流体流动总结
流体力学归纳总结

流体⼒学归纳总结流体⼒学⼀、流体的主要物性与流体静⼒学1、静⽌状态下的流体不能承受剪应⼒,不能抵抗剪切变形。
2、粘性:内摩擦⼒的特性就是粘性,也是运动流体抵抗剪切变形的能⼒,是运动流体产⽣机械能损失的根源;主要与流体的种类和温度有关,温度上升粘性减⼩,与压强没关系。
3、⽜顿内摩擦定律:du F Ady µ= F d u A d yτµ== 相关因素:粘性系数、⾯积、速度、距离;与接触⾯的压⼒没有关系。
例1:如图6-1所⽰,平板与固体壁⾯间间距为1mm,流体的动⼒黏滞系数为0.1Pa.S, 以50N 的⼒拖动,速度为1m/s,平板的⾯积是()m 2。
解:F F A du dyδµνµ===0.5 例2:如图6-2所⽰,已知活塞直径d=100mm,长l=100mm ⽓缸直径D=100.4mm,其间充满黏滞系数为0.1Pa·s 的油,活塞以2m/s 的速度运动时,需要的拉⼒F 为()N 。
解:3320.1[(10010)0.1]31.40.210du F AN dy µπ--===? 4、记忆个参数,常温下空⽓的密度31.205/m kg ρ=。
5、表⾯⼒作⽤在流体隔离体表⾯上,起⼤⼩和作⽤⾯积成正⽐,如正压⼒、剪切⼒;质量⼒作⽤在流体隔离体内每个流体微团上,其⼤⼩与流体质量成正⽐,如重⼒、惯性⼒,单位质量⼒的单位与加速度相同,是2/m s 。
6、流体静压强的特征: A 、垂直指向作⽤⾯,即静压强的⽅向与作⽤⾯的内法线⽅向相同; B 、任⼀点的静压强与作⽤⾯的⽅位⽆关,与该点为位置、流体的种类、当地重⼒加速度等因素有关。
7、流体静⼒学基本⽅程 0p p gh ρ=+2198/98at kN m kPa ==⼀个⼯程⼤⽓压相当于735mm 汞柱或者10m ⽔柱对柱底产⽣的压强。
8、绝对压强、相对压强、真空压强、真空值公式1:a p p p =-相对绝对公式2:=a p p p -真空绝对p 真空叫做真空压强,也叫真空值。
流体流动知识点总结归纳

流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。
在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。
一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。
流体包括液体和气体两种状态,其共同特点是具有流动性。
2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。
流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。
3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。
黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。
二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。
这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。
2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。
3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。
4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。
三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。
2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。
化工原理流体流动知识点总结

化工原理流体流动知识点总结化工原理中的流体流动是指在化工过程中物质(气体、液体或固体颗粒)在管道、设备或反应器中的运动过程。
了解流体流动的知识对于化工工程师来说至关重要。
下面是关于流体流动的一些重要知识点的总结。
1.流体的物理性质:-流体可以是气体、液体或固体颗粒。
气体和液体的主要区别在于分子之间的相互作用力和分子间距。
-流体的物理性质包括密度、黏度、表面张力、压力和流速等。
2.流体的运动方式:- 流体的运动可以是层流(Laminar flow)或紊流(Turbulent flow)。
-在层流中,流体以平行且有序的方式流动,分子之间的相互作用力主导着流动。
-在紊流中,流体以非线性和混乱的方式运动,分子之间的相互作用力相对较小,惯性和湍流运动主导着流动。
3.流体的流动方程:-流体流动可以通过连续性方程、动量方程和能量方程来描述。
-连续性方程(质量守恒方程)描述了流体在空间和时间上的质量守恒关系。
-动量方程描述了流体中的力平衡关系,包括压力梯度、黏度和惯性力等因素。
-能量方程描述了流体中的能量守恒关系,包括热传导、辐射和机械能转化等因素。
4.管道流动:-管道中的流体流动可以是单相(单一组分)或多相(多个组分)。
-管道流动的主要参数包括流速、压力损失和摩阻系数等。
- 常用的管道流动方程包括Bernoulli方程、Navier-Stokes方程和Darcy-Weisbach方程等。
5.流体输送:-流体输送是指将流体从一个地点输送到另一个地点的过程。
-在流体输送中,常用的设备和装置包括泵、压缩机、阀门、流量计和管道系统等。
-输送过程中要考虑流体的性质、流速、压力损失以及设备的选型和操作条件等因素。
6.流体混合与分离:-流体混合和分离是化工过程中常见的操作。
-混合可以通过搅拌、喷淋、气体分散等方法实现。
-分离可以通过过滤、沉淀、蒸馏、萃取和膜分离等方法实现。
7.流体力学实验:-流体力学实验是研究流体流动和相应现象的方法之一-常用的流体力学实验包括流速测量、压力测量、流动可视化和摩擦系数测定等。
化工原理知识点总结复习重点(完美版)

