高二数学椭圆的性质

合集下载

2.2.2椭圆的几何性质1(高二数学精品课件)

2.2.2椭圆的几何性质1(高二数学精品课件)
(心3对)称把。x换成-x,同时把y换成-yy方程不变,图象关于原点成中
B2
A1
F1
b
oc
a
A2
F2
B1
结论 :通过上面的分析,我们得到判断曲线 是否对称的方法:
以-x代换x,若方程不变,则曲线关于y轴对称;若以
-y代换y,方程不变,曲线关于x轴对称;
同时以- x代换x,以- y代换y,方程不变,则方 程关于坐标原点对称.
二、椭圆
简单的几何性质
1 b2

1得:
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2
A1
F1
b
oc
a
A2
F2
B1
椭圆的对称性
Y
P1(-x,y)
P(x,y)
O
X
P2(-x,-y)
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称;
长半轴长为a,短 半轴长为b. a>b
e c a
a2=b2+c2
x2 b2

y2 a2
1(a
b
0)
|x|≤ b,|y|≤ a
同前 (b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c)
同前
同前
同前
例1已知椭圆方程为9x2+25y2=225,
它的长轴长是: 10 。短轴长是: 6 。
(1) x2 y2 1
32
(2)
x2 y2 1 36 100
(3) 16x2+25y2=400

