2.1.2指数函数及其性质(二)
2.1.2指数函数性质运用—比较大小

必须的准备工作
2.
3.
4.
5.
一支红笔和黑笔 一套参考书(创新方案) 一本错题集 作业本 一些草稿纸
▲ 指数函数y=ax (a>0且a ≠1)的图像和性质
0<a<1 a>1
图 像
定 义 域 值 域
R (0,+∞)
R (0,+∞)
0 函 1)过定点(0,1)即 x=0时,y=a =1 1)过定点(0,1)即 x=0时,y=a0=1 数 2)当x>0时,0<ax<1;当x<0时,ax>1 2)当x>0时,ax>1;当x<0时,0<ax<1 性 质 3)在R上是减函数 3)在R上是增函数
0.2
2 0.3 (3) ( ) 2
2 0.6 ( ) 2
底数相同,指数不同的函数值的大小比较方 法依据是什么呢?(单调性逆用)
(1)
若2 2 , 则m ___ n
m n
(2) 0.2m 0.2n , 则m ___ n 若
(3) a m a n , 则m ___ n(0 a 1) 若
单调性逆用:比较 自变量大小
当堂训练
利用上述三种方法判断大小
1、 1.8 ____1.8 2、 4 ____ 5
2.2 3
1.5
1.5 0.7
3、 4 ____ 5
1.5
1.5
4、 2 ____ 0.5
0.8
课堂小结
(一)、底数相同,指数不同
构造出相应的指数函数,利用指数函数的单调 性比较函数值的大小。
(二)指数相同,底数不同
一般采取图象法和作商法(结果与1比较)
(三)指数不同,底数不同
指数函数及其性质

2.1.2 指数函数及其性质(一)一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质,本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。
二、问题引领:1、指数函数的概念、图象和性质2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与0、1的大小关系为01a b c d <<<<<。
三、典例剖析:例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。
分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。
根据函数图象过点()2,π这一条件,可以求得底数a 的值。
解: ()x a x f =的图象经过点()2,π,()2f π∴= 即2a π=,解得12a π=()2x f x π∴=,即:()()()1012101,12f f f ππππ-====-==。
点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。
例题2:1、设1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,求,,a b a a a b 的大小关系。
2、 比较23540.5,1.2,1的大小。
分析:利用指数函数的单调性和特殊点比较大小。
解:1、因为函数13x y ⎛⎫= ⎪⎝⎭在R 上为减函数,又由1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以得:01a b <<<,因为当01a <<时,函数xy a =为减函数,又a b <,所以a b a a >,因为函数x y a =与xy b =在R 上同为减函数且当0x >时,随着x 的增大,函数x y a =比函数xy b =减小的快,所以a aa b <,即b a aa ab <<。
指数函数的图像及性质2

2.1.2指数函数及其性质的应用(2)班级: 姓名: 编者:阮娟萍 高一数学备课组 问题引航1.能熟练说出指数函数的性质。
2.会求简单复合函数的性质。
3.会利用指数函数的性质比较幂值的大小。
自主探究1.函数)1,0(≠>=a a y a x 的定义域是 ,值域 . 2.函数)1,0(≠>=a a y a x .当a>1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1;当0<a<1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1.3.函数)1,0(≠>=a a y a x 是 函数(就奇偶性填). 互动探究1.函数y=a x+2-3(a >0且a ≠1)必过定点________.2.函数y =a |x|(0<a <1)的图像是( )3.比较下列各题中两个值的大小:(1) 35.27.1 ,7.1 (2) 2.01.08.0 ,8.0--(3) 1.33.09.0 ,7.1 (4) 比较2131a a 与的大小,)1,0(≠>a a 且当堂检测 1.函数2121x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数 2.函数21x y =的单调递减区间是( )A.(-∞,+∞) B.(-∞,0)C.(0,+∞) D.(-∞,0)和(0,+∞)3.若函数x a y )12(+=是减函数,则a 的取值范围是__________________.4.函数y=4x 与函数y=4-x 的图像关于________对称.*5.已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07.0===?自我评价你对本节课知识掌握的如何( )A.非常好B.较好C.一般D.较差E.很差。
指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
学案8:2.1.2 指数函数及其性质(二)