无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:
离
心泵的的启动流程:
叶
轮
吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能
泵
轴
排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是
流体入门知识点总结图解

流体入门知识点总结图解一、流体的基本概念1. 流体概念流体是一种物质的状态,是指在外力作用下能够流动的物质,包括液体和气体。
流体具有流动性、变形性和粘性。
2. 流体性质密度:流体的质量与单位体积的比值。
比重:流体的密度与水的密度的比值。
粘度:流体的内部阻力,决定了流体的黏稠度。
3. 流体静力学基本假设(1)流体是连续的。
(2)流体是不可压缩的。
(3)流体是静止的或者静止状态的流体。
二、流体静力学1. 压力(1)压力的定义:单位面积上的力。
(2)压强:单位面积上的压力。
(3)流体的压力:液体或气体内各点的压力都相等,且在不同深度的液体中,压力与深度成正比。
2. 压力的传递液体传压:液体内各点的压力是平行的,且在各点的压力相等。
气体传压:气体内各点的压力也是平行的,但是气体的密度非常的小,所以气体的传压效应并不显著。
3. 浮力物体在液体中浸没时,液体对物体产生的向上的浮力。
浮力的大小与物体的体积成正比。
三、流体动力学1. 流体的动力学特性流体力学包括了流体的流动、旋转、涡动和湍流等特性。
2. 流体流动的分类(1)按流动程度分类:层流流动和湍流流动。
(2)按流动速度分类:亚临界流动、临界流动和超临界流动。
(3)按流动方向分类:一维流动、二维流动和三维流动。
3. 流速和流量流速:单位时间内流体通过单位横截面积的速度。
流量:单位时间内流体通过横截面的体积。
四、基本流体方程1. 连续性方程连续性方程描述了流体的流动过程中质量的守恒,表现为质量流量的守恒。
\[A_1 v_1 = A_2 v_2\]2. 动量方程动量方程描述了流体在流动过程中的动量守恒。
动量方程可以用来计算流体在流动中所受的压力和阻力。
\[F = \frac{{\Delta p}}{{\Delta t}}\]3. 质能方程质能方程描述了流体在流动过程中的能量守恒。
质能方程可以用来计算流体内能和外力对流体的功率变化。
五、流体流动的控制方程1. 泊松方程泊松方程描述了流体的流动与液体的静力平衡。
流体力学实验报告总结与心得

流体力学实验报告总结与心得1. 实验目的本次流体力学实验的目的是通过实验方法,对流体的流动进行定性和定量分析,掌握基本的流体流动规律和实验操作技能。
2. 实验内容本次实验主要分为两个部分:流体静力学的实验和流体动力学的实验。
在流体静力学实验中,我们测定了液体的密度、浮力、压力与深度的关系,并验证了帕斯卡定律。
在流体动力学实验中,我们测量了流体在管道中的速度分布,获得了流速与压强变化的关系,并通过管道阻力的实验验证了达西定理。
3. 实验过程与结果在实验过程中,我们依次进行了密度的测量、液体的浮力测定、压力与深度关系的测定、流速分布的测量和管道阻力的实验。
通过各项实验得到的数据,我们进行了数据处理和分析,得出了相应的曲线和结论。
在密度的测量实验中,我们使用了称量器和容量瓶,通过测定液体的质量和体积,计算出了液体的密度。
在测量液体的浮力时,我们使用了弹簧测量装置,将液体浸入弹簧中,通过测量弹簧的伸长量计算出液体所受的浮力。
在压力与深度关系的测定实验中,我们使用了压力传感器和水桶,通过改变水桶的水深,测量压力传感器的输出信号,得出了压力与深度的关系曲线。
在流速分布的测量实验中,我们使用了流速仪和导管,将流速仪安装在导管中不同位置,通过读出流速仪的示数,绘制出流速与导管位置的关系曲线。
在管道阻力的实验中,我们通过改变导管的直径和流速,测量压力传感器的输入信号,计算出阻力与流速的关系。
4. 结论与讨论通过以上实验和数据处理,我们得出了以下结论:1. 密度的测量实验验证了液体的密度与质量和体积的关系,得到了各种液体的密度数值,并发现不同液体的密度差异较大。
2. 测量液体的浮力实验验证了浮力与液体所受重力的关系,进一步加深了我们对浮力的理解。
3. 压力与深度关系的测定实验验证了帕斯卡定律,即液体的压强与深度成正比,且与液体的密度无关。
4. 流速分布的测量实验揭示了流体在导管中的流动规律,得到了流速随着导管位置的变化而变化的曲线,为后续的流体动力学研究提供了基础。
流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
流体流动规律

