基于MATLAB的图像分割算法研究毕业设计
基于MATLAB的图像分割算法研究设计.doc

2.3
基于二阶导数的边缘检测算法.................................................................................... 9 2.3.1 2.3.2 Laplacian 算子边缘检测方法.............................................................................9 LOG 算子边缘检测方法.................................................................................. 10
2.2
基于边缘的图像分割.................................................................................................... 6 2.2.1 2.2.2 2.2.3 2.2.4 基于梯度的边缘检测......................................................................................... 7 Roberts 算子边缘检测........................................................................................ 8 Sobel 算子边缘检测........................................................................................... 8 Prewitt 算子边缘检测.........................................................................................9
基于MATLAB的图像分割方法及应用

本科毕业设计(论文)课题名称基于MATLAB的图像分割方法及应用电子信息工程学院电子科学与技术专业学号学生姓名指导教师起讫日期工作地点摘要图像处理是一种新兴学科,在短短几十年中得以迅速发展并广泛应用于航天、军事、医学等领域。
它是如今信息社会引人注目的多媒体技术中重要组成部分只一。
图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。
图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。
图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。
本文根据图像分割原理及人眼视觉的基本理论,研究图像的彩色模型及图像分割的常用方法,比较各方法的特点,并选择合适的方法对图像进行分割。
本文采用MATLAB软件对图像进行彩色坐标变换及阈值分割,计算简单,具有较高的运行效率,分割的结果是使图像更符合人眼的视觉特性,获得比较好的效果。
关键字:图像处理;图像分割;人类视觉;MATLABABSTRACTImage processing of the emerging disciplines, in a short span of decades to the rapid development and is widely used in military, aerospace, medical and other fields. Today's information society it is eye-catching multi-media technology an important part. This paper reviews the image processing in the human visual segmentation and the basic theory and commonly used method, combined with the cells to deal with image color space conversion and split. And through the MATLAB platform to realize color image segmentation.This article first discusses the basic principles of vision, including the structure of the human eye, the human eye's visual system, color vision, color, etc. In this paper, The basic principle of color image processing is also carried out preliminary study was mainly aimed at the visual characteristics of the human eye to choose the appropriate color model to color images converted from RGB space to reflect the characteristics of human visual processing of the HSI space and then. Color images of cells after conversion model for the operation of division.In this paper, the threshold segmentation of cell image segmentation is using methods. Threshold segmentation method applied to objects and background have a stronger contrast to the situation, it is important that the gray background or objects in a single comparison, the calculation is simple, with high operating efficiency. The results of segmentation are to make the image more in line with the visual characteristics of the human eye and to obtain relatively good results.Keywords: image processing; image segmentation; MATLAB; human visual目录第一章绪论 (1)1.1 前言 (1)1.2 MATLAB简介 (2)1.3 视觉研究现状 (3)1.4 视觉研究与彩色图像坐标转换 (3)1.4.1 视觉研究与图像处理 (3)1.4.2 视觉研究在彩色图像坐标转换的应用 (4)1.5 研究目的与内容 (4)1.5.1 研究目的 (4)1.5.2 本文主要内容 (5)第二章视觉基本理论 (6)2.1 视光学 (6)2.1.1 人眼的结构 (6)2.1.2 视觉系统 (7)2.1.3 颜色视觉 (8)2.1.4 肉眼色度视觉原理 ............................................................ 错误!未定义书签。
基于MATLAB的图像分割方法及应用

