最新转速传感器种类、原理及发展趋势说课讲解
常见的转速传感器原理

常见的转速传感器原理转速传感器是一种用于测量转子运动速度的装置,广泛应用于汽车、工业设备、航天航空等领域。
转速传感器的原理可以分为以下几种常见类型。
磁敏传感器是利用转子上的永磁体在转动时与传感器之间产生磁场变化,通过检测磁场变化来测量转速。
其中,常用的磁敏传感器包括霍尔传感器和磁阻传感器。
-霍尔传感器:霍尔传感器是利用霍尔效应原理,当转子上的永磁体通过传感器时,产生磁场变化,使得霍尔元件内部的霍尔电压发生变化,进而测量转速。
-磁阻传感器:磁阻传感器是利用转子上的永磁体与传感器之间的磁阻变化,通过测量磁阻的变化来计算转速。
通常磁阻传感器由磁阻片、线圈和磁通路组成,当转子上的永磁体通过传感器时,磁通路发生变化,使得线圈感应电压变化,从而得到转速信息。
光电传感器是利用转子上的标记与传感器之间的光电信号变化,来测量转速。
光电传感器通常由发光器件和光敏电阻组成,当转子上的标记通过传感器时,产生的光电信号经过光敏电阻转化为电压信号,从而得到转速信息。
光电传感器具有响应速度快、精度高的特点,因此在高速转动的设备中应用广泛。
电感传感器是利用转子上的铁芯与传感器之间的电感变化,来测量转速。
电感传感器通常由铁芯、线圈和驱动电路组成,当转子上的铁芯通过传感器时,铁芯与线圈之间的电感发生变化,由驱动电路测量和分析电感变化,得到转速信息。
超声波传感器是利用转子上的超声波信号与传感器之间的回波时间差,来测量转速。
通常超声波传感器由超声波发射器和接收器组成,发射器发出超声波信号,当信号与转子上的物体相遇产生回波时,接收器接收回波信号,根据回波时间差计算转速。
以上是常见的几种转速传感器原理,每种传感器原理都有其特点和适用场景,根据实际需求选择适合的传感器原理可以有效地进行转速测量。
转速传感器的分类及原理

电子式转速仪是一个比较笼统的概念:以现代电子技术为基础,设计制造的转速测量工具。
它一般有传感器和显示器,有的还有信号输出和控制。
因为传感器和显示器件方面的多种多样,还有测量方法的多样性,很难像前五种一样来归类。
这里将电子类转速计,从传感器和二次仪表分开来分类。
如果从安装使用方式上来分,还有就地安装式、台式、柜装式和便携式以及手持式。
关于发挥行业网站作用、推进行业信息工作的通知。
转速传感器从原理(或器件)上来分,有磁电感应式、光电效应式、霍尔效应式、磁阻效应式、介质电磁感应式等。
另外还有间接测量转速的转速传感器:如加速度传感器(通过积分运算,间接导出转速),位移传感器通过微分运算,间接导出转速),等等。
测速发电机和某些磁电传感器在线性区域,可以直接通过交流有效值转转速表换,来测量转速;大多数都输出脉冲信号(近似正弦波或矩形波)。
针对脉冲信号测转速的方法有:频率积分法(也就是F/V转换法,其直接结果是电压或电流),和频率运算法(其直接结果是数字)。
如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注/。
转速传感器基本常识

转速传感器基本常识转速传感器是一种用于测量某个物体转速的装置。
在工业、机械和车辆中,转速的准确测量非常重要,转速传感器因此成为了许多设备中必不可少的部件。
本文将介绍转速传感器的基本工作原理、种类、以及应用场景。
工作原理转速传感器的工作原理基于霍尔效应。
当传感器中的磁场发生变化时,传感器内部的霍尔传感器会生成电信号。
转速传感器的磁场一般由附在转子上的永磁体产生。
传感器接收到这个磁场并产生电信号,这个信号含有能够描述转子转速的信息。
通过转速传感器,我们便能够获取旋转物体的速度、加速度、以及位置。
种类磁阻式转速传感器磁阻式转速传感器是一种被广泛使用的转速传感器。
它利用永磁体在旋转过程中产生的磁场,使内部的磁敏电阻与旋转物体之间产生磁阻力。