2.1.2 指数函数及其性质(二)自主学习学习目标1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.基础自测1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2. 指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1题型探究类型一 比较大小问题【例1】 比较下列各题中两个值的大小:(1)3π与33.14; (2)0.99-1.01与0.99-1.11; (3)1.40.1与0.90.3.规律方法 比较两指数大小时,若底数相同,则先构造出该底数的指数函数,然后利用单调性比较;若底数不同,则考虑选择中间量,通常选择“1”作为中间量.变式迁移1 比较⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412的大小.类型二 解简单的指数不等式【例2】 如果a 2x +1≤a x -5(a >0,且a ≠1),求x 的取值范围.规律方法 解a f (x )>a g (x )(a >0且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为变式迁移2 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是____________.类型三 指数函数的最值问题【例3】 (1)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值; (2)如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.规律方法 指数函数y =a x (a >1)为单调增函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最小值a s ;当x =t 时,函数有最大值a t .指数函数y =a x (0<a <1)为单调减函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最大值a s ;当x =t 时,函数有最小值a t .变式迁移3 (1)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值与最小值之和为6,求a 的值;(2)0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.课堂小结1.指数函数的定义及图象是本节的关键.通过图象可以求函数的值域及单调区间.2.利用指数函数的性质可以比较两个指数幂的大小(1)当两个正数指数幂的底数相同时,直接利用指数函数的单调性比较大小.(2)当两个正数指数幂的底数不同而指数相同时,可利用两个指数函数的图象比较它们的大小.(3)当两个正数指数幂的底数不同而且指数也不相同时,可考虑能否利用“媒介”数来比较它们的大小.3.通过本节的学习,进一步体会分类讨论思想在解题中的应用.当堂检测一、选择题1.下图分别是函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,a ,b ,c ,d 分别是四数2,43,310,15中的一个,则相应的a ,b ,c ,d 应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43,2 2.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a3.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A .(1,+∞) B .(12,+∞) C .(-∞,1) D .(-∞,12)4.设13<(13)b <(13)a <1,则( ) A .a a <a b <b a B .a a <b a <a b C .a b <a a <b a D .a b <b a <a a5.若函数f (x )=⎩⎪⎨⎪⎧ a x , x >14-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)二、填空题6.当x ∈[-1,1]时,函数f (x )=3x -2的值域是____________.7.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是____________.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是__________.三、解答题9.解不等式a x +5<a 4x -1 (a >0,且a ≠1).10.已知函数f (x )=⎝⎛⎭⎫12x -1+12·x 3. (1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.【参考答案】基础自测1.C 2.C 3.A 4.C题型探究【例1】 解 (1)构造函数y =3x .∵a =3>1,∴y =3x 在(-∞,+∞)上是增函数.∵π>3.14,∴3π>33.14.(2)构造函数y =0.99x .∵0<a =0.99<1,∴y =0.99x 在(-∞,+∞)上是减函数.∵-1.01>-1.11,∴0.99-1.01<0.99-1.11.(3)分别构造函数y =1.4x 与y =0.9x .∵1.4>1,0<0.9<1,∴y =1.4x 与y =0.9x在(-∞,+∞)上分别为增函数和减函数.∵0.1>0,∴1.40.1>1.40=1.