高二选修一椭圆的知识点

高二选修一椭圆的知识点

高二选修一椭圆的知识点椭圆是高中数学的重要内容之一,作为高二学生选修的数学课程之一,椭圆的知识点对于学生的数学素养和理解力有着重要的影响。

本文将介绍高二选修一中涉及的椭圆的知识点。

一、椭圆的定义与性质椭圆是平面上一点到两个给定定点的距离之和等于常数的点的集合。

这两个给定定点分别称为椭圆的焦点,常数称为椭圆的离心率。

椭圆具有如下性质:1. 椭圆的离心率小于1,且等于0时为圆。

2. 椭圆的中心即为焦点所连直线的垂直平分线的交点。

3. 椭圆的长半轴和短半轴分别是焦点所连直线的垂直平分线与椭圆的交点到焦点的距离。

4. 椭圆的顶点是和焦点在同一直线上的两个点。

二、椭圆的方程表达椭圆的方程表达有两种形式:标准方程和一般方程。

1. 标准方程椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。

2. 一般方程椭圆的一般方程为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F均为常数。

三、椭圆的参数方程椭圆的参数方程是将椭圆的坐标表示为参数θ的函数形式。

椭圆的参数方程为x = h + a cosθ,y = k + b sinθ,其中θ为参数。

四、椭圆的焦点与直径椭圆的焦点是指离心率所决定的椭圆上两个特殊的点,位于椭圆的长轴上。

椭圆的直径是从椭圆上一点到椭圆的另一点的最长线段。

五、椭圆与切线椭圆上的任意一点处都存在切线。

椭圆的切线与椭圆的法线垂直。

六、椭圆的重要参数椭圆的重要参数包括离心率、焦距、短半轴、长半轴、准线等,这些参数可以通过椭圆的方程表达或者几何性质求解。

七、椭圆的应用椭圆在日常生活和工程领域中有着广泛的应用。

例如,椭圆的形状可以模拟行星的轨道,从而研究天体运动;椭圆的形状也可以用来设计汽车、船舶和建筑物等工程项目。

高二数学椭圆的简单几何性质

高二数学椭圆的简单几何性质

教学内容:椭圆的简单几何性质【基础知识精讲】22a x +22by =1(a >b >0);范围:椭圆位于直线x=±a 和y=±b 所围成的矩形里;即|x |≤a ;|y |≤b.2.对称性:椭圆关于x 轴;y 轴和原点都是对称的.坐标轴为椭圆的对称轴;原点是椭圆的对称中心;即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A 1(-a ;0);A 2(a ;0);B 1(0;b);B 2(0;-b)4.离心率:e=ac;(o <e <1);e 越接近于1;则椭圆越扁;e 越接近于0;椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e <1)的点的轨迹.定点即为椭圆的焦点;定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x 0;y 0)是椭圆22a x +22by =1(a >b >0)上的任意一点;F 1、F 2分别是椭圆的左、右焦点;则|PF 1|=a+ex 0;|PF 2|=a-ex 0.⎩⎨⎧==ϕϕϕsin )(cos b y a x 是参数 本节学习要求:椭圆的几何性质内容多.它与直线的位置关系的确定离不开一元二次方程中的判别式及韦达定理.如椭圆中的弦长问题:若直线y=kx+b 和二次曲线Ax 2+Cy 2+Dx+Ey+F=0相交;所得弦长可由下法求之;由两方程中消去y ;得ax 2+bx+c=0;记△=b 2-4ac ;则弦长=ak )1(2+△;若弦过焦点;则用焦半径公式更为简洁.这要求大家针对具体的题目;灵活采用方法计算弦长或与焦半径有关的问题.【重点难点解析】通过“圆的方程”的学习我们知道;圆的几何性质问题用代数的方法解题简便;计算量小的特点;同样;椭圆也有类似的几何性质;那么在学习本节之前要复习椭圆的定义及标准方程;在此基础上来学习椭圆的几何性质;掌握椭圆的性质;标准方程;及椭圆的第二定义.例1 设直线l 过点P(-1;0);倾角为3π;求l 被椭圆x 2+2y 2=4所截得的弦长. 解:直线l 的方程为y=3x+3;代入椭圆方程;得7x 2+12x+2=0;∵△=144-4×7×2=88∴弦长=7)31(88+=7224 例2 求椭圆252x +812y =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cos θ;9sin θ);则 d=564sin 36cos 53-θ+θ⨯=564cos 15sin 36-+θθ=564)125arctan sin(39-+θ∴d max =564139-⨯例3 已知椭圆42x +32y =1内有一点P(1;-1);F 是右焦点;M 是椭圆上的动点;求|MP|+2|MF|的最小值;并求此时M 的坐标.解:过M 作右准线x=4的垂线;垂足为M 1;由椭圆第二定义;有1MM MF =21∴2|MF |=|MM 1|∴|MP |+2|MF |=|MP |+|MM 1|过P 作右准线的垂线交椭圆于N ;垂足为N 1;垂线方程为y=-1.显然|MP |+|MM 1|≥|NP |+|NN 1|(当M 与N 重合时等号成立)而|NP |+|NN 1|=|PN 1|=3由方程组⎩⎨⎧==+1124322y y x 得N(362;-1)∴|MP |+2|MF |的最小值是3;此时M 的坐标是(362;-1)【难题巧解点拨】例1 P 是椭圆方程为162y +92x =1上的任意一点;F 1;F 2是椭圆的两个焦点;试求|PF 1|·|PF 2|的取值范围.解:设|PF 1|=t ;则t ∈[a-c ;a+c ];即t ∈[4-7;4+7]且|PF 2|=2a-t=8-t. ∴|PF 1|·|PF 2|=t(8-t)=-(t-4)2+16 t ∈[4-7;4+7]当t=4时;取最大值为16 当t=4±7时;取最小值为9.∴所求范围为[9;16] 例2 F 1、F 2是椭圆的两个焦点;过F 2作一条直线交椭圆于P 、Q 两点;使PF 1⊥PQ ;且|PF 1|=|PQ |;求椭圆的离心率e.解:如下图;设|PF 1|=t ;则|PQ |=t ;|F 1Q |=2t ;由椭圆定义有:|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a∴|PF 1|+|PQ |+|F 1Q |=4a 即(2+2)t=4a ;t=(4-22)a ∴|PF 2|=2a-t=(22-2)a 在Rt △PF 1F 2中;|F 1F 1|2=(2c)2∴[(4-22)a ]2+[(22-2)a ]2=(2c)2∴22ac =9-62 ∴e=a c =6-3例3 已知P 是椭圆22a x +22by =1(a >b >0)上的一点;F 1F 2为两焦点;且F 1P ⊥F 2P ;若P到两准线的距离分别为6和12;求此椭圆方程.