高频电路原理与分析
高频电路原理与分析

.高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。
如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS)电阻并联后的总电导为94.2(μS)因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。
12min ,22(1210)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组160510t t C C C LC L C ππ∑-=+⎧⨯==⎪⨯+⎪⎨题2图3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少?解:(1)总的通频带为121212121232260109121082601091210260108101981253510260190.3175-1261605535()()10103149423435t t t t C C C C pF L mH π-----⨯+==⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈103465210.51 5.928()40e z ef Q kH Q =-≈⨯= (2)每个回路允许最大的Q e 为103465210.5123.710e ef Q Q =-≈⨯=4.图示为一电容抽头的并联振荡回路。
谐振频率f 0=1MHz ,C 1=400 pf ,C 2=100 pF 求回路电感L 。
高频电路原理与分析第2章 高频电路基础

(2-11)
Yp
1 rC 1 (2-12) j C G jB Zp L L 这时可以看做一个纯电阻(电导)和LC的并联,当电纳B为0时,发生 谐振,此时的谐振频率为0,谐振时的阻抗为一纯电阻,R0 L .。 rC
16
第2章 高频电路基础
由:B 0 C
(2-10)
15
1
B0.1 99 9.95 B0.7
第2章 高频电路基础
(2)并联谐振电路
等效
图2-7并联谐振电路
▲阻抗特性
Zp ( r j L) / j C 1 r j L j C
L r
L/C 1 1 r j ( L 1 / C ) rC j C L L
1 2 2 0 1 jQ 1 0
第2章 高频电路基础
f 2Q 2Q 0 f0
叫广义失谐量
(2-6)
因此可以得到串联谐振电路的幅频特性和相频特性。
幅频特性为:
I r 1 | || | 2 I0 Zs 1
1 1 2Q 0
▲并联谐振回路的谐振特性
U G0 rC / L U 0 Y p rC / L j (C 1 / L) 1 1 L 1 j r C r 1 1 1 1 0 1 j 2Q 1 j 2Q f 1 j 1 jQ 0 f0 0
(3)由介质隔开的两导体即构成电容。 一个电容器的等 效电路却如图2 -3(a)所示。 理想电容器的阻抗1/(jωC), 如图2 — 3(b)虚线所示, 其中, f为工作频率, ω=2πf。当频 率大于SRF时,电容呈现出电感特性。
高频电路原理与分析报告

高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z,C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。
如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS )电阻并联后的总电导为94.2(μS )因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。
题2图12min 12max ,1122(1210)1122(26010)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑--=+⎧⨯==⎪⨯+⎪⎨⎪⨯==⎪⨯+⎩3.在三级相同的单调谐放大器中,中心频率为465kH Z,每个回路的Q e=40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为103465210.51 5.928()40e z ef Q kH Q =-≈⨯= (2)每个回路允许最大的Q e 为103465210.5123.710e ef Q Q =-≈⨯=1212121212121232260102601091210121082601091210260108101981253510260190.3175-1261605,535()()10103149423435ttt tt t C C C C C C pF L mH π-------⨯+⨯+==⨯+⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈4.图示为一电容抽头的并联振荡回路。
高频电路原理与分析曾兴雯

1010 可见光
X射线 宇宙射线
1020Βιβλιοθήκη 1025f/Hz/m
3×103
3×10-2
3×10-7
(3 .8 ~ 7 .8 )×1 0-7
3×10-12 3×10-17
图 1 — 4 电磁波波谱
第1章 绪论
第1章 绪论
式中: c为光速, f 和λ分别为无线电波的频率和波长, 因此, 无线电波也可以认为是一种频率相对较低的电磁 波。 对频率或波长进行分段, 分别称为频段或波段。 不同频段信号的产生、放大和接收的方法不同, 传播的 能力和方式也不同, 因而它们的分析方法和应用范围也 不同。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。 (2) 按照通信方式来分类, 主要有(全)双工、 半 双工和单工方式。 (3) 按照调制方式的不同来划分, 有调幅、 调频、 调相以及混合调制等。
任何信号都具有一定的频率或波长。 我们这里所
讲的频率特性就是无线电信号的频率或波长。 电磁波
辐射的波谱很宽, 如图 1 — 4 所示。
无线电波只是一种波长比较长的电磁波, 占据的频 率范围很广。 在自由空间中, 波长与频率存在以下关系:
高频电路原理与分析(全套课件865P)