传感器通过测量这个磁阻力来测量转速。
磁阻式转速传感器可以在各种不同的应用场合下使用。
霍尔式转速传感器霍尔式转速传感器通过利用霍尔效应来测量转速。
与磁阻式转速传感器不同的是,当永磁体旋转时,传感器内部的霍尔元件会感测到磁场的变化,这个信号被转换成为电信号。
由于霍尔效应的特殊性质,这种传感器无需接触旋转物体。
光电式转速传感器光电式转速传感器则是利用光学传感器来测量旋转物体的转速。
光电式转速传感器的工作原理是,物体上的光栅状标记在旋转过程中在传感器前面流过,这个运动会导致光电元件中的电压发生变化。
传感器利用这个变化来测量物体的转速。
这种传感器在高速度旋转物体的测量中应用更为广泛。
应用场景转速传感器的应用非常广泛。
例如,水泵,发动机和变速器等许多汽车和工业设备都需要转速传感器。
下面是一些更具体的应用场景:螺旋桨技术如今,大多数船的螺旋桨转速都由转速传感器控制。
转速传感器在频繁的液体混合和机器运动的条件下运作良好。
汽车制动系统转速传感器是汽车制动系统中不可缺少的一部分。
在车轮旋转时,转速传感器会通过监控车轮旋转的速度来确保制动系统顺利工作。
能源设备可以使用转速传感器在太阳能电池板和风力涡轮机等类型的能源设备中确保更高的发电效率。
转速传感器工作原理

转速传感器工作原理转速传感器是一种用于测量机械设备转速的传感器,它能够将转速转换为电信号输出,从而实现对转速的监测和控制。
转速传感器的工作原理主要是通过感知机械设备的运动状态,将这种运动状态转换为电信号输出,从而实现对转速的测量和监测。
转速传感器的工作原理主要包括以下几个方面:1. 磁性感应原理一种常见的转速传感器工作原理是基于磁性感应原理。
这种传感器通常包括一个旋转的磁铁和一个固定的线圈。
当磁铁旋转时,它会产生一个变化的磁场,这个变化的磁场会感应出线圈中的电流。
通过测量这个电流的大小和频率,就可以确定机械设备的转速。
2. 光电传感原理另一种常见的转速传感器工作原理是基于光电传感原理。
这种传感器通常包括一个发光二极管和一个光敏电阻。
当机械设备旋转时,发光二极管会发出光束,光敏电阻会感应这个光束的变化。
通过测量光敏电阻的电阻值的变化,就可以确定机械设备的转速。
3. 声波传感原理还有一种转速传感器工作原理是基于声波传感原理。
这种传感器通常包括一个发射声波的装置和一个接收声波的装置。
当机械设备旋转时,发射声波的装置会发出声波,接收声波的装置会感应这个声波的变化。
通过测量声波的传播时间和频率,就可以确定机械设备的转速。
无论是哪种工作原理,转速传感器都能够准确、可靠地测量机械设备的转速,从而实现对机械设备的监测和控制。
这对于保证机械设备的正常运行和延长机械设备的使用寿命具有非常重要的意义。
总的来说,转速传感器的工作原理主要是通过感知机械设备的运动状态,将这种运动状态转换为电信号输出,从而实现对转速的测量和监测。
不同的传感器可能采用不同的工作原理,但它们都能够准确、可靠地测量机械设备的转速,为机械设备的运行提供重要的数据支持。
转速传感器工作原理

转速传感器工作原理转速传感器是一种用于测量旋转物体转速的传感器,它在工业生产和汽车行业中有着广泛的应用。
它的工作原理主要是利用感应原理或者霍尔效应来实现对转速的测量。
在本文中,我们将详细介绍转速传感器的工作原理及其应用。
转速传感器的工作原理可以分为两种主要类型,感应式转速传感器和霍尔效应转速传感器。
感应式转速传感器是利用感应原理来测量转速的。
当传感器靠近旋转物体时,磁场会产生感应电流,这个感应电流的频率与旋转物体的转速成正比。
通过测量感应电流的频率,就可以得到旋转物体的转速信息。
这种传感器结构简单、可靠,适用于高速旋转的物体。
霍尔效应转速传感器则是利用霍尔元件来测量转速的。
当旋转物体上的磁铁通过霍尔元件时,会产生霍尔电压信号,这个信号的频率也与旋转物体的转速成正比。