解:(利用椭圆第二定义求解)∵点P 到两准线的距离分别是6和12∴2·ca 2 =6+12 即a 2=9c由椭圆第二定义知;e=11d PF =22d PF∵d 1=6;d 2=12 ∴|PF 1|=6e ;|PF 2|=12e又∵PF 1⊥PF 2 ∴|PF 1|2+|PF 2|2=|F 1F 2|2∴36e 2+144e 2=4c 2∵e=ac ∴a 2=45 又a 2=9c ∴c=5 ∴b 2=a 2-c 2=20∴所求椭圆的方程的452x +202y =1例4 在椭圆3x 2+4y 2=12上;是否存在相异的两点A 、B 关于直线y=4x+m 对称并说明理由.解:设A(x 1;y 1);B(x 2;y 2);AB 的中点M(x 0;y 0) 直线AB :y=-41x+t ;将AB 的方程代入椭圆的方程消去y 得;13x 2-8tx+16t 2-48=0 ∴△=(-8t)2-4×13×(16t 2-48)>0 ∴-213<t <213①且x 1+x 2=138t又AB 的中点M 在直线y=4x+m 上; ∴1312t=4×134t+m ∴t=-413m 代入①式得: -13213<m <13213 解法二:设A(x 1;y 1);B(x 2;y 2)是椭圆上关于直线l :y=4x+m 对称的两点;则421x +321y =1 ① 422x +322y =1 ② ①-②得42221x x -+32221y y -=0∴2121x x y y --=)(4)(32121y y x x +-+而K AB =2121x x y y -- =-41故有)(4)(32121y y x x +-+=-41设AB 的中点为(x ;y);则有x 1+x 2=2x ;y 1+y 2=2y 代入即得AB 中点的轨迹方程为y=3x. 由⎩⎨⎧-=-=⇒⎩⎨⎧+==my mx m x y x y 343 由于AB 的中点在椭圆内部∴4)(2m -+3)3(2m -<1⇒m 2<134⇒-13213<m <13213 故当m ∈(-13213;13213)时;椭圆C 上有不同的两点关于直线对称. 例5 椭圆92522y x +=1上不同三点A(x 1;y 1);B(4; 159);C(x 2;y 2)与焦点F(4;0)的距离成等差数列.(1)求证:x 1+x 2=8(2)若线段AC 的垂直平分线与x 轴的交点为T ;求直线BT 的斜率k. 解:由题知a=5;b=3;c=4. (1)由椭圆的第二定义知:12x ca AF -=a c ⇒|AF |=a-ac x 1=5-54x 1同理有|CF |=5-54x 2 ∵|AF |+|CF |=2|BF | 且|BF |=159 ∴(5-54x 1)+(5-54x 2)=518 即x 1+x 2=8(2)∵线段AC 的中点为(4;221y y +) ∴它的垂直平分线方程为y-221y y + =1221y y x x --(x-4)又点T 在x 轴上;设其坐标为(x 0;0);代入上式得;x 0-4=)(2212221x x y y -- ①点A(x 1;y 1);B(x 2;y 2)都在椭圆上∴y 21=259(25-x 21);y 22=259 (25-x 22) ∴y 21-y 22=-259(x 1+x 2)(x 1-x 2) 将此式代入①并利用x 1+x 2=8得 x 0-4=-2536 ∴k BT =04059x --=45【命题趋势分析】1.熟练掌握椭圆的第二定义;两种形式的标准方程及几何性质;运用它们及参数间的关系解决相关问题.2.必要时;椭圆方程可设为mx 2+ny 2=1(m >0;n >0);这样计算简洁;还可避免对焦点位置的讨论.3.遇到弦的中点问题时;常用点差法.例1 椭圆31222y x +=1的焦点为F 1;F 2;点P 在椭圆上;如果线段PF 1的中点在y 轴上;那么|PF 1|是|PF 2|的( )A.7倍B.5倍C.4倍解:设F 1(-3;0);e=23;P(x 0;y 0) ∵线段PF 1的中点的横坐标为0;∴230-x =0 即x 0=3 ∴|PF 1|=a+ex 0=23+23×3=273∴|PF 2|=2a-|PF 1|=43 -273 =23 ∴|PF 1|=7|PF 2| 故选A例2 设椭圆的中心是坐标原点;长轴在x 轴上;离心率e=23;已知点P(0;23)到这个椭圆上的点的最远距离为7;求这个椭圆方程;并求椭圆上到P 的距离等于7的点的坐标.解:设所求椭圆方程为22a x +22b y =1(a >b >0)由e 2=22a c =222ab a - =1-22a b 和e=23得a=2b 设椭圆上的点(x ;y)到P 点的距离为d ;则d 2=x 2+(y-23)2=a 2(1-22by )+y 2-3y+49=-3(y+21)2+4b 2+3 (-b ≤y ≤b) 若b <21时;则当y=-b 时;d 2(从而d)有最大值;由题设得(7)2=(b+23)2;由此得b=7 -23>21与b <21矛盾.若b ≥21时;当y=-21时;d 2有最大值;从而d 有最大值;有(7)2=4b 2+3;∴b=1;a=2∴所求椭圆方程为42x +y 2=1;椭圆上的点(-3;-21);点(3;-21)到P 点的距离都是7.说明:本题体现了数学的转化与函数思想;本题关键是讨论距离函数d 2=-3(y+21 )2+4b 2+3在区间[-b ;b ]上的最值;二次函数在区间上的最值问题要就对称轴与区间的关系来讨论.例3 已知椭圆的中心在原点O ;焦点在坐标轴上;直线y=x+1与该椭圆相交于P 和Q ;且OP ⊥OQ ;|PQ |=210.求椭圆方程. 分析 设P(x 1;y 1);Q(x 2;y 2;)由OP ⊥OQ 知x 1x 2+y 1y 2=0;再结合弦长公式与韦达定理求解.解:设椭圆的方程为22a x +22by =1(a >0;b >0;a >b 或a <b);点P 、Q 的坐标别为P(x 1;y 1);Q(x 2;y 2).由⎪⎩⎪⎨⎧+==+112222x y b y a x 消去y 得 (a 2+b 2)x 2+2a 2x+a 2-a 2b 2=0;当△=(2a 2)2-4(a 2+b 2)(a 2-a 2b 2)>0时由韦达定理得x 1+x 2=-2222ba a +;x 1x 2=22222b a b a a +-. 