– 掌握通信电子线路的基本组成和分析、计算方法;
– 培养通信电子线路的识图、作图和简单设计能力; – 培养分析和解决通信电子线路中实际问题的能力,培养创 新实践精神; – 了解通信电子线路的最新发展动态,为后续电子课程及 电子专业打下基础。
《高频电路原理与分析》
第1章绪论
要求:
1)了解通信电子线路的特点,通信电子信息产生、发射、接收的原理与 方法; 2)熟悉基本通信电子器件的功能特点和用途; 3)掌握基本通信电子线路的电路结构、分析方法和基本设计方法; 4)掌握基本通信电子线路实验技能和安装调试方法。 通过本课程的学习,应达到下列基本要求: (一)掌握以下定义、基本概念和基本原理:串联谐振、关联谐振、接入系 数、频率特性、通频带、选择性、品质因数、松耦合双调谐、参差调谐、 Y参数、截止频率、特征频率、谐振放大倍数、自给偏压、过压状态、欠 压状态、临界状态、阻抗区配、槽路效率、正弦波振荡器、压电效应、晶 体振荡、调幅、检波、抑制载波调幅、同步检波、调频、鉴频、限幅、频 谱图、变容二极管、电抗管、锁相、捕获、锁定、跟踪、变频、混频、干 扰、噪声、输出功率和效率。
第1章绪论
课程名称: 通信电子线路
英文名称:Communication electronic circuit
教材名称及作者:西安电子科技大学出版社 曾兴雯主编《高频电路原理与分析》(第四版) 21世纪高等学校通信类规划教材
《高频电路原理与分析》
第1章绪论
本课程的特点
课程的目的、要求 目的: – 了解通信电子信息产生、发射、接收的原理与方法; – 分析通信电子器件和通信电路的工作原理;
§1-1无线通信系统概述
一、概念 通信:不失真地将信息(消息)从一方传送到另一方。
高频电路原理与分析 第六版第2章

频率越高,电阻器的高频特性表现越明显。在实际使用 时,要尽量减小电阻器高频特性的影响,使之表现为纯电阻。
图 2-1 电阻的高频等效电路
2. 电容器 由介质隔开的两导体即构成电容。作为电路元件的电
容器一般只考虑其电容量值(标称值),在理论上也只按电容 量来处理。但实际上一个电容器的等效电路却如图2-2(a)所 示。其中,电阻RC为极间绝缘电阻,它是由于两导体间的 介质的非理想(非完全绝缘)所致,通常用损耗角δ或品质因 数QC来表示; 电感LC为分布电感或(和)极间电感,小容量电 容器的引线电感也是其重要组成部分。
趋肤效应是指当频率升高时,电流只集中在导体的表面, 导致有效导电面积减小,交流电阻可能远大于直流电阻,从而 使导体损耗增加,电路性能恶化。辐射效应是指信号泄漏到空 间中,这就使得信号源或要传输的信号能量不能全部输送到负 载上,产生能量损失和电磁干扰。辐射效应还会引起一些耦合 效应,使得高频电路的设计、制作、调试和测量等都非常困难。
第2章 高频电路基础与系统问题
2.1 高频电路中的元器件 2.2 高频电路中的组件 2.3 阻抗变换与阻抗匹配 2.4 电子噪声与接收灵敏度 2.5 非线性失真与动太范围 2.6 高频电路的电磁兼容 思考题与习题
由上一章的介绍可知,各种无线电设备都包含有处理高频信 号的功能电路,如高频放大器、振荡器、调制与解调器等。虽然 这些电路的工作原理和实际电路都有各自的特点,但是它们之间 也有一些共同之处。这些共同之处就是高频电路的基础,主要包 括高频电路的基本元器件和基本组件等。各种高频电路基本上是 由无源元件、有源器件和高频基本组件等组成的,而这些元器件 和基本组件绝大部分是相同的,它们与用于低频电路的基本元器 件没有本质上的差异,主要需要注意这些元器件在高频运用时的 特殊性,当然也有一些高频电路所特有的器件。在高频多个单元 电路中常用的两个重要功能是选频滤波与阻抗变换,振荡回路、 石英谐振器与集中选频滤波器等组件都具有这两个功能,高频变 压器、传输线变压器及阻抗匹配器则具有较好的阻抗变换能力。
高频电路原理与分析(第四版)课后习题答案

aaaaaaaaa 第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。
答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。
发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。
接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。
由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。
高频电路原理与分析(曾兴雯)课后习题答案

