置为坐标原点,当弹簧振子运动到2Ax =处时的系统的势能P E = ,此时系统的动能k E = ,当弹簧振子处于x = 处时,系统的动能和势能相等。
1.8 两同方向同频率简谐振动的合成,已知振动方程分别为⎪⎪⎩⎪⎪⎨⎧+=+=cm t x cm t x )372cos(4)32cos(321ππππ,则合振动的振幅为 cm ,合振动的初相0ϕ=(初相在(,]ππ−内取值)。
1.9 两同方向同频率简谐振动的合成,已知振动方程分别为123cos()654cos()6x t cm x t cmππππ⎧=−⎪⎪⎨⎪=+⎪⎩,则合振动的振幅A = cm ,合振动的初相0ϕ= (初相在(,]ππ−内取值)。
振动和波动习题

振动习题一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为:[ ]215(A),or ;A;(B),;3326632(C),or ;A;(D),;44233ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A)s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。
振动、波动练习题及答案

振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
振动波动练习题

振动波动练习题振动1、 (3380)如图所⽰,质量为m 的物体由劲度系数为k 1与k 2的两个轻弹簧连接,在⽔平光滑导轨上作微⼩振动,则系统的振动频率为(A) m k k 212+π=ν . (B) mk k 2121+π=ν . (C) 212121k mk k k +π=ν . (D) )(212121k km k k +π=ν . [ B ]2、 (3042)⼀个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正⽅向运动,代表此简谐振动的旋转⽮量图为[] 3、(5186) 已知某简谐振动的振动曲线如图所⽰,位移的单位为厘⽶,时间单位为秒.则此简谐振动的振动⽅程为: (A) )3232cos(2π+π=t x . (B) )3232cos(2π-π=t x . (C) )3234cos(2π+π=t x . (D) )3234cos(2π-π=t x . (E) )4134cos(2π-π=t x . [] 4、 (5181) ⼀质点作简谐振动,已知振动频率为f ,则振动动能的变化频率就是(A) 4f 、 (B) 2 f 、 (C) f 、(D) 2/f 、 (E) f /4 []5、 (5311)⼀质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期就是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [] 6、 (3030) 两个同周期简谐振动曲线如图所⽰.x 1的相位⽐x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[]7、 (3009) ⼀弹簧振⼦作简谐振动,振幅为A ,周期为T ,其运动⽅程⽤余弦函数表⽰.若t = 0时,(1) 振⼦在负的最⼤位移处,则初相为______________________;(2) 振⼦在平衡位置向正⽅向运动,则初相为________________;(3) 振⼦在位移为A /2处,且向负⽅向运动,则初相为______.8、 (3015)在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右⽅,则单摆作⼩⾓度摆动的振动表达式(⽤余弦函数表⽰)分别为 (a) ______________________________;(b) ______________________________;(c) ______________________________.9、(3553)⽆阻尼⾃由简谐振动的周期与频率由__________________________决定.对于给定的简谐振动系统,其振辐、初相由______________决定.10、 (3057) 三个简谐振动⽅程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω与)611cos(3π+=t A x ω画出它们的旋转⽮量图,并在同⼀坐标上画出它们的振动曲线.11、 (3816)⼀质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0、25 Hz.t = 0时x = -0、37 cm ⽽速度等于零,则振幅就是_____________________,振动的数值表达式为______________________________.12、(3046) ⼀简谐振动的旋转⽮量图如图所⽰,振幅⽮量长2 cm,则该简谐振动的初相为____________.振动⽅程为______________________________.13、 (3017) ⼀质点沿x 轴作简谐振动,其⾓频率ω = 10 rad/s.试分别写出以下两种初始状态下的振动⽅程:(1) 其初始位移x 0 = 7、5 cm,初始速度v 0 = 75、0 cm/s;(2) 其初始位移x 0 =7、5 cm,初始速度v 0 =-75、0 cm/s.14、 (3827) 质量m = 10 g 的⼩球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作⾃由振动,式中t 以秒作单位,x 以厘⽶为单位,求 (1) 振动的⾓频率、周期、振幅与初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能与平均势能.15、 (3054)⼀简谐振动的振动曲线如图所⽰.求振动⽅程.-16、 (3043)⼀质点同时参与两个同⽅向的简谐振动,其振动⽅程分别为(c)tx 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转⽮量图,并求合振动的振动⽅程.机械波⼀选择题1、 (3058) 在下⾯⼏种说法中,正确的说法就是:(A) 波源不动时,波源的振动周期与波动的周期在数值上就是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播⽅向上的任⼀质点振动相位总就是⽐波源的相位滞后(按差值不⼤于π计).(D) 在波传播⽅向上的任⼀质点的振动相位总就是⽐波源的相位超前.