且y 1=x 1+1;y 2=x 2+1; ∵OP ⊥OQ ;∴11x y ·22x y=-1;即y 1y 2+x 1x 2=0; ∴(x 1+1)(x 2+1)+x 1x 2=0;∴2x 1x 2+(x 1+x 2)+1=0;①又|PQ |=210;由弦长公式有: 211+|x 2-x 1|=210; ∴2[(x 1+x 2)2-4x 1x 2]=410; ∴4(x 1+x 2)2-16x 1x 2-5=0②解由①、②组成的方程组得⎪⎪⎩⎪⎪⎨⎧-=+=,32,412121x x x x 或⎪⎪⎩⎪⎪⎨⎧-=+-=•21412121x x x x ∴⎪⎪⎩⎪⎪⎨⎧-=+-=+-32241)1(2222222b a a b a b a ;或⎪⎪⎩⎪⎪⎨⎧-=+--=+-,212,41)1(2222222b a a b a b a解得⎪⎩⎪⎨⎧==32222b a 或⎪⎩⎪⎨⎧==23222b a故所求椭圆方程为22x +322y =1或322x +22y =1【同步达纲练习】A 级一、选择题22a x +22b y =1与22a x +22by =k(a >b >0;k >0)一定具有相同的( )A.长轴B.焦点 C .离心率23;且过点(2;0)的椭圆标准方程为( ) A. 42x +y 2=1B. 42x +y 2=1或x 2+42y =1C. x 2+412y =1D. 42x +y 2=1或42x +162y =1m x -252+my +162=1表示焦点在y 轴上的椭圆;则实数m 的取值范围是( )A.(-16;25)B.(29;25) C.(-16;29) D.(29;+∞) 4.若圆(x-a)2+y 2=9与椭圆92x +42y =1有公共点;则实数a 的取值范围是( )A.(-∞;+∞)B.[-6;6]C.[-35;35] D.φ5.若椭圆的两个焦点三等分两条准线间的距离;则椭圆的离心率为( )B.51C.3D.33二、填空题42+m x +82y =1的离心率e=21;则实数m 的值为 .52-k x +ky -32=-1表示椭圆;则实数k 的取值范围是 . 8.若椭圆的长轴长、短轴长;焦距依次成等差数列;则其离心率e= .三、解答题92x +42y =1上的点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项;求P 点坐标.92x +42y =1上的点;且∠F 1PF 2=90°;求△F 1PF 2的面积.AA 级一、选择题1.不论k 为何值;直线y=kx+1与焦点在x 轴上的椭圆72x +my 2=1有公共点;则实数m的范围是( )A.(0;1)B.(0;7) C .[1;7] D.(1;7] 2.椭圆的两个焦点和中心将两准线间的距离四等分;则一焦点与短轴两端点连线的夹角为( )A.4π B.3π C.2π D.32π 1、F 2是椭圆22a x +22by =1(a >b >0)的两个焦点AB 是过F 1的弦;则△ABF 2的周长是( ) D.2a+2b4.已知(0;-4)是椭圆3kx 2+ky 2=1的一个焦点;则实数k 的值是( )B.61D.241 2为圆心作圆;使这圆过椭圆的中心;且交椭圆于M 点;若直线MF 1是圆F 2的切线;则椭圆的离心率是( )A. 3-13C.22 D.23二、填空题6.以椭圆的两个焦点为直径端点的圆交椭圆于四个点;若顺次连接四个点及两个焦点恰好组成一个正六边形;则椭圆的离心率e= .1F 2是椭圆两焦点;P 是椭圆上一点;△PF 1F 2满足∠PF 1F 2:∠PF 2F 1:∠F 1PF 2=1∶2∶3;则此椭圆的离心率e=8.已知A(1;1) B(2;3);椭圆C:x 2+4y 2=4a 2;如果椭圆C 和线段AB 有公共点;则正数a 的取值范围是 .三、解答题9.已知A 、B 是椭圆22a x +22925a y =1上的两点;F 2是椭圆的右焦点;若|AF 2|+|BF 2|=58a ;AB 中点到椭圆左准线距离为23;求椭圆方程.22a x +22by =1(a >b >0)的左顶点为A ;若椭圆上存在一点P ;使∠OPA=2π;求椭圆离心率的取值范围.【素质优化训练】一、选择题1.已知M 为椭圆上一点;F 1F 2是两焦点;且∠MF 1F 2=2α;∠MF 2F 1=α(α≠0);则椭圆的离心率是( )α α α α-12+y 2=1上的点到直线y=3x-4的距离的最小值是( ) A. 3102- B. 3105- C. 432+ D.4108- 22a x +22b y =1(a >b >0)的一个焦点;PQ 是过其中心的一条弦;则△FQP 面积的最大值是( ) A.21ab22a x +22by =1(a >b >0)的离心率等于53;若将此椭圆绕右焦点按逆时针方向旋转2π后;新位置的椭圆有一条准线方程是y=316;则原椭圆方程是( ) A.1292x +482y =1 B. 1002x +642y =1 C.252x +162y =1 D. 162x +92y =1 122x +62y =1的一个焦点为F 1;点P 在椭圆上;若线段PF 1的中点M 在y 轴上;则M 的纵坐标是( )A.±43B.±23C.±22D.±43二、填空题6.已知圆柱底面的直径为2k ;一个与底面成30°角的平面截这个圆柱;则截面上的椭圆的离心率是22a x +22b y =1(a >b >0)上的点;且∠F 1PF 2=θ;则△F 1PF 2的面积是8.点P(0;1)到椭圆22x +y 2=1上点的最大距离是 .三、解答题9.已知椭圆长轴|A 1A 2|=6;|F 1F 2|=42;过椭圆焦点F 1作一直线;交椭圆于M 、N 两点;设∠F 2F 1M=α(0≤α≤π);问当α取何值时;|MN |等于椭圆的短轴长.22a x +22by =1(a >b >0)与x 轴交于AB 两点;F 1F 2为焦点. (1)过一焦点F 2作垂直于长轴的弦MN ;求∠AMB 的大小范围(2)若椭圆上有一点P ;使得∠APB=120°;求P 点的纵坐标;并求椭圆离心率满足什么条件时;这样的点P 才存在.【生活实际运用】要把一个边长分别为52cm 和30cm 的矩形板锯成椭圆形;使它的长轴和短轴长分别为52cm 和30cm 用简便的方法在木板上画出这个椭圆的草图.参考答案:【同步达纲练习】A 级 1.C 2.D 3.B 4.B 5.D 6. 323或517 7.3<k <5且k ≠4 8. 53 AA 级 1.C 2.C 3.B 4.D 5.A 6. 3 -1 7.3-1 8.[25; 102+925y 2=1 10.22<e <1 【素质优化训练】 1.D 2.D 3.D 4.C 5.A 6.212tan 2θ 8.2 9.α=6π或65π 10.(1) 2π<∠AMB <π-arccot2 (2)e ∈[36;1]。