财经大学(《图像处理》课程论文)题目:图像分割算法研究——基于分水岭分割法的彩色图像分割学院:管理科学与工程学院专业:电子信息工程姓名:万多荃学号:20123712电话:任课教师:许晓丽论文成绩:2015年10月目录摘要 (2)1.前言 (2)1.1图像分割技术 (2)2研究目的 (2)3 图像处理技术基础 (3)3.1 技术背景 (3)3.2 彩色图像格式 (3)3.3 彩色图像分割技术 (4)4分水岭分割法 (4)5 彩色图像分割的MATLAB实现 (6)5.1 MATLAB语言:分水岭分割法实现图像分割 (6)5.1.1 设计流程 (6)5.1.2 MATLAB程序 (7)5.2结果分析 (9)结论 (9)参考文献 (9)摘要图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。
图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。
图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。
本文根据图像分割原理及人眼视觉的基本理论,研究图像的彩色模型及图像分割的常用方法,比较各方法的特点,并选择合适的方法对图像进行分割。
本文采用MATLAB软件对图像进行彩色坐标变换及阈值分割,计算简单,具有较高的运行效率,分割的结果是使图像更符合人眼的视觉特性,获得比较好的效果。
关键字:图像处理;图像分割;人类视觉;MATLAB1.前言1.1图像分割技术图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。
图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。
图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。
图像数据的模糊和噪声的干扰是分割问题的两大难题。
基于matlab的图像形状与分类毕业设计(含源文件)

Matlab的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用Matlab来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。
(6)XWD(X Windows Dump)格式。1,8位Zpixmaps,Xybitmaps,1位Xypixmaps。
(7)PNG(Portable Network Graphics)格式。
为了从一般的照片,景物等模拟图像中得到数字图像,需要对传统的模拟图像进行采样与量化两种操作(二者统称为数字化)。数字图像处理(DigitalImageProcessing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
对数字图像经行处理要用到Matlab程序,它在数字图像方面的用处巨大。
毕业设计(论文)
毕业论文题目:基于matlab的图像形状与分类
摘要
数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像形状的边缘提取和识别分类。论文主要论述了利用MATLAB实现对图像中的三角形,正方形,圆,椭圆,菱形的边缘提取和自动识别分类。
基于matlab的图像分割及其应用毕业设计论文[管理资料]
![基于matlab的图像分割及其应用毕业设计论文[管理资料]](https://img.taocdn.com/s3/m/9a379109aef8941ea66e0524.png)
基于MATLAB的图像分割及其应用摘要: 近年来,由于科技的迅猛发展,计算机性能越来越好,图像处理系统的价格的日益下降,图像处理在众多科学领域与工程领域得到广泛的利用。
从图像处理过渡到图像分析的关键步骤就是图像分割,所以说图像分割在图像工程中占据着重要的位置。
在图像分析中,图像分割的任务就是把分成互不重叠的有意义的区域,以便进一步的对图像进行处理、分析和应用。
图像分割是图像特征提取和识别等图像理解的基础,对图像分割的研究一直是数字图像处理技术研究中的热点和焦点。
本文主要对图像分割算法进行了分析、分类、归纳和总结。
并应用Matlab进行了仿真实验,在基于L*a*b 的空间彩色分割主要用到的函数是色彩空间转换函数makecform和applyccform,通过计算图像中像素点与样本像素点的距离来判断这个像素点的颜色进行分割。
基于纹理滤波器的图像分割主要使用entropyfilt函数创建纹理图像,使用bwareaopen函数显示图像的纹理底部纹理。
由于纹理特征的复杂性,每一种算法在对纹理特征处理分析的时候都会有它的缺陷和局限性。
利用边缘检测方法对细胞图像进行了分割实验,结果与传统方法相比,轮廓提取更为精确,且最大程度的保留了内部细胞核的轮廓。
同时指出了基于阀值的分割方法、基于边缘的分割方法、基于区域的分割方法等各类方法的特点,为不同的应用场合及不同的图像数据条件下选择不同的分割算法提供了一些依据。
关键词:Matlab 图像分割分割算法Image Segmentation Based on MATLAB and Its Application Abstract: In recent years, the rapid development of science and technology, computer performance is getting better, declining prices image processing system, image processing is widely utilized in many fields of science and engineering fields. The transition from image processing to image analysis, image segmentation is the key step,so that the image segmentation occupies an important position in the image project. In the image analysis, image segmentation task is to put into meaningful nonoverlapping region, in order to further the image processing, analysis and application. Image segmentation is the basis of the image feature extraction and recognition, image understanding, image segmentation research has been the digital image processing technology research hot spots and focus. This paper focuses on image segmentation algorithms are analyzed, classified and summarized. Application of Matlab simulation and experiments, based on L * a * b color space is divided main functions used color space conversion functions makecform and applyccform, by calculating the distance between the image pixels and pixel sample to determine the pixel color segmentation. Image segmentation based on texture filter mainly use entropyfilt function to create a texture image using bwareaopen function displays an image texture bottom texture. Because of the complexity of the texture features of each