高频电路原理与分析第五版课后习题答案曾兴雯刘乃安陈健付卫红编[日期]NEUQ西安电子科技大学出版社第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。
答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。
发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。
接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。
由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z,C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。
如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS)电阻并联后的总电导为94.2(μS)因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。
题2图12min 12max ,22(1210)22(26010)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑--=+⎧⨯==⎪⨯+⎪⎨⎪⨯==⎪⨯+⎩3.在三级相同的单调谐放大器中,中心频率为465kH Z,每个回路的Q e=40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为4650.51 5.928()40e z e Q kH =≈⨯= (2)每个回路允许最大的Q e 为4650.5123.710e e Q =≈⨯=4.图示为一电容抽头的并联振荡回路。
谐振频率f 0=1MHz ,C 1=400 pf ,C 2=100pF121212121232260109121082601091210260108101981253510260190.3175-1261605535()()10103149423435ttt t C C C C pF L mH π-----⨯+==⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈求回路电感L。
若 Q=100,RL=2kΩ,求回路有载 QL值。
题4图解答:答:回路电感为0.317mH,有载品质因数为1.5465.外接负载阻抗对小信号谐振放大器有哪些主要影响?答:外接负载电阻使LC回路总电导增大,即总电阻减小,从而使Qe下降,带宽BW0.7展宽;外接负载电容使放大器的谐振频率f0降低。
因此,在实用电路中,三极管的输出端和负载阻抗都将采用部分接入的方式与LC回路相连,以减小它们的接入对回路Qe值和谐振频率的影响。
1212262124000080,5001(2)10.317(210)8010C CC pFC CLf CmHππ-===+==≈⨯⨯1L12C400R0.8C C500==+负载接入系数为p=261223.1250.641001992 6.281080101001.546199113.125LLLLRR kpQkf CQQRRΩΩπ-'=====≈⨯⨯⨯==≈++'折合到回路两端的负载电阻为回路固有谐振阻抗为R有载品质因数2C 2E 2L6.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。
通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。
7.改正图示线路中的错误,不得改变馈电形式,重新画出正确的线路。
解答:8.晶体管组成的单回路中频放大器,如图所示。
已知f o =465kHz ,晶体管经中和后的参数为:g ie=0.4mS,C ie=142pF,g oe=55μS,C oe=18pF,Y ie=36.8mS,Y re=0,回路等效电容C=200pF,中频变压器的接入系数p1=N1/N=0.35,p2=N2/N=0.035,回路无载品质因数Q0=80,设下级也为同一晶体管,参数相同。
试计算:(1)回路有载品质因数 Q L和 3 dB带宽 B0.7;(2)放大器的电压增益;(3)中和电容值。
(设C b’c=3 pF)题8图解:根据已知条件可知,能够忽略中和电容和y re的影响。