高二数学椭圆基础知识点总结大全

高二数学椭圆基础知识点总结大全

高二数学椭圆基础知识点总结大全椭圆是高中数学中的一种重要的曲线,它具有许多独特的性质和特点。

本文将对高二数学中椭圆的基础知识点进行全面总结,帮助同学们更好地理解和掌握这一内容。

一、椭圆的定义和特征椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a 的点P的轨迹。

F1和F2被称为椭圆的焦点,a被称为椭圆的半长轴。

椭圆的离心率定义为ε = c/a,其中c为焦点之间的距离。

离心率表示了椭圆的扁平程度,ε<1时为椭圆,ε=1时为抛物线,ε>1时为双曲线。

二、椭圆的方程和参数椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。

三、椭圆的图形性质1. 椭圆关于x轴和y轴对称;2. 椭圆的长轴和短轴分别与x轴和y轴平行;3. 椭圆的左右焦点分别在x轴上方和下方;4. 椭圆的离心率ε满足0 < ε < 1;5. 椭圆的离心率越小,椭圆越圆。

四、椭圆的参数方程以椭圆的中心为原点,a为半长轴,b为半短轴建立直角坐标系,则椭圆上任意一点P(x, y)的参数方程为:x = a*cosθy = b*sinθ其中0 ≤ θ ≤ 2π。

五、椭圆的焦点和准线1. 椭圆的焦点是椭圆上两个固定点F1和F2,它们满足F1F2 = 2a;2. 椭圆的准线是通过椭圆中心且垂直于长轴的直线。

六、椭圆的方程一般形式当椭圆的中心不在坐标原点时,椭圆的方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1其中(h, k)为椭圆的中心坐标。

七、椭圆的主要性质1. 椭圆的周长公式为C = 4a(E(ε^2)),其中E为椭圆的第一类完全椭圆积分函数;2. 椭圆的面积公式为S = πab;3. 离心率ε和焦距f之间的关系为ε^2 = 1 - (b^2/a^2) = 1 -(f/a)^2。