通过测量霍尔电压信号的频率,同样可以得到旋转物体的转速信息。
这种传感器具有灵敏度高、响应速度快的特点,适用于低速旋转的物体。
无论是感应式转速传感器还是霍尔效应转速传感器,其工作原理都是基于磁场的变化来实现对转速的测量。
传感器本身会产生一个与旋转物体转速成正比的信号,通过信号处理电路将这个信号转换成数字信号,最终输出给控制系统进行处理。
因此,转速传感器在工业生产和汽车行业中有着广泛的应用,如发动机转速测量、风力发电机转速测量等。
综上所述,转速传感器的工作原理主要是基于磁场的变化来实现对转速的测量,其中包括感应式转速传感器和霍尔效应转速传感器两种类型。
无论是哪种类型的传感器,其基本原理都是通过磁场的变化产生一个与旋转物体转速成正比的信号,再通过信号处理电路将这个信号转换成数字信号输出。
这种传感器在工业生产和汽车行业中有着广泛的应用,对于提高生产效率和安全性都起着重要作用。
转速传感器工作原理

转速传感器工作原理转速传感器是一种用于测量机械设备转速的传感器,它在工业生产中起着至关重要的作用。
本文将介绍转速传感器的工作原理,以及其在实际应用中的一些特点和注意事项。
转速传感器的工作原理主要是通过感知旋转部件的运动来产生信号,然后将信号转换成电信号输出。
常见的转速传感器有霍尔传感器、电磁感应传感器和光电传感器等。
其中,霍尔传感器是一种常用的转速传感器,它通过感知磁场的变化来检测旋转部件的运动状态。
当旋转部件经过传感器时,磁场会发生变化,从而产生霍尔电压信号,通过信号处理电路将其转换成脉冲信号输出。
电磁感应传感器则是利用感应线圈和永磁体的相对运动来产生感应电动势,从而实现转速的测量。
光电传感器则是通过光电二极管和光敏电阻来感知旋转部件的运动,当旋转部件经过传感器时,光线被遮挡,从而产生电信号输出。
在实际应用中,转速传感器可以应用于发动机、风力发电机、涡轮机、风扇等设备中,用于测量转速或者转动角度。
通过转速传感器可以实现对设备运行状态的监测和控制,提高设备的安全性和稳定性。
此外,转速传感器还可以与其他传感器结合,实现对设备运行状态的全面监测和控制。
在使用转速传感器时,需要注意一些问题。
首先,要注意传感器的安装位置和安装方式,确保传感器与被测物件之间的距离和角度符合要求。
其次,要注意传感器的信号输出和信号处理电路的匹配,确保输出信号的准确性和稳定性。
最后,要定期对传感器进行检测和维护,确保传感器的正常工作。
总之,转速传感器作为一种重要的工业传感器,在工业生产中有着广泛的应用。
通过了解其工作原理和注意事项,可以更好地使用和维护转速传感器,提高设备的运行效率和安全性。
希望本文对您有所帮助,谢谢阅读!。
转速传感器种类原理及发展趋势

转速传感器种类、原理及发展趋势将旋转物体的转速转换为电量输出的传感器。
转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。
按信号形式的不同,转速传感器可分为模拟式和数字式两种。
前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。
转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。
常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机。
下面浅析这几种传感器。
一.光电式转速传感器光电式转速传感器对转速的测量,主要是通过将光线的发射与被测物体的转动相关联,再以光敏元件对光线的进行感应来完成的。
光电式转速传感器从工作方式角度划分,分为透射式光电转速传感器和反射式光电转速传感器两种。
1、投射式光电转速传感器投射式光电转速传感器设有读数盘和测量盘,两者之间存在间隔相同的缝隙。