algorithm when processing analysis of texture features will have its flaws and limitations. Using edge detection method for cell image segmentation experimental results compared with the traditional method, contour extraction more accurate, and the greatest degree of retention of the internal contours of the nucleus. Also pointed out that the threshold-based segmentation method, based on the edge of the segmentation method, based on the characteristics of various types of region segmentation method method, choose different segmentation algorithms for the different applications and different conditions of image data provides some basis.Keywords: Matlab Image segmentation Segmentation algorithm目录目录1 前言 (1)图像分割概述 (1)研究背景及目的 (1)论文内容及结构 (2)2 MATLAB简介 (3)MATLAB软件介绍 (3)MATLAB概况 (3)MATLAB技术特点 (3)3 图像分割技术概述 (6)图像分割的定义 (6)图像分割的几种方法 (6)阈值分割 (6)区域分割 (7)边缘分割 (8)直方图法 (9)图像分割算法的分析比较 (9)本章小结 (13)4 图像分割仿真实验 (14)L*a*b空间的彩色分割 (14)Lab颜色空间 (14)颜色空间转换 (15)图像的空间彩色分割 (15)基于图像纹理的图像分割 (19)图像纹理的定义 (19)图像纹理的分类 (19)图像纹理提取方法 (19)使用MATLAB中的纹理滤波器分割图像 (19)其他图像分割算法的简单实例 (23)阈值分割 (25)最大信息熵算法 (27)门限分割 (28)图像分割检测细胞图像 (30)本章小结 (35)5 总结与展望 (36)参考文献 (37)致谢 (38)附录 (39)1前言图像分割概述图像的研究和应用中,人们往往对图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单一区域,也可以对应多个区域),称之为目标或前景;而其他部分称为图像的背景。
毕业设计(论文)-基于MATLAB的医学图像处理

届别 2012学号 ************毕业设计(论文)基于MATLAB的医学图像处理姓名系别、专业计算机系通信工程专业导师姓名、职称完成时间 2012年3月10日基于MATLAB的医学图像处理摘要本文针对基于MATLAB的医学图像处理环境,对其结构、特点及应用做了介绍。
重点阐述了多种算法综合运用解决特定应用环境下的图像处理,如用直方图均衡进行图像增强,通过形态学方法进行图像特征提取与分析,利用傅里叶变换进行图像分析等。
目的:改善医学图像质量,使低对比度的图像得到增强。
方法:利用MATLAB工具箱函数,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。
结果:用直方图均衡化和规定的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
直方图均衡化对于局部细节不显著,而直方图规定化则不易观察到的细节变得清晰。
结论:使用MATLAB工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
直方图规定化法处理医学图像局部细节方面好于均衡化。
关键词:MATLAB,规定化,均衡化,图像处理,图像增强THE REALIZATION OF IMAGE PROCESSING BASED ONMATLABABSTRACTThe paper presents a digital image processing environment which is based on MATLAB,and introduce its structure,characteristics and application.It focuses on the comprehensive using of a variety of algorithms to solve image processing problems in specific application environment,such as using histogram equalization for image enhancement ,using the morphological approach for image feature extraction and analysis, using fourier transform for analysis image and so on. AIM: To improve the quality of medical image by enhancing the lowcontrast details. METHODS: Two processing methods, the graylevel histogram equalization and the graylevel histogram regulation, were applied to enhance an Xray image and their enhancement effects were compared by using Matlab toolbox functions. RESULTS: By the two means of algorithmhistogram equalization or regulation, the dense graylevel distribution of the original image became sparse, and the output image was refined. The regulation method strengthened the difficultly observed details, while the equalization method improved less the local details of image. CONCLUSION: Matlab toolbox is helpful for simplifying the programming and provides a platform for medical image processing. The regulation method is better than the equalization method in presenting the local details of medical images.KEYWORDS: equalization,regulation,algorithms,MATLAB,image enhancement目录摘要 (2)第1章系统简介 (7)§1.1 综述 (7)§1.2 课题背景 (7)§1.2.1 MATLAB语言背景 (7)§1.3本文主要研究工作 (9)第2章系统实现 (10)§2.1 调用程序设计原理 (10)§2.1.1 创建和获取ActiveX自动化对象的过程 (10)§2.1.2 MATLAB对象的一些属性和方法[8] (10)§2.2 调用MATLAB程序的实现 (11)§2.2.1图片的缩放处理 (11)§2.2.2 图片的旋转处理 (11)§2.2.3 图像的负片效果 (11)§2.2.4 图像的剪切处理 (11)§2.2.5 图像的灰度变换 (12)§2.2.6 图像的对比度增强 (12)§2.2.7 图像显示直方图 (12)§2.2.8 图像直方图均衡化 (13)§2.2.9 图像消噪 (14)§2.2.10 图像边缘检测 (15)§2.2.11 图像平滑处理 (15)§2.2.12 图像锐化处理 (16)第3章系统调试 (18)§3.1 软件设计说明 (18)§3.2 软件使用说明 (18)§3.3 软件测试分析 (19)§3.3.1 图像旋转测试 (19)§3.3.2 图像剪切测试 (19)§3.3.3 图像负片效果测试 (20)§3.3.4 灰度变换测试 (20)§3.3.5 直方图均衡化测试 (22)§3.3.6 锐化效果测试 (23)§3.3.7 边缘检测效果测试 (24)结论 (27)参考文献 (28)致谢 (29)附录 (30)前言图像处理系统(Image Processing System),用计算机对图像进行分析,以达到所需效果的技术,又称影像处理。