(按差值不⼤于π计) []2、 (3067)⼀平⾯简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所⽰,则(A) O 点的振幅为-0、1 m.(B) 波长为3 m.(C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . []3、 (3072) 如图所⽰,⼀平⾯简谐波沿x 轴正向传播,已知P 点的振动⽅程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y . []4、 (3434) 两相⼲波源S 1与S 2相距λ /4,(λ为波长),S 1的相位⽐S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差就是:(A) 0. (B) π21. (C) π. (D) π23. [] 5、 (3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. []S 1S 2P λ/46、 (3112)⼀机车汽笛频率为750 Hz,机车以时速 90 公⾥远离静⽌的观察者.观察者听到的声⾳的频率就是(设空⽓中声速为340 m/s).(A) 810 Hz. (B) 699 Hz.(C) 805 Hz. (D) 695 Hz. []⼆填空题、7、 (本题3分)(3420) ⼀简谐波沿BP ⽅向传播,它在B 点引起的振动⽅程为t A y π=2cos 11.另⼀简谐波沿CP ⽅向传播,它在C 点引起的振动⽅程为)2cos(22π+π=t A y .P 点与B 点相距0、40 m,与C点相距0、5 m(如图).波速均为u = 0、20 m/s.则两波在P 点的相位差为______________________.8、 (本题3分)(3076) 图为t = T / 4 时⼀平⾯简谐波的波形曲线,则其波的表达式为______________________________________________.9、 (本题5分)(3133) ⼀平⾯简谐波沿Ox 轴正⽅向传播,波长为λ.若如图P 1点处质点的振动⽅程为)2cos(1φν+π=t A y ,则P 2点处质点的振动⽅程为_________________________________;与P 1点处质点振动状态相同的那些点的位置就是___________________________.10、 (本题3分) (3291)⼀平⾯简谐机械波在媒质中传播时,若⼀媒质质元在t 时刻的总机械能就是10 J,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能就是___________.11、 (本题3分)(3587)两个相⼲点波源S 1与S 2,它们的振动⽅程分别就是 )21cos(1π+=t A y ω与 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.12、 (本题4分)(3317)⼀弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的⾏波的波长为________________,频率为__________________.三计算题13、 (本题8分)(3335)- x O P 1P 2L 1L 2⼀简谐波,振动周期21=T s,波长λ = 10 m,振幅A = 0、1 m.当 t = 0时,波源振动的位移恰好为正⽅向的最⼤值.若坐标原点与波源重合,且波沿Ox 轴正⽅向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = λ /4处质点的位移;(3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.14、 (本题10分)(3410)⼀横波沿绳⼦传播,其波的表达式为 )2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率与波长.(2) 求绳⼦上各质点的最⼤振动速度与最⼤振动加速度.(3) 求x 1 = 0、2 m 处与x 2 = 0、7 m 处⼆质点振动的相位差.15、 (本题8分)(5516)平⾯简谐波沿x 轴正⽅向传播,振幅为2 cm,频率为 50 Hz,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正⽅向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.16、 (本题8分)(3143)如图所⽰为⼀平⾯简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz,且此时质点P 的运动⽅向向下,求(1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动⽅程与振动速度表达式.17、 (本题8分)(3158) 在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π=与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最⼤与合振幅最⼩的那些点的位置.。
振动和波动计算题及答案
(2)x/8处振动方程为
1
yAcos[t(2/8)]Acos(t/4)1分
2
x3/8的振动方程为
3/81
yAcos[t2]Acos(t/4)1分
2
1
(3)dy/dtAsin(t2x/)
2
t=0,x/8处质点振动速度
1
dy/dtAsin[(2/8)]2A/21分
2
t=0,x3/8处质点振动速度
1
dy/dtAsin[(23/8)]2A/21分
解:由题意x1=4×10cos(2t)(SI)
4
y
-2
x2=3×10
cos(2t)(SI)
2
u
按合成振动公式代入已知量,可得合振幅及初相为
Ot=t′x
2324cos(/2/4)10
22
A4m
-2
=6.48×10
m2分
4sin(/4)3sin(/2)
arctg=1.12 rad2分
4cos(/4)3cos(/2)
(2)t= 3 s时的波形曲线方程
2x
y210cos(/10),(SI)2分
波形曲线见图2分
y(m)
y(m)
-2
2×10
u
O510152025
x(m)
O
-2
-2×10
1
234
t(s)
(b)
(a)
11.已知一平面简谐波的表达式为y0.25cos(125t0.37x)(SI)
(1)分别求x1= 10m,x2= 25 m两点处质点的振动方程;
(1)物体的振动方程;
(2)物体在平衡位置上方5 cm时弹簧对物体的拉力;
(3)物体从第一次越过平衡位置时刻起到它运动到上方5 cm处所需要的最短时间.