投射式光电转速传感器在测量物体转速时,测量盘会随着被测物体转动,光线则随测量盘转动不断经过各条缝隙,并透过缝隙投射到光敏元件上。
投射式光电转速传感器的光敏元件在接收光线并感知其明暗变化后,即输出电流脉冲信号。
投射式光电转速传感器的脉冲信号,通过在一段时间内的计数和计算,就可以获得被测量对象的转速状态。
2、反射式光电转速传感器反射式光电转速传感器是通过在被测量转轴上设定反射记号,而后获得光线反射信号来完成物体转速测量的。
反射式光电转速传感器的光源会对被测转轴发出光线,光线透过透镜和半透膜入射到被测转轴上,而当被测转轴转动时,反射记号对光线的反射率就会发生变化。
反射式光电转速传感器内装有光敏元件,当转轴转动反射率增大时,反射光线会通过透镜投射到光敏元件上,反射式光电转速传感器即可发出一个脉冲信号,而当反射光线随转轴转动到另一位置时,反射率变小光线变弱,光敏元件无法感应,即不会发出脉冲信号。
第九章 转速传感器

9.16 磁阻元件式车速传感器输出波形
9.17 磁阻元件式车速传感器的车上电路
• 9.6 光电式车速传感器 组成:发光二极管、光敏元件、以及速度 表电缆驱动的遮光板。 原理:当遮光盘没有遮光时,发光二极管 的光射到光敏晶体管上,光敏晶体管的集电极 中有电流通过,该管导通,这时晶体管Tr1也导 通,因此在Si端子上就有5V的电压输出。 脉冲频率取决于车速,在车速为60km/h时 ,仪表电缆的转速为637r/h,仪表电缆每转一圈 ,传感器就有20个脉冲输出。
9.3 转速表电路方框图
转速表电路有关波形解析: 当齿轮旋转时,就会产生下图的一个周期的电压,此电压经放大、整形电路之后,就变为 如图所示的矩形波。然后再通过稳态电路变换,使脉宽为一定值,经电流放大器放大后,就可 以输入到转速表中。又因输出的脉冲数是根据发 动机的转速变化的,所以转速表就能够按照脉冲 电流的平均值来指示发动机的转速。
9.11车轮转速传感器输出电压波形
• 9.5 磁阻元件式车速传感器 原理:利用磁阻元件的阻值变化就可以检测出磁铁旋转引起的磁通变化。阻值的变化引起
其上电压的变化,将电压的变化输入到比较器中进行比较,再由比较器输出信号控制晶体管的 导通和截止。磁阻元件式车速传感器的电路原理图如下:
9.12 磁阻元件式车速传感器原理
9.18 光电式车传感器结构
原理: 当遮光盘没有遮光时,发光二极管的光射到光敏晶体管上,光敏晶体管的集电极中有电流 通过,该管导通,这时晶体管Tr1也导通,因此在Si端子上就有5V的电压输出。 脉冲频率取决于车速,在车速为60km/h时,仪表电缆的转速为637r/h,仪表电缆每转一圈, 传感器就有20个脉冲输出。
第九章 转速传感器
主要介绍转速传感器、车速传感器的工作原理与应用。 重点阐述:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转速传感器种类、原理及发展趋势将旋转物体的转速转换为电量输出的传感器。
转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。
按信号形式的不同,转速传感器可分为模拟式和数字式两种。
前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。
转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。
常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机。
下面浅析这几种传感器。
一.光电式转速传感器光电式转速传感器对转速的测量,主要是通过将光线的发射与被测物体的转动相关联,再以光敏元件对光线的进行感应来完成的。
光电式转速传感器从工作方式角度划分,分为透射式光电转速传感器和反射式光电转速传感器两种。