八、椭圆在几何和物理中的应用椭圆在几何和物理中有许多应用,如天体运动轨迹的研究、光学系统的设计等。

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。

本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。

一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。

二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。

2. 对称性质:椭圆关于长轴和短轴都具有对称性。

3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。

4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。

离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。

三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。

四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。

五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。

2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。

3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。

4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。

六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。

通过改变θ的取值,可以得到椭圆上的所有点坐标。

七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。

例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。

此外,椭圆在艺术设计和建筑设计中也常常被使用。

高二数学椭圆的性质

高二数学椭圆的性质

行,晃晃悠悠地来到码头上。码头上的灵棚已经拆了,在原来搭建灵棚的位置上,整整齐齐地摆放着一千盏荷花灯。耿老爹和耿正轻轻地抬着 大荷花灯下了马车,将其摆放在迎着江水的最前面。这一晚的夜空和白天一样的晴朗,只是白天的艳阳换成了夜空中的明月;尽管明月还尚未 圆,但也已经足够明亮了;陪衬着满天空闪闪烁烁的群星,越发显得庄严肃穆。乔氏母女俩和耿家父子四人互相搀扶着站在武昌镇码头上,屏 息默默注视着静静的江面,谁也不想开口,谁也开不了口同样的一句话,环绕在每一个人的心头;欲大声地问,然而,又都只能在心里问:耿 老爹在心里大声地问:白兄弟啊,你在哪里?你到了哪里?你可知道,你的耿大哥正站在这个你再熟悉不过的码头上,多么希望看到你乐呵呵 地归来啊!耿家三兄妹在心里大声地问:白幺爹啊,您在哪里?您到了哪里?您可知道,您喜欢的侄儿侄女们正站在这个您再熟悉不过的码头 上,多么希望看到您乐呵呵地归来啊!乔氏在心里大声地问:她爹啊,你在哪里?你到了哪里?你可知道,你挚爱的婆姨正站在这个你再熟悉 不过的码头上,多么希望看到你,我的丈夫乐呵呵地归来啊!小青在心里大声地问:爹啊,你在哪里?你到了哪里?你可知道,你的丫头,你 的心肝儿宝贝儿正站在这个你再熟悉不过的码头上,多么希望看到你,我的爹乐呵呵地归来啊!又有谁能够回答,这无言的心声,真得能穿透 时空,穿透空灵吗?夜深人静了。船老大悄悄走过来,低低地说:“开始吧!”大家默默地点点头。耿家父子们和乔氏全都蹲在大荷花灯的周 围,小青亲自点着了那朵漂亮荷花中间的香油灯。船老大轻轻挥一挥手,所有的船工们一起动手,不一会儿就把摆放在大荷花灯后面的那一千 盏荷花灯中间的香油灯也全都点着了。在耿家父子们的陪同下,乔氏母女俩亲自把大荷花灯轻轻地放入到夜空下平平静静的江水中,大荷花灯 带着亲人们的无限思念,慢悠悠地向东方漂去一千盏荷花灯紧紧地跟随在大荷花灯的后面,带着船老大和全体船工们的无限思念,慢悠悠地向 东方漂去一千零一盏荷花灯,犹如这晴朗夜空中的明月和繁星,忽忽悠悠,闪闪烁烁恍惚间,让人分不清哪里是天上,哪里是人间此时此刻, 生者在哪里,逝者又在哪里一千零一盏荷花灯,忽忽悠悠,闪闪烁烁,慢慢地漂走了,渐渐地望不见了生者是凡人,需要食五谷,有七情六欲, 还得为生计而奔忙,还得经受人生的种种苦难和原本不多的快乐逝者若成神,便无须消耗五谷,也再无喜怒哀乐,只念着为生灵造福,保佑向 善的人们幸福安康,逢凶化吉,实现梦想115第二十七回 白百大码头装船遭不测|(天降大祸砸白家,百大装船遭不测;船帮码头搭灵棚,最高 礼仪慰亡灵。)尽管昨儿

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结椭圆是一个经典的几何图形,它在高二数学中也占据着重要的地位。