振动波动习题课
y 2Acos(2 x 2 1 )cos( t 1 2 )
2
2
A驻 cos ( t )
A驻
2Acos(2 x 2 1 ) 2
波节 波腹
6. 半波损失
A驻 0 A驻 2A
波从波疏介质射向波密介质时,在界面处反射时相位发
生 的突变的现象。
7. 多普勒效应 u vO vs
A
(A)
O
A /2
x
A
(C)
O
A /2
x
A /2
(B)
O
x
A
[D]
(D)
A /2
O
x
A
6. 质点沿x轴做谐振动,振幅A=2cm,周期T=1s。
质点由 x p 2cm 处运动到 xq 3cm 处的最短时间为t1,
质点由xq 运动到xp的最短时间为t2 。则 t1 = ?, t2 =?
解:
cos1( 2 )
24
cos1( 3 )
26
则:
t1
7
12
t1
7 24
s
又: 2 2 / s
T
由图得:t2
t1
7 24
s
二、波动:
1. 某质点做简谐振动,周期为 2s,振幅为 0.06m,开始计时
(t=0),质点恰好处在A/2 处且向负方向运动,求:
(1)该质点的振动方程;
(2)此振动以速度 u = 2m/s 沿 x 轴正方向传播时,形成的平
S2P=r2=3.75m ,求 P 点的合振幅。
解: A A12 A22 2A1 A2 cos Δ
S1
r1
p1
Δ
20 10
2 ( r2 - r1 )
振动和波动要点习题
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
振动与波动习题
θ θ
B
4h − k λ x= 2kλ
2
2h k =1,2,L〈 λ
P 时由4h 可得k=2h/λ) (当x=0时由 2-k2λ2=0可得 时由 可得 λ
哈尔滨工程大学理学院
振动与波动习题课 6. 振幅为 , 频率为γ,波长为λ的一简谐波沿弦线传 振幅为A, 在自由端A点反射 如图) 点反射( 播,在自由端 点反射(如图),假设反射后的波 不衰减,已知: 不衰减,已知:OA = 7λ/8,OB = λ/2,在t = 0时, , , 时 x = 0处媒质质元的合振动经平衡位置向负方向运动。 处媒质质元的合振动经平衡位置向负方向运动。 处媒质质元的合振动经平衡位置向负方向运动 点处入射波和反射波的合成振动方程。 求B点处入射波和反射波的合成振动方程。 点处入射波和反射波的合成振动方程
哈尔滨工程大学理学院
k = 0,1,2,L k = 0,1,2,L
振动与波动习题课
± kλ ∆r = r1 − r2 = λ ± (2k +1) 2
k = 0,1,2L k = 0,1,2L
(4)驻波:振幅相等、传播方向相反的相干波相互 )驻波:振幅相等、 迭加而产生的波。 迭加而产生的波。 (5)多普勒效应 :由于波源或观测者相对于媒质的 )多普勒效应: 运动, 运动 , 而使观测者接受到的频率有所变化的现 象。
2
B Ω = I
2
振动与波动习题课
x = Acos(ωt +ϕ0 ) θ = θ0 cos(ωt + φ0 )
(2)如何求:A )如何求: ,
ω,
ϕ0
1 2 (3)简谐振动的能量 E = Ek + EP = kA ) 2
(4)同方向、同频率简谐振动的合成: )同方向、同频率简谐振动的合成:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
波形曲线的应用:2)已知t=0时 刻波形曲线,求某质点振动曲线 (方程)
C
波形曲线的应用:2)已知t=0时刻 波形曲线,求某质点振动曲线(方 程)
yo 0.1 cos( 2t
2
)
波形曲线的应用:3)已知t时刻波形
曲线,求某质点振动方程
D
波形曲线的应用:3)已知t时刻波形
曲线,求某质点振动方程
/cm 2 4
t/s
已知振动情况,求波动方程