得:2222122000.35180.035142202oe ieC p C p C pF∑=++=+⨯+⨯≈回路总电容为C3-122246510202107.37480固有谐振电导为Cfg SQππμ∑⨯⨯⨯⨯==≈22120262360.3555100.0350.4107.3741014.6oe iep g p g gSμ∑---=++=⨯⨯+⨯⨯+⨯≈回路总电导为g3-1260.731206111122465102021040.414.610465311.5140.4||0.350.03536.81030.8814.6100.353 1.61510.65LLfen b c b cfQfdB B kHzQp p yKN pC C C pFN N pππ∑∑∑---''⨯⨯⨯⨯==≈⨯==≈⨯⨯⨯===⨯===⨯=--C品质因数g带宽谐振增益g中和电容答:品质因数QL为40.4,带宽为11.51kHz,谐振时的电压增益为30.88,中和电容值为1.615pF9.图示是一三回路振荡器的等效电路,设有下列四种情况:(1)L1C1>L2C2>L3C3;(2)L1C1<L2C2<L3C3;(3)L1C1=L2C2>L3C3;(4)L1C1<L2C2=L3C3。
试分析上述四种情况是否都能振荡,振荡频率f1与回路谐振频率有何关系?根据给定条件,可知(1)fo1<f02<f03,因此,当满足fo1<f02<f<f03,就可能振荡,此时L1C1回路和L2C2回路呈容性,而L3C3回路呈感性,构成一个电容反馈振荡器。
(2)fo1>f02>f03,因此,当满足fo1>f02>f>f03,就可能振荡,此时L1C1回路和L2C2回路呈感性,而L3C3回路呈容性,构成一个电感反馈振荡器。
(3)fo1=f02<f03, 因此,当满足fo1=f02<f<f03,就可能振荡,此时L1C1回路和L2C2回路呈容性,而L3C3回路呈感性,构成一个电容反馈振荡器。
(4)fo1>f02=f03不能振荡,因为在任何频率下,L3C3回路和L2C2回路都呈相同性质,不可能满足相位条件。
10.画出下列已调波的波形和频谱图(设ωc=5Ω)。
(1)u(t)=(1+sinΩt)sinωc t(V);(2)u(t)=(1+0.5cosΩt)cosωc t(V);(3)u(t)=2 cosΩt cosωc t(V)解:(1)为m a=1的普通调幅波,其波形与频谱图如图2(a)、(b)所示;(2)为m a=0.5的普通调幅波,其波形与频谱图如图2(c)、(d)所示;(3)为双边带调幅波,其波形与频谱图如图2(e)、(f)所示。
图211.简要叙述减小混频干扰的措施。
解:减小混频干扰的措施有:(1)混频器的干扰程度与干扰信号的大小有关,因此提高混频器前端电路的选择性(如天线回路、高放级的选择性),可有效地减小干扰的有害影响。
(2)将中频选在接收频段以外,可以避免产生最强的干扰哨声,同时,也可以有效地发挥混频前各级电路的滤波作用,将最强的干扰信号滤除。
如采用高中频,可基本上抑制镜像频率干扰、中频干扰和某些副波道干扰。
(3)合理选择混频管的工作点,使其主要工作在器件特性的二次方区域,或者选择具有平方律特性的场效应管作为混频器件,可减少输出的组合频率数目,进而减小混频干扰。
但这种办法对于减小中频干扰和镜像频率干扰是无效的。
(4)采用模拟乘法器、平衡混频器、环形混频器,可大大减少组合频率分量,也就减小了混频干扰。
12.丙类放大器为什么一定要用谐振回路作为集电极的负载?谐振回路为什么一定要调谐在信号频率上?答:这是因为放大器工作在丙类状态时,其集电极电流将是失真严重的脉冲波形,如果采用非调谐负载,将会得到严重失真的输出电压,因此必须采用谐振回路作为集电极的负载。
调谐在信号频率上集电极谐振回路可以将失真的集电极电流脉冲中的谐波分量滤除,取出其基波分量,从而得到不失真的输出电压。
13.无线通信为什么要用高频信号?“高频”信号指的是什么?答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
14.无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。
在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。
15.石英晶体有何特点?为什么用它制作的振荡器的频率稳定度较高?答:石英晶体有以下几个特点:(1)晶体的谐振频率只与晶片的材料、尺寸、切割方式、几何形状等有关,温度系数非常小,因此受外界温度影响很小;(2)具有很高的品质因数;(3)具有非常小的接入系数,因此手外部电路的影响很小;(4)在工作频率附近有很大的等效电感,阻抗变化率大,因此谐振阻抗很大;(5)构成震荡器非常方便,而且由于上述特点,会使频率非常稳定。
16.对高频小信号放大器的主要要求是什么?高频小信号放大器有哪些分类?答:对高频小信号器的主要要求是:(1)比较高的增益;(2)比较好的通频带和选择性;(3)噪音系数要小;(4)稳定性要高。
高频小信号放大器一般可分为用分立元件构成的放大器、集成放大器和选频电路组成的放大器。
根据选频电路的不同,又可分为单调谐回路放大器和双调谐回路放大器;或用集中参数滤波器构成选频电路。
17.高频谐振放大器中,造成工作不稳定的王要因素是什么?它有哪些不良影响?为使放大器稳定工作,可以采取哪些措施?答:集电结电容是主要引起不稳定的因素,它的反馈可能会是放大器自激振荡;环境温度的改变会使晶体管参数发生变化,如C oe、C ie、g ie、g oe、y fe、引起频率和增益的不稳定。