毕业设计- 基于MATLAB图像分割算法研究与实现

基于MATLAB图像分割算法研究与实现摘要图像分割是指把图像分解成各具特性的区域并提取出感兴趣目标的技术和过程,它是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。
因此从原理、应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。
本课题主要介绍了图像分割的基本知识,研究了图像分割的两大类算法,即基于边缘检测的方法和基于区域生成的方法。
采用MATLAB仿真了所有分割过程,得到了比较理想的分割结果,并分析了各个算法的优点和不足之处,以及适用于何种图像。
基于边缘检测方法种类繁多,主要介绍基于EDGE函数、检测微小结构、四叉树分解和阈值分割的方法实现对图像的边缘检测及提取。
而基于区域的图像分割方法主要包括区域生长法和分裂-合并分割方法。
通过多次的实验过后,总结出一般的图像分割处理可以用EDGE函数。
而特定的图像应用阈值分割、检测微小结构和四叉树分解比较简单。
虽然近年来人们在图像分割方面做了大量的研究工作,但由于尚无通用的分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法,有待于进一步解决。
关键字:图像分割;边缘检测;区域生成;阈值分割Research of image segmentation algorithmAbstractImage Segmentation is the technique and the process to segment an image into different sub-mages with different characters and to extract the interested objects from the image. It is an important and basic procedure in the field of computer vision, the quality of image segmentation directly affects the performance of vision system. Therefore, from the theory, application and evaluation of application effect of depth of image segmentation is of great significance. This issue introduces the basics of image segmentation, image segmentation of the two major algorithms have been done, that is based on edge detection method and the method based on regional produce. Segmentation process is simulated and the results have shown perfect. Advantages and disadvantages of each algorithm are discussed at the end of the paper, and to apply to each image.Edge detection method based on a wide range of EDGE-based functions are introduced, the detection of minimal structure, quadtree decomposition and threshold segmentation method to realize the edge detection and extraction. The region-based image segmentation methods include region growing and division - combined segmentation. Through many experiments later, summed up the general image segmentation can be EDGE function. The specific application of image segmentation, the detection of minimal structure and quadtree decomposition is simple.Although a lot of image segmentation research has been done in recent years, but there is not general theory of segmentation, the proposed segmentation algorithm has been mostly issue-specific, and there is not a suitable segmentation algorithm for all common image, remains to be resolved.Keywords: Image segmentation; Edge detection; Region segmentation; Threshold引言图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。
基于MATLAB的图像分割处理

图像分割是一种重要的图像分析技术。
对图像分割的研究一直是图像技术研究中的热点和焦点。
图像分割是一个很关键的图像分析技术,是由图像处理进到图像分析的关键步骤.它的目的就是把图像中感兴趣的那部分分割出来供大家研究、处理和分析,一直都是图像技术研究中的热点。
但是由于地域的差别,图像分割一直都没有一个比较通用的算法。
而对图像进行分割的方法有多种,阈值法是其中的一种简单实用的方法。
本文主要对阈值法和matlab进行研究,并将它们结合起来以提高图像分割的准确性。
本文的主要研究内容如下: 1) 分析了阈值分割方法近年来的新进展,并分析了图像阈值分割中的某些经典方法,如全局阈值方法、局部阈值方法、动态阈值方法等。
2)讨论了matlab的主要应用及其特点。
3) 将matlab应用于阈值分割,并做实验将其实现。
本次的设计报告首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值。
最后,对这几种算法的分割效果进行了比较。
实验结果表明, 本设计能够实时稳定的对目标分割提取,分割效果良好。
医学图像分割是医学图像处理中的一个经典难题。
图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。