1、投射式光电转速传感器投射式光电转速传感器设有读数盘和测量盘,两者之间存在间隔相同的缝隙。
投射式光电转速传感器在测量物体转速时,测量盘会随着被测物体转动,光线则随测量盘转动不断经过各条缝隙,并透过缝隙投射到光敏元件上。
投射式光电转速传感器的光敏元件在接收光线并感知其明暗变化后,即输出电流脉冲信号。
投射式光电转速传感器的脉冲信号,通过在一段时间内的计数和计算,就可以获得被测量对象的转速状态。
2、反射式光电转速传感器反射式光电转速传感器是通过在被测量转轴上设定反射记号,而后获得光线反射信号来完成物体转速测量的。
反射式光电转速传感器的光源会对被测转轴发出光线,光线透过透镜和半透膜入射到被测转轴上,而当被测转轴转动时,反射记号对光线的反射率就会发生变化。
反射式光电转速传感器内装有光敏元件,当转轴转动反射率增大时,反射光线会通过透镜投射到光敏元件上,反射式光电转速传感器即可发出一个脉冲信号,而当反射光线随转轴转动到另一位置时,反射率变小光线变弱,光敏元件无法感应,即不会发出脉冲信号。
二、变磁阻式转速传感器它属于变磁阻式传感器。
变磁阻式传感器的三种基本类型,电感式传感器、变压器式传感器和电涡流式传感器都可制成转速传感器。
电感式转速传感器应用较广,它利用磁通变化而产生感应电势,其电势大小取决于磁通变化的速率。
这类传感器按结构不同又分为开磁路式和闭磁路式两种。
开磁路式转速传感器(图4a)结构比较简单,输出信号较小,不宜在振动剧烈的场合使用。
闭磁路式转速传感器由装在转轴上的外齿轮、内齿轮、线圈和永久磁铁构成(图4b)。
内、外齿轮有相同的齿数。
当转轴连接到被测轴上一起转动时,由于内、外齿轮的相对运动,产生磁阻变化,在线圈中产生交流感应电势。
测出电势的大小便可测出相应转速值。
三.电容式转速传感器它属于电容式传感器,有面积变化型和介质变化型两种。
1、面积变化型图3中是面积变化型的原理,图中电容式转速传感器由两块固定金属板和与转动轴相连的可动金属板构成。
可动金属板处于电容量最大的位置,当转动轴旋转180°时则处于电容量最小的位置。
电容量的周期变化速率即为转速。
可通过直流激励、交流激励和用可变电容构成振荡器的振荡槽路等方式得到转速的测量信号。
2、介质变化型介质变化型是在电容器的两个固定电极板之间嵌入一块高介电常数的可动板而构成的。
可动介质板与转动轴相连,随着转动轴的旋转,电容器板间的介电常数发生周期性变化而引起电容量的周期性变化,其速率等于转动轴的转速。
图中齿轮外沿面作为电容器的动极板,当电容器定极板与齿顶相对时,电容量最大,而与齿隙相对时,电容量最小。
因此,电容量的变化频率应与齿轮的转频成正比。
四、霍尔转速传感器霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。
霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。
1、霍尔转速传感器的工作原理霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。
霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。
霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。
2、霍尔转速传感器的测量方法霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。
霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。
高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。
霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。