流体流动规律
流体流动规律是研究流体运动规律的科学领域。
根据流体力学原理,流体在流动过程中遵循一些基本的规律,这些规律可以总结为以下几个方面:
1. 质量守恒定律:在流体流动过程中,流体的质量保持不变。
即流入单位时间内的质量等于流出单位时间内的质量。
2. 动量守恒定律:在没有外力作用的情况下,流体的动量保持不变。
动量是质量与速度的乘积,根据质量守恒定律和动量守恒定律可以推导出流体中哥万定理和伯努利定理等重要定律。
3. 能量守恒定律:在没有外界能量输入或输出的情况下,流体的总能量保持不变。
能量守恒定律可以用来解释流体流动的能量转化和能量损失等现象。
4. 流体的连续性方程:对一个不可压缩流体来说,流经管道中的流量保持不变,即进口流量等于出口流量。
对于可压缩流体来说,流量的连续性方程可以通过质量守恒定律和流体的状态方程推导得到。
5. 流体的雷诺数:流体的流动性质和流动状态可以通过雷诺数来描述。
雷诺数是流体的惯性力和粘性力的比值,可以用来判断流体的流动状态是层流还是湍流。
这些流体流动规律在工程领域、地球科学、大气科学和生物医学等各个领域中都有广泛的应用。
通过研究和理解这些规律,我们可以更好地预测和控制流体流动行为,从而为科学研究和工程实践提供重要的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可压缩流体,
Vs u1 A1 u2 A2 uA 常数
u1 u2
A2 A1
d2 d1
2
2、静力学方程
静力学方程
柏努利方程
2、静力学方程
Z1
P1
g
Z2
P2
g
特点:是柏努利方程的特殊形式,
无动能项、无阻力损失项,
静压能与位能相互转化。
应用:测压-U形管压差计(等压面原理)
流体静力学方程包含的基本概念
压力
表压
真空度
绝压p2
(残压)
绝压p1 当地大气压线
柏努利方程
在柏努利方程式中,zg、1
2
u
2、
p
分别表
示单位质量流体在某截面上所具有的位能、
动能和静压能,它们是状态参数;
而We、ΣWf是指单位质量流体在两截面 间获得或消耗的能量,是过程函数。
有效功率:N e msWe
轴功率:N轴
Ne
流量与流速
3.了解的内容
牛顿型流体与非牛顿型流体; 层流内层与边界层,边界层的分离。
第一章 流体流动
一、流体静力学基本方程 二、流体动力学基本方程——柏努利方程(重点) 三、流体流动现象 四、阻力损失计算 五、管路计算 六、流量测量
1、柏努利方程-机械能守恒方程
Z1
u12 2g
P1
g
HeБайду номын сангаас
Z2
u22 2g
U形管压差计
1
2
流体ρ
1´ z1
A
2´
z2
R B
p1 p2 (0 )gR
ρ0
U形管压差计
流体ρ
pa z
R
A
B
ρ0
倒装U形管压差计
ρg
A
z1 1
流体ρ
B R
2 z2
1´
2´
双液压差计(微差压差计)
p1
p2
ρ
ρb zA
R
A
B
ρa
第一章 流体流动
柏努利方程
阻力损失分析 范宁公式
3、阻力损失分析及范宁公式
机械能阻力损失分析-存在内摩擦力 动量传递过程-存在速度差 (壁面速度为零,中心速度最大)
范宁公式-计算宏观机械能损失 直管阻力 局部阻力
阻力损失分析
阻力损失分析
牛顿粘性定律: 粘度:
.
du
dy
物性之一,反映流体粘性大小。液体粘度随
温度升高而降低,气体粘度随温度升高而增大
1cP = 0.01P = 10-3 Pa·s
P2
g
hf
m
Z1g
u12 2
P1
We
Z2g
u22 2
P2
Wf
J / kg
gZ1
u12
2
P1
We
gZ2
u22
2
P2
Pf Pa
特点:必须在连续、稳定的条件下使用,沿着流体流 动的方向列方程,注意起始和终止截面的选取。