关键词:小波变换;图像分割;阈值一、设计原理介绍 (5)1.1边缘检测法 (5)1.2区域提取法 (6)1.3阈值分割法 (6)1.4结合特定理论工具的分割法 (7)二、图像分割预处理 (7)2.1 图像平滑 (7)2.2中值滤波原理 (8)2.3平滑效果分析 (8)2.4灰度调整 (9)2.5 灰度调整原理 (9)2.6灰度调整效果分析 (10)三、基于阈值的图像分割技术 (10)3.1 阈值分割原理 (11)3.2图像分割方法 (11)3.3 图像二值化 (11)3.4双峰法 (12)3.5最大方差自动取阈值法 (13)四、基于小波图像阈值分割技术 (14)4.1 基于小波阈值分割技术简述 (14)4.2 小波分析 (15)4.3 小波变换 (15)4.4 小波分割算法及步骤 (16)4.5 阈值选取以及实验分析 (16)五、参考文献 (21)六、设计心得 (22)第一章设计原理介绍本章对设计涉及的研究领域进行了较为详细的综述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的图像分割算法研究摘要本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。
对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。
而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。
区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。
与此同时本文还分析了图像分割技术研究的方向。
关键词:图像处理图像分割AbstractThis article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time.Key words: image processing image segmentation operator目录(一般目录要求最多是三级目录,不要出现四级目录)第一章绪论 (1)1.1数字图像处理的基本特点 (1)1.1.1数字图像处理的信息大多是二维信息,处理信息量很大(三级标题有问题)1 1.1.2数字图像处理占用的频带较宽 (2)1.1.3数字图像中各个像素是不独立的,其相关性大 (2)1.1.4作合适的假定或附加新的测量 (2)1.1.5数字图像处理后的图像受人的因素影响较大 (2)1.2数字图像处理的优点 (2)1.2.1再现性好 (2)1.2.2处理精度高 (3)1.2.3适用面宽 (3)1.2.4灵活性高 (3)1.3数字图像处理的应用 (4)1.3.1航天和航空技术方面的应用 (4)1.3.2生物医学工程方面的应用 (5)1.3.3通信工程方面的应用 (5)1.3.4工业和工程方面的应用 (5)1.3.5军事公安方面的应用 (5)1.3.6文化艺术方面的应用 (6)1.4数字图像分割技术的发展概况 (6)1.4.1 基于分形的图像分割技术 (6)1.4.2 基于神经网络的图像分割技术 (7)1.5本文的主要流程图 (8)第二章数字图像处理的处理方式 (9)2.1图像变换 (9)2.2图像编码压缩 (9)2.3图像增强和复原 (9)2.4图像分割 (9)2.5图像描述 (10)2.6图像分类(识别) (10)第三章 MATLAB平台及其开发环境 (11)3.1.MATLAB的组成 (11)3.1.1MATLAB主要有以下几个部分 (11)a.数值计算功能 (12)b.符号计算功能 (12)c.数据分析功能 (12)d.动态仿真功能 (12)e.程序借口功能 (13)3.2.1功能强大,可扩展性强 (13)3.2.2界面友好,编程效率高 (14)3.2.3图像功能,灵活且方便 (14)3.3MATLAB在图像处理中的应用 (14)第四章图像分割概念及算法研究 (16)4.1图像分割的基本概念 (16)4.1.1图像分割定义 (16)4.2边缘检测方法(4.1和4.2之间不是并行关系) (17)4.2.1边缘检测概述 (17)4.2.2边缘检测梯度算法 (19)a.梯度边缘检测算法基本步骤及流程图 (19)b.Robert算子 (20)c.Sobel算子 (21)d.Prewitt算子 (21)4.2.3拉普拉斯(Laplacian)算子 (22)4.2.4LoG(Laplacian-Gauss)算子 (24)4.2.5坎尼(Canny)算子 (25)4.3灰度阈值分割 (27)4.3.1阈值分割介绍 (28)a.阈值化分割原则 (28)b.阈值分割算法分类 (29)4.3.2全局阈值 (30)a.极小值点阈值 (31)b.最优阈值 (31)c.迭代阈值分割 (33)4.3.3动态阈值 (34)a.阈值插值 (35)b.水线阈值算法 (35)4.4区域分割 (37)4.4.1区域生长的基本原理、步骤及流程图 (37)4.4.2生长准则和过程 (40)a.灰度差准则 (40)b.灰度分布统计准则 (41)c.区域形状准则 (42)4.4.3分裂合并 (43)第五章总结 (45)5.1对于图像边缘检测的分析 (45)5.2对于图像阈值分割的分析 (45)5.3对于图像区域分割的分析 (46)5.4改进意见(改进可另外做为一章比如说某某算法等的若干改进等,不要放入总结一章中)(总结是对整篇文章的一个概述,应该是写比如得出些什么结论,一些算法间比较等相关问题。
) (46)参考文献 (48)第一章绪论1.1数字图像处理的基本特点1.1.1数字图像处理的信息大多是二维信息,处理信息量很大如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
1.1.2数字图像处理占用的频带较宽与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。
1.1.3数字图像中各个像素是不独立的,其相关性大在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
1.1.4作合适的假定或附加新的测量由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。
另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。
例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
1.2数字图像处理的优点1.2.1再现性好数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。
只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。
1.2.2处理精度高按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。
现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。
对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。
换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。
回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。
1.2.3适用面宽图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。
从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。
这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。
即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
1.2.4灵活性高图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。