已知振动情况,求波动方程
已知振动情况,求波动方程
已知t=0时刻波形曲线,求波动方程
• 3146 如图为一平面简谐波在t=0时刻的波形图,
画出p处质点和Q处质点的振动曲线,然后写出相
应的振动方程,其中波速u=20m/s
/m
0.2
P Q 40
/m
x
2
2
a E
aE
波动方程的应用: 1.已知波动方程,求不同质点相位差
波动方程的应用: 1.已知波动方程,求不同质点相位差
波动方程的应用: 2.已知波动方程,求振动方程
波形曲线的应用:1)已知t=0时 刻波形曲线,求某质点初位相
D
波形曲线的应用:1)已知t=0时 刻波形曲线,求某质点初位相
已知t=t’时刻波形曲线,求波动方程
已知两时刻波形曲线,求波动方程
(波速未知)
已知波动,求其它
简谐波的能量
波动能量
波动能量
波动能量
波的叠加
波的叠加
波的叠加
波的叠加
反射波波动方程的求法
驻波特性
驻波特性
驻波特性
驻波求法
驻波求法:反射端为固定端(波 节)
驻波求法:反射端为固定端(波节)
描述波动方程的物理量
B
描述波动方程的物理量
C
描述波动方程的物理量
0.25 0.37 T u 340 u u 503m / s
描述波动方程的物理量
C
波动方程的求法:已知振动(1:方 程),求波动方程
C
波动方程的求法:已知振动(1:方 程) ,求波动方程
x 1 y A cos[ (t ) ] u x A cos[ (t ) ] u u
已知振动方程,求波动方程
• 3082:一平面波在介质中以速度u=20m/s沿x轴 负方向传播,已知A点的振动方程y=3cos4 t (1) 以A点为坐标原点写出波动方程 (2) 以距A点5m处的B点为坐标原点写出波动方程
B
A
已知振动曲线,求波动方程
• 3079:一平面波在介质中以速度u=5m/s沿x轴负方 向传播,已知o点的振动曲线如图所示 (1) 画出x=25m处质元的振动曲线 (2) 画出t=3s时的波形曲线
波形曲线的应用:3)已知t时刻波形
曲线,求某质点振动方程
计算题类型
• 已知振动方程,求波动方程
• 已知振动曲线,求波动方程 • 已知振动情况,求波动方程 • 已知t=0时刻波形曲线,求波动方程(波速已知) • 已知t=t’时刻波形曲线,求波动方程(波速已知) • 已知两时刻波形曲线,求波动方程(波速未知) • 已知波动,求其他
波动方程的求法:已知振动(2:情 况),求波动方程
x y A cos[ (t ) 0 ] u x 3 2 10 cos[200 (t ) ] 400 2
波动方程的应用: 1.已知波动方程,求不同质点相位差
y A cos 2 (
2
t D
2
x E
)
2
D
简谐振动的能量
g T 2 l
简谐振动的能量
1 E m 2 A 2 2
简谐振动的能量
1 T 8
3 T 8
1 t T或 8
简谐振动的合成
A2 A1
2 x ( A2 A1 ) cos( t ) T 2
简谐振动的合成
0.04 cos( t
2
)
m
简谐振动的合成
x 0.04 cos( 4t ) 2
m
旋转矢量图的应用1:求初位相
C
旋转矢量图的应用1:求初位相
D
旋转矢量图的应用2:比较相位差
B
旋转矢量图的应用3:求周期
B
旋转矢量图的应用4:求时间
C
Hale Waihona Puke 简谐振动曲线简谐振动曲线
x 0.04 cos( t ) 2
m
简谐振动的能量
常见简谐振动(1)
2 kg
简谐振动的3个特征量
0.2
3
10cm
简谐振动的3个特征量
0.05
tg 1 0.75
简谐振动的3个特征量: 园频率
B
2
简谐振动的3个特征量 : 位相
C
简谐振动的旋转矢量图
B
简谐振动的旋转矢量图
4
x 0.02 cos(t 4 ) m
简谐振动的旋转矢量图
驻波求法:反射端为自由端(波腹)