1、柏努利方程-机械能守恒方程
机械能:可直接用于流体输送,相互之间可 以转化,也可直接转变为热和内 能。包括位能,动能,压力能和 外功。
体积流量VS :Vs=V/τ,m3/h。 质量流量mS :ms=m/τ,kg/h。
体积流量与质量流量的关系: ms Vs 流速u:平均流速, u Vs m/s 。
A 质量流速G :G=ms/A,kg/(m2·s)。
流速与流速的关系: ms Vs uA GA
流量与流速
管径的估算: d 4Vs
u 选定u后估算出d,再圆整到标准规格。
适宜流速:通常水及低粘度液体的流速为 0.5~3m/s,一般常压气体流速为10~30m/s , 饱和蒸汽流速为20~40m/s等。密度大或粘度大 的流体,流速取小些;对含固体杂质的流体,流 速取大些,以避免固体沉积。
连续性方程
任意流体,
ms 1u1A1 2u2 A2 uA 常数
流动型态
流型判据——雷诺准数: Re du
层流:Re≤2000 ,此时流体各个质点互不混杂, 平行于管轴向前运动;
过渡流: 2000 <Re <4000 ,按湍流处理; 湍流:Re≥4000 ,流体质点不仅沿管轴运动,
而且还做不规则的径向脉动。
流体的流动型态
雷诺准数的物理意义: Re反映了流体流动中惯性力与粘性力之比,标 志流体流动的湍动程度。其值愈大,流体的湍 动愈剧烈,内摩擦力也愈大。 粘性力: u 使流体保持层流的趋势。
热和内能:不能直接转化为用于流体输送的 机械能。
压力
换算关系:
1atm=1.013×105Pa =760mmHg =10.33mH2O=1.033kgf/cm2
液柱高度与压力的关系:
p gh
注:用液柱高度表示压力时,必须指明流体的种 类,如600mmHg,10mH2O等。
表压、真空度与绝对压力之间的关系
力和局部阻力); 简单管路的设计计算及输送能力的核算; 管路中流体的压力、流速及流量的测量:液柱压差计、测速
管(毕托管)、孔板流量计、转子流量计的工作原理、基本结 构及计算; 因次分析法的原理、依据、结果及应用。
2.熟悉的内容
流体的连续性和压缩性、稳定流动与不稳定流动; 层流与湍流的特征; 管内流体速度分布公式及应用; 哈根-泊谡叶方程式的推导; 复杂管路计算要点; 正确使用各种数据图表; 边界层的概念。
1 静止液体内部的压力仅是高度的函数,与容器大小和形状 无关。
2 自由液面上的压力p0↑,液体内各点压力p↑。——压力 传递原理。
3 在静止的、连续的同一液体同一水平面上各点的压力相等。 4 气体为可压缩流体,基本方程式不适用于气体,但在空间
小、压力变化不大时,ρ≈常数,可用于气体。因为ρG
<< ρ L,∴认为整个气体空间p相等。
第一章 流体流动
静力学方程
管路计算
柏努利方程 连续性方程
阻力损失分析 范宁公式
液柱压差计
流量测量
基本要求:
了解流体流动的基本规律,要求熟练掌 握流体静力学基本方程、连续性方程、 柏努利方程、范宁公式的内容及应用, 在此基础上解决流体输送的管路计算问 题。
1.掌握的内容
流体的密度和粘度的定义、单位、影响因素及数据求取; 压强的定义、表示法及单位换算; 流体静力学方程、连续性方程、柏努利方程的内容及应用 流动型态及其判断,雷诺准数的物理意义及计算; 流动阻力产生的原因,流体在管内的流动阻力计算(直管阻
运动粘度:
m2/s。
剪应力与动量通量
相邻两流层,由于速度不同,具有的动量 不同。高速流层中一些分子在随机运动中进入 低速流层,与速度较慢的分子碰撞使其加速, 动量增大,同时,低速流层中一些分子也会进 入高速流层使其减速,动量减小。由于流层之 间的分子交换使动量从高速流层向低速流层传 递。由此可见,动量传递是由于流体内速度不 等,动量从速度大处向速度小处传递。