图像分割之Graph-cut算法

合集下载

融合SUSAN特征的医学图像Graph Cuts算法

融合SUSAN特征的医学图像Graph Cuts算法

融合SUSAN特征的医学图像Graph Cuts算法
詹曙;孙乔博;徐甲甲;蒋建国
【期刊名称】《电子测量与仪器学报》
【年(卷),期】2013(27)6
【摘要】交互式图像分割算法由于可以从复杂的医学图像中分割出感兴趣的组织,现已引起研究者的广泛关注。

该算法对Graph Cuts中经典能量函数的边界项进行改进,将传统的灰度特征替换为SUSAN特征。

由于SUSAN特征的求和机制,极大的抑制了噪声的影响,对边界的定位也更加准确。

实验表明该算法能够准确分割出感兴趣目标,剔除多余边界,并且对噪声也有很好的抑制作用。

【总页数】6页(P509-514)
【关键词】图切割;SUSAN算子;抗噪;能量函数;边界项;交互式
【作者】詹曙;孙乔博;徐甲甲;蒋建国
【作者单位】合肥工业大学计算机与信息学院
【正文语种】中文
【中图分类】TN929.52
【相关文献】
1.融合区域合并和Graph Cuts的彩色图像分割方法 [J], 黄娟;梅浙川;黄小明
2.第二代Curvelet变换与像素能量特征对比度结合的医学图像算法融合算法 [J], 代茵;王宇义
3.基于改进SUSAN算法的医学图像边缘检测 [J], 王敏;龚晓峰;曾军
4.基于改进SUSAN算法的医学图像边缘检测 [J], 王敏;龚晓峰;曾军
5.融合背景能量项的Graph Cuts PCB CT图像分割 [J], 董昌灏;闫镔;曾磊;李建新因版权原因,仅展示原文概要,查看原文内容请购买。

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用一、概述医学图像处理是医学影像学领域的重要组成部分,它的基本任务是对从医学影像中获取的图像信息进行分析、处理和识别。

其中医学图像分割技术是医学影像分析中的重要分支,它可以将医学图像中的不同结构或组织分离出来,并形成具有特定标记的区域,从而为医学诊断和治疗提供有力支持。

本文将围绕医学图像处理中的分割技术展开讨论,探讨其研究现状、技术原理、算法优劣以及在实际应用中的案例。

二、研究现状目前,医学图像分割技术主要用于医学影像诊断、手术规划、肿瘤治疗等领域。

其中,肿瘤分割是应用较为广泛的领域之一,通过对医学影像中的肿瘤组织进行划分,可以实现肿瘤的量化分析和精确定位,为医生的治疗方案提供依据。

近年来,随着深度学习技术的发展,深度卷积神经网络(CNN)等模型在医学图像分割中得到越来越广泛的应用。

以CNN为代表的深度学习模型可以通过学习医学图像中显著特征,提高图像分割的精确性和效率。

此外,基于超像素的分割算法、区域生长算法、阈值分割算法等传统的分割方法仍然是研究的热点和难点之一。

三、技术原理医学图像的分割是指将医学图像中不同区域或组织进行分离的过程。

其技术核心是对数据的自动或半自动化分割,基于图像强度、空间信息等特性进行分析,将图像划分为各个独立的、有意义的区域。

医学图像的分割技术核心包括以下方面:1.特征提取:医学影像中蕴含的结构、材质以及其它一些信息可以通过特征提取的方式转化为数值或向量形式,这些特征在分割过程中被用作数据的表征。

2.分割算法:分割算法可以根据特定的规则,将提取到的特征进行分类和分割,不同算法的优劣决定了分割的精确度和操作效率。

3.评价指标:用于评估分割结果的准确性,如划分出的区域是否正确、与实际结果之间的误差、操作所需时间和计算复杂度等。

四、常见算法1.基于阈值的分割算法:其原理是设定一个阈值,将图像中灰度值大于该阈值的像素视为目标像素,否则视为背景像素。

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化一、引言图像分割是计算机视觉领域中的一个重要研究和应用方向,其主要目的是将图像分为不同的区域,使得每个区域内的像素具有相似的特征。

在目标检测、图像识别和图像处理等应用中,图像分割作为前置步骤扮演着重要角色。

当前,显著性图像分割算法是研究的热点之一。

本文将对显著性图像分割算法的研究现状和优化策略进行探讨。

二、显著性图像分割算法1. 基于传统方法的显著性区域提取传统的显著性图像分割算法通常采用手工设计的特征提取方法,如边缘检测、颜色直方图、纹理等,以及一些经典的分割技术,如聚类、阈值化、分水岭等。