本文将对高二椭圆的相关知识点进行总结,包括椭圆的定义、性质、方程、焦点与直径、切线与法线以及与其他几何图形的关系等内容。

1. 椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和恒定的点的集合。

这两个固定点称为椭圆的焦点,记作F1、F2,它们之间的距离为2a。

椭圆上的任意一点P到两个焦点的距离之和等于常数2a,即PF1 + PF2 = 2a。

2. 椭圆的性质(1) 椭圆的离心率e小于1,且越接近于1,椭圆越扁平。

(2) 椭圆的长轴是通过两个焦点的直线段,记为2a;短轴是通过椭圆中心且垂直于长轴的直线段,记为2b。

(3) 椭圆的离心率e与长轴a、短轴b的关系为e = √(1 - b²/a²)。

(4) 椭圆的面积为πab。

3. 椭圆的方程(1) 标准方程:设椭圆的焦点在坐标原点上,长轴与x轴重合。

则椭圆的标准方程为x²/a² + y²/b² = 1。

(2) 一般方程:设椭圆的焦点在任意位置,且长轴与x轴的夹角为α。

则椭圆的一般方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标。

4. 椭圆的焦点与直径(1) 椭圆的焦点是确定椭圆形状和大小的重要元素,它们与椭圆的离心率相关。

(2) 椭圆的直径是通过椭圆中心且与椭圆两点重合的直线段,它的长度等于长轴的长度2a。

5. 椭圆的切线与法线(1) 椭圆上任意一点P处的切线是与椭圆相切且经过点P的直线,切线的斜率为y' = -b²x/a²y。

(2) 椭圆上任意一点P处的法线是与切线垂直的直线,它的斜率为y' = a²x/b²y。

6. 椭圆与其他几何图形的关系(1) 椭圆与直线的关系:当直线与椭圆相交时,交点个数有四种情况:无交点、一个交点、两个交点、两个交点且直线与椭圆相切。

高中数学---椭圆知识点小结

高中数学---椭圆知识点小结

高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和by ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by ax )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。