五、测速发电机测速发电机是自动控制系统中的信号元件,它可以把转速信号转换成电气信号。
测速发电机有直流测速发电机和异步测速发电机。
直流测速发电机是一种微型直流发电机,按励磁方式分为它激式和永磁式两大类。
在理想情况下,输出特性为一条直线,而实际上输出特性与直线有误差。
引起误差的主要原因是:电枢反应的去磁作用,电刷与换向器的接触压降,电刷偏离几何中性线,温度的影响等。
因此,在使用时必须注意电机的转速不得超过规定的最高转速,负载电阻不小于给定值。
在精度要求严格的场合,还需要对测速机进行温度补偿。
纹波电压造成了输出电压不稳定,降低了测速发电机的精度。
异步测速发电机的结构与空心杯转子交流伺服电动机完全相同。
当异步测速发电机的励磁绕组产生的磁通 d Φ& 保持不变,转子不转时输出电压为零,转子旋转时切割励磁磁通产生感应电动势和电流,建立横轴方向的磁通,在输出绕组中产生感应电动势,从而产生输出电压。
输出电压的大小与转速成正比,但其频率与转速无关,等于电源的频率。
理想的输出特性也是一条直线,但实际上并非如此。
引起误差的主要原因是: d Φ& 的大小和相位都随着转速而变化,负载阻抗的大小和性质,励磁电源的性能,温度以及剩余电压,其中剩余电压是误差的主要部分。
表征异步测速发电机性能的主要技术指标有线性误差、相位误差和剩余电压。
引起剩余电压的原因很多,如磁路不对称、气隙不均匀、输出绕组和励磁绕组在空间不是严格相差90°电角度、绕组匝间短路、铁芯片间短路、转子杯材料和厚度不均匀以及寄生电容的存在等等。
在控制系统中,剩余电压的同相分量引起系统误差,正交和高次谐波分量将使放大器饱和。
消除剩余电压的方法很多,除了改进电机的制造材料和工艺外,还可采用外接补偿装置。
在实际中为了提高异步测速发电机的性能通常采用四极电机。
为了减小误差,应增大转子电阻和负载阻抗,减小励磁绕组和输出绕组的漏阻抗,提高励磁电源的频率(采用400HZ 的中频励磁电源)。
使用时电机的工作转速不应超过规定的转速范围。
为了满足控制系统的要求,对测速发电机的性能要求也越来越高。
为此人们在普通测速发电机的基础上,研制出了永磁高灵敏度直流测速发电机和无刷直流测速发电机。
测速发电机在自动控制系统中是一个非常重要的元件,它可作为校正元件、阻尼元件、测量元件、解算元件和角加速度信号元件等。
五、各公司转速传感器外观华夏变速箱传感器外观华夏单路输出传感器外观华夏双路输出传感器外观稻虾共生高产技术要点韩雪峰江苏省建湖县建阳农业中心 224700摘要: “千斤稻万元钱”是指在稻田实施立体种养,实现千斤水稻产量、万元经济效益的一项高效农业技术。
稻虾共生是利用稻田的浅水环境,辅以人为措施,既种稻又养虾,可有效提高稻田单位面积的经济效益。
一般情况下,稻虾共作模式,可亩产无公害稻谷620公斤左右,龙虾170公斤左右,按无公害稻谷每公斤4元、龙虾每公斤25元计算,亩产值可达6500元以上。
1 田间工程设计1.1田块选择。
选择水质良好、水量充足、周围没有污染源、保水能力较强、排灌方便、不受洪水淹没的田块进行稻田养虾,周围没有高大树木,桥涵闸站配套,通电、通水、通路。
面积少则几亩,多则几十亩或上百亩都可。
凡近几年使用过丁草胺、恶草灵等除草剂及麦田秋季应用绿甲黄隆除草剂的田块应禁止用作养殖。
1.2 开挖虾沟。
由于龙虾有掘穴打洞的习性,一般洞穴在0.5m-0.8m,部分洞穴超过1m。
为防止掘穴外逃,沿稻田田埂内侧四周要挖养虾沟,沟宽4-6m,深1m,坡比1:25。
并在埂上四周设置0.5m高、内壁光滑的防逃墙和防逃板。
田块面积较大的,还要在田中间开挖田间沟,田间沟宽1m,深0.5m。
养殖沟和田间沟面积占稻田20%以上左右。
1.3附属工程。
进排水口要用铁丝网或栅栏围住,防止小龙虾外逃和敌害进入。
同时防止青蛙进入产卵,避免蝌蚪残食虾苗。