常见的基于传统方法的显著性图像分割算法包括GrabCut、Mean-Shift、GraphCut等。

其中,GrabCut是一种基于交互操作的图像分割算法,它通过人工标记前景和背景来分割图像。

该算法先对用户标记的前景和背景像素进行聚类,得到前景区域和背景区域的高斯混合模型,然后将图像像素分配到前景或背景,直到模型收敛为止。

2. 基于深度学习的显著性区域提取近年来,深度学习技术的快速发展使得其成功地应用在图像分割中。

基于深度学习的显著性图像分割算法通常采用卷积神经网络(Convolutional Neural Network,CNN)或循环神经网络(Recurrent Neural Network,RNN)等深度模型进行特征提取和分割。

常见的基于深度学习的显著性图像分割算法包括DeepLab、FCN-8s、U-Net等。

其中,DeepLab是一种基于深度学习的图像分割算法,该算法采用深度卷积神经网络学习图像特征,然后使用空洞卷积(Dilated Convolutions)进行多尺度分析,最终生成图像分割结果。

U-Net是一种基于卷积神经网络的图像分割算法,通过特征提取和下采样操作得到低分辨率的特征图,然后通过上采样操作和特征融合得到高分辨率的分割结果。

三、显著性图像分割算法的优化策略1. 多尺度特征融合多尺度特征融合是提高显著性图像分割精度的常用策略之一。

图像分割之Graphcut算法

图像分割之Graphcut算法
建立各个像素点与前景背景相似度的赋权图,并通过求解最小切割区分
前景和背景。由于它是基于颜色统计采样的方法,因此对前背景相差较
大的图像效果较佳。
Basics (基础知识)
图论中的图(graph):
一个图G定义为一个有序对
(V,G),记为G=(V,G),其

研究背
研究方
(1) V是一个非空集合,称为顶
同的物理意义。




Graph Cuts是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S”
和”T”表示,统称为终端顶点。其它所有的顶点都必须和这2个顶点相连形
成边集合中的一部分。所以Graph Cuts中有两种顶点,也有两种边。
Basics (基础知识)
第一种顶点和边是:第一种普每两个邻域像
素)的连接就是一条边。这种边也叫
n-links。
研究背
研究方
第二种顶点和边是:除图像像素外,


还有另外两个终端顶点,叫S和T。每
个普通顶点和这2个终端顶点之间都
有连接,组成第二种边。这种边也叫
t-links。
研究成

研究总

Graph Cut (图割)
Graph Cut中的Cut是指这样一个边的
term),B(L)为边界项(boundary
边界项之间的重要因子,决定它们对能量的影响大小。




E(L)表示的是权值,即损失函数,也叫能量函数,图割的目标就是优化能量函数使其值
达到最小。
?Regional Term (区域项)
区域项: t-links中边的权值计算
R L = ෍ ( )

OpenCV图像分割

OpenCV图像分割

图像分割之(一)概述zouxy09@/zouxy09所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。

1、基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据比较结果分到合适的类别中。

因此,该类方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。

2、基于边缘的分割方法所谓边缘是指图像中两个不同区域的边界线上连续的像素点的集合,是图像局部特征不连续性的反映,体现了灰度、颜色、纹理等图像特性的突变。

通常情况下,基于边缘的分割方法指的是基于灰度值的边缘检测,它是建立在边缘灰度值会呈现出阶跃型或屋顶型变化这一观测基础上的方法。

阶跃型边缘两边像素点的灰度值存在着明显的差异,而屋顶型边缘则位于灰度值上升或下降的转折处。

正是基于这一特性,可以使用微分算子进行边缘检测,即使用一阶导数的极值与二阶导数的过零点来确定边缘,具体实现时可以使用图像与模板进行卷积来完成。

3、基于区域的分割方法此类方法是将图像按照相似性准则分成不同的区域,主要包括种子区域生长法、区域分裂合并法和分水岭法等几种类型。

种子区域生长法是从一组代表不同生长区域的种子像素开始,接下来将种子像素邻域里符合条件的像素合并到种子像素所代表的生长区域中,并将新添加的像素作为新的种子像素继续合并过程,直到找不到符合条件的新像素为止。

该方法的关键是选择合适的初始种子像素以及合理的生长准则。

区域分裂合并法(Gonzalez,2002)的基本思想是首先将图像任意分成若干互不相交的区域,然后再按照相关准则对这些区域进行分裂或者合并从而完成分割任务,该方法既适用于灰度图像分割也适用于纹理图像分割。

分水岭法(Meyer,1990)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。

图像切割—基于图的图像切割(Graph-BasedImageSegmentation)

图像切割—基于图的图像切割(Graph-BasedImageSegmentation)

图像切割—基于图的图像切割(Graph-BasedImageSegmentation)图像切割—基于图的图像切割(Graph-Based Image Segmentation)Reference:Efficient Graph-Based Image Segmentation,IJCV 2004,MIT最后⼀个暑假了,不打算开疆辟⼟了。

战略中⼼转移到品味经典。

计划把图像切割和⽬标追踪的经典算法都看⼀看。

再记些笔记。

Graph-Based Segmentation 是经典的图像切割算法,作者Felzenszwalb也是提出算法的⼤⽜。

该算法是基于图的贪⼼聚类算法,实现简单。

速度⽐較快,精度也还⾏。

只是。

眼下直接⽤它做切割的应该⽐較少,毕竟是99年的跨世纪元⽼,可是⾮常多算法⽤它作垫脚⽯。

⽐⽅Object Propose的开⼭之作《Segmentation as Selective Search for Object Recognition》就⽤它来产⽣过切割(oversegmentation)。