②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ห้องสมุดไป่ตู้
皇家娱乐24小时在线
[问答题,简答题]什么是得率?影响甲醇得率的因素有哪些? [多选]煤矿瓦斯抽采应坚持()的原则。A.应抽尽抽B.多措多举C.抽掘采平衡D.抽完为止 [问答题]患儿女,8小时,因气促5小时,面色青紫1小时入院。是第一胎第一产,孕30周自然分娩,Apgar评分8分。5小时前开始气促,逐渐加剧,1小时前出现面色青紫来我院。查体:T37℃,P160次/分,R80次/分,面色发绀,胸廓塌陷,呼吸困难,呼气性呻吟,心音强,律齐,未闻及杂音,双 [填空题]刀具材料应具备较高的硬度、足够的()和()、高耐磨性、高耐热性。我们制图中常用的刀柄材料一般用()刀片材料一般用() [单选]船舶倒车操右舵时,吸力效应横向力使()。A.船尾向右,船首左转B.船尾向左,船首右转C.船艏艉均不转D.以上都错误 [单选]当ECAM控制面板失效时,以下错误的是:()A、CLR(清除)、RCL(重现)、STS(状态)、EMERCANC(紧急取消)、ALL(全部)都失效B、CLR(清除)、RCL(重现)、STS(状态)、EMERCANC(紧急取消)、ALL(全部)仍然有效。C、按压ALL(全部)按钮依次翻看各个系统直到所需页 [单选]交流电动机定子绕组一个线圈两个边所跨的距离称为()。A、节距B、长距C、短距D、极距 [单选]铁路平面无线调车A型号调车长台,调车长连续按压三次黄键,信令显示黄灯长亮,其显示意义是()。A.减速B.提醒作业人员注意C.十车D.召集作业人员出场 [单选]目前最理想的永久性创面覆盖物是()A.自体皮肤B.猪皮C.表皮细胞膜片D.鸡皮E.同种异体皮 [单选]将信托分为民事信托和商事信托的依据是()。A.信托利益归属的不同B.受托人身份的不同C.信托设立目的的不同D.委托人人数的不同 [单选,A1型题]判断血栓闭塞性脉管炎闭塞部位的准确方法是()A.仔细检查肢体各动脉搏动情况B.静脉注射硫酸镁10mlC.肢体位置试验D.行交感神经阻滞E.动脉造影 [单选]水泥厂向大气排出的主要污染物是()。A.烟尘B.烟尘、氧化镁C.水泥尘D.水泥尘、烟尘 [单选,A1型题]推算预产期的依据,以下哪项最可靠()A.末次月经B.妊娠反应C.初觉胎动D.早孕期妇科检查E.基础体温记录 [单选,A1型题]提出“风从外入,令人振寒,汗出头捕,身重恶寒”的医著是()。A.《黄帝内经》B.《难经》C.《金匮要略》D.《伤寒论》E.《诸病源候论》 [单选]关于行政责任的种类的划分方法不包括划分为()。A.国家侵权责任和国家合同责任B.惩罚性行政责任和补救性行政责任C.制裁性行政责任、强制性行政责任和补救性行政责任D.行政许可责任和行政强制执行责任 [单选,B型题]属于同期控制的是()A.急救物品完好率B.压疮发生率C.护理差错事故发生次数D.查对医嘱及时纠正E.基础护理合格率 [单选]经审办应当由具有审计、财会及相关专业知识和业务能力的人员组成。地(市)工会经审办一般不少于()名专业干部经费管理总量较多的县级工会经审办应当配备专业干部。A、二B、四C、六 [单选]Inmarsat-C站中,电文拟发送目的地输入为583341221460,下列()。A、发给印度洋上装有F站的船舶B、发给印度洋上装有B站的船舶C、发给太平洋上装有F站的船舶D、发给太平洋上装有C站的船舶 [单选]在乳腺癌全野切线源皮距照射定位时,下列哪项描述是错误的()A.放好内外切线野的铅丝,向内切野方向转动机架50度左右,将内切野的内缘放在铅丝处B.升降床并左右移床至源皮距100cmC.透视并转动机架同时调节治疗床使两根铅丝与射野中心重叠并切肺1.5~2cmD.用虚线画上内切线 [名词解释]freezeetching(冰冻蚀刻技术) [单选,A1型题]下列有关体表感染的描述,错误的是()。A.疖是毛囊与邻近皮脂腺的化脓性感染B.痈是多数散在的、不相关联的疖病C.丹毒是皮内网状淋巴管的炎性病变D.急性蜂窝织炎是皮下结缔组织的感染E.脓肿是急性感染后的局限性脓液积聚 [多选]适应是()心理现象A.感受性发生了变化的B.刺激物持续作用引起的C.刺激作用停止后出现的D.两种刺激同时作用时引起的 [单选,A1型题]细支气管不完全阻塞所致的阻塞性通气障碍可造成()A.肺不张B.气胸C.支气管扩张D.肺纤维化E.肺气肿 [单选]有关患者隐私权保护的理解错误的是()A.患者既往的疾病史、生活史、婚姻史即其家族疾病史、生活史、情感史属于患者隐私B.披露患者隐私造成严重后果的,由县级以上人民政府卫生行政部门给予警告或者责令暂停6个月以上1年以下执业活动,情节严重的,吊销执业证书C.即使患者已 [单选]在招标采购中,按照采购的标的物划分,不属于招标采购合同的是()。A.工程采购合同B.货物采购合同C.服务采购合同D.项目采购合同 [单选]对易燃易爆化学物品经营单位扩建工程竣工时未经消防验收或者经验收不合格擅自使用的,经公安消防机构责令限期改正后逾期不改的,应当()。A、责令立即改正B、责令停止施工C、责令停止使用,可以并处罚款D、处罚款 [单选]以下哪种网络营销方式最不适合做品牌()A.网络广告B.新闻营销C.非许可电子邮件营销D.事件营销 [单选]()应向验船部门申请拖航检验,并取得验船师签发的拖航检验报告或适航批准书。A.短途拖航B.长途拖航C.港内拖航D.内河拖航 [单选]慢性胆囊炎的CT特征性表现是()A.胆囊大,囊壁水肿,密度低B.胆囊正常大小,肝内胆管扩张C.胆囊小,囊壁增厚D.胆囊大,胆总管扩张E.以上都不是 [单选,A2型题,A1/A2型题]持续呕吐或鼻胃吸引可引起().A.高阴离子间隙型代谢性酸中毒B.正常阴离子间隙型代谢性酸中毒Cl-响应型代谢性碱中毒D.Cl-抵抗型代谢性碱中毒E.外源性碱增多引起的代谢性碱中毒 [多选]瓦斯抽采钻孔施工过程中,操作人员要(),确保钻孔施工过程顺利进行。A.按照操作规程要求操作钻机B.按钻孔施工参数要求精心施工C.严格控制钻进速度D.全程值守 [填空题]200号溶剂汽油是烃类化合物的混合物,由于其中芳烃含量不同,它表现的()力也不同。 [单选]安装井架底座时先把()划出来,找好安放底座的位置,用吊车将大梁逐件摆上,连接固定好。A.底座对角线B.井口中心线C.底座边线D.井场边界 [单选]脊髓损伤的常见并发症包括()A.泌尿系统感染B.呼吸系统感染C.深静脉血栓形成D.二便障碍E.以上均对 [单选]急性肾功能衰竭多尿期后最可能出现的是下列哪项()。A.低钾血症B.脱水C.血尿素氮及肌酐即可降至正常D.继发感染E.血尿素氮及肌酐升高 [单选]在主风管里增加氧气分布器,使氧气混入点到辅助燃烧室入口距离达到()米以上。A、3B、4C、5D、6 [单选]下列各项指标中,不属于业绩计量的非财务指标的是()。A、市场占有率B、质量和服务C、生产力D、经济增加值 [单选]涡轮往复式发动机的废气门控制().A.增压器齿轮比B.排出气体的流量C.节气门打开 [判断题]单向离合器又称为自由轮机构、超越离合器,其功用是实现导轮的单向锁止,即导轮只能顺时针转动而不能逆时针转动,使得液力变矩器在高速区实现偶合传动。()A.正确B.错误 [单选]是列出一系列相关的问题要求媒体选择者回答,通过对这些问题的逐一回答,来比较清楚地发现适用于一定教学目标(或一定教学情景)的媒体。问题的提出可根据教学媒体的选择原则给出。A.问题表法B.流程图法C.矩陈选择表D.算法型
相关文档
最新文档