还有的语义切割(senmatic segmentation )算法⽤它来产⽣超像素(superpixels)详细忘记了……图的基本概念由于该算法是将照⽚⽤加权图抽象化表⽰,所以补充图的⼀些基本概念。

图是由顶点集(vertices)和边集(edges)组成,表⽰为。

顶点,在本⽂中即为单个的像素点。

连接⼀对顶点的边具有权重,本⽂中的意义为顶点之间的不相似度,所⽤的是⽆向图。

树:特殊的图。

图中随意两个顶点,都有路径相连接,可是没有回路。

如上图中加粗的边所连接⽽成的图。

假设看成⼀团乱连的珠⼦,仅仅保留树中的珠⼦和连线。

那么随便选个珠⼦,都能把这棵树中全部的珠⼦都提起来。

假设,i和h这条边也保留下来。

那么顶点h,i,c,f,g就构成了⼀个回路。

最⼩⽣成树(MST, ):特殊的树。

给定须要连接的顶点,选择边权之和最⼩的树。

带连通性约束的快速交互式Graph—Cut算法

带连通性约束的快速交互式Graph—Cut算法

Ab t a t G r p — t e m e t to a g rt m i kn w n o sr c : a h Cu s g n a i n l o ih s o t be ca sc l n e f c i e a l s ia a d fe tv m e ho f r t d o
地 改 善 了 s r kn i 现 象 , 高 了分 割 结 果 的精 确 性 . 验 结 果表 明 , 中算 法 具 有 良好 的 实 时 交 互 性 , 分 割 效 h i ig ba n s 提 实 文 且 果 更 加稳 定 和精 确 .
关键 词 : r p — u ; 互 式 图 像 分 割 ; 通 性 ; 时交 互 性 G a hC t交 连 实
b hi r l rt m . Fis , a e nd ou a go ih rt M e n Shit e hn o ba e pr ~ e a— f t c ol gy sd e s gm e t ton s n a i i us d O h t he e S t a t G r p Cuta g ihm i pe f r e t pr — e m e e r gi s a h r h n n m a x l t a h— l ort s r o m d on he es g nt d e on r t e t a o i ge pi e s, hus dr m a ia l e ucng t o pu a i a e he d o he a g ih . I dd ton,t e s g e t to a tc ly r d i he c m t ton lov r a ft l ort m n a ii he pr e m n a i n r s t a as b u e i t s s qu n e tm a i n o t f r g ou a b c gr un c l r e ul c n l o e s d n he ub e e t s i to f he o e r nd nd a k o d o o

separation算法

separation算法

Separation算法1. 简介Separation算法是一种用于图像处理和计算机视觉领域的算法,主要用于将图像中的前景和背景进行分离。

通过这种分离,我们可以更好地理解和分析图像中的对象,并对其进行进一步处理。

Separation算法通常用于图像分割任务,其中目标是将输入图像划分为多个区域,每个区域代表不同的对象或物体。

这些区域可以是基于颜色、纹理、形状等特征来定义的。

2. 常见的Separation算法以下是几种常见的Separation算法:2.1 GrabCut算法GrabCut算法是一种基于图割(Graph Cut)和高斯混合模型(Gaussian Mixture Model)的前景背景分割算法。

它通过迭代优化来估计前景和背景之间的边界,并根据这些边界将图像中的像素标记为前景或背景。

GrabCut算法首先需要用户提供一个包含前景目标的矩形框,然后通过迭代过程逐渐优化初始估计。

该算法结合了颜色、纹理和位置信息来进行分割,因此在复杂场景中表现良好。

2.2 Mean-Shift算法Mean-Shift算法是一种基于核密度估计的非参数聚类算法,也可以用于图像分割。

该算法通过不断迭代来寻找像素密度最大的区域,并将其作为前景。

Mean-Shift算法首先选择一个种子点作为初始估计,然后通过计算梯度向量迭代地移动该点,直到达到停止条件。

在每次迭代中,该算法会根据像素之间的颜色和空间距离来更新梯度向量。

2.3 Watershed算法Watershed算法是一种基于图论的分水岭分割算法,它将图像视为一个地形图,并使用水流模拟来进行分割。

该算法通过模拟水从高处流向低处的过程来确定图像中的区域边界。

Watershed算法首先将图像中的灰度值作为高程信息,并根据灰度值之间的梯度构建一个梯度图。

然后,该算法使用洪水填充(Flood Fill)技术来模拟水流,并根据水流路径确定区域边界。

3. Separation算法在实际应用中的应用Separation算法在许多实际应用中发挥着重要作用:3.1 图像分割Separation算法可以用于图像分割任务,例如将图像中的前景和背景进行分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档