∵0.3>0,∴0.90.3<0.90=1,∴1.40.1>1>0.90.3,∴1.40.1>0.90.3.变式迁移1 解 将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412分成如下三类:(1)负数⎝⎛⎭⎫-233; (2)大于0小于1的数⎝⎛⎭⎫3412;(3)大于1的数⎝⎛⎭⎫4313,223.∵⎝⎛⎭⎫4313<413,而413=223, ∴⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 【例2】 解 (1)当0<a <1时,由于a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6.(2)当a >1时,由于a 2x +1≤a x -5,∴2x +1≤x -5,解得x ≤-6.综上所述,x 的取值范围是:当0<a <1时,x ≥-6;当a >1时,x ≤-6.变式迁移2 (12,+∞) 解析 a 2+a +2=(a +12)2+74>1. ∴y =(a 2+a +2)x 在R 上是增函数.∴x >1-x ,解得x >12. ∴x 的取值范围是(12,+∞). 【例3】 解 (1)①若a >1,则f (x )在[1,2]上递增,最大值为a 2,最小值为a .∴a 2-a =a 2,即a =32或a =0(舍去). ②若0<a <1,则f (x )在[1,2]上递减,最大值为a ,最小值为a 2.∴a -a 2=a 2,即a =12或a =0(舍去), 综上所述,所求a 的值为12或32. (2)设t =a x ,则原函数可化为y =(t +1)2-2,对称轴为t =-1.①若a >1,∵x ∈[-1,1],∵t =a x 在[-1,1]上递增,∴0<1a≤t ≤a ; ∴y =(t +1)2-2当t ∈[1a,a ]时递增. 故当t =a 时,y max =a 2+2a -1.由a 2+2a -1=14,解得a =3或a =-5(舍去,∵a >1).②若0<a <1,t =a x 在[-1,1]上递减,t ∈[a ,1a], y max =a -2+2a -1-1=14,解得a =13或a =-15(舍去). 综上,可得a =13或3. 变式迁移3 解 (1)∵f (x )=a x 在[1,2]上是单调函数,∴f (x )在1或2时取得最值.∴a +a 2=6,解得a =2或a =-3,∵a >0,∴a =2.(2)y =12·22x -3·2x +5=12(22x -6·2x )+5 =12(2x -3)2+12. ∵x ∈[0,2],1≤2x ≤4,∴当2x =3时,y 最小值=12, 当2x =1时,y 最大值=52. 当堂检侧1.C2.B 【解析】c <0,b =53>3,1<a <3,∴b >a >c .3.B 【解析】函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 4.C 【解析】由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .5.D 【解析】因为f (x )在R 上是增函数,故结合图象知 ⎩⎪⎨⎪⎧ a >14-a 2>04-a 2+2≤a,解得4≤a <8.6.⎣⎡⎦⎤-53,1 7.c >a >b 【解析】y =0.8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.8.(-∞,-1)【解析】∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12得x ∈∅; 当x =0时,f (0)=0<-12不成立;因此当x <0时,由2x -1<-12得x <-1.综上可知x ∈(-∞,-1).9.解 当a >1时,原不等式可变为x +5<4x -1.解得x >2;当0<a <1时,原不等式可变为x +5>4x -1.解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).10.(1)解 由2x -1≠0,得x ≠0.∴函数的定义域为(-∞,0)∪(0,+∞).(2)解 由于函数f (x )的定义域关于原点对称,f (-x )=⎝⎛⎭⎫12-x -1+12·(-x )3 =-⎝⎛⎭⎫2x 1-2x +12x 3=⎝⎛⎭⎫12x -1+12·x 3 =f (x ),所以f (x )为偶函数.(3)证明 当x >0时,12x -1>0,x 3>0, ∴f (x )>0,又∵f (x )为偶函数,∴x <0时,f (x )>0,综上所述,对于定义域内的任意x 都有f (x )>0.。
2.1.2指数函数及其性质2

③ 1.7 ,0.9
0 .3
3.1
解③ :根据指数函数的性质,得 3.1 0.3 1.7 1 且 0.9 1
3.2
3.2
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
1.8
fx = 0.9x
fx = 1.7x
1.6
1.6
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
2a 1 1 1 a a , 且a 1 2
1 2 a 1
作出函数图像: 1。列表 2。描点
3。连线
y
y= 2- x
4 3 2 1 -3 -2 -1 0 1 2 3
y=2x
x
指数函数: y=ax (a >0且a=1) a>1 0<a<1 y y y=ax y=ax 图 (0<a<1) (a>1)
(0,1)
y=1
y=1
(0,1)
象
0
当 x < 0 时,0<y < 1; 定
x
0
x
当 义 域 : R x < 0 时,y > 1; 性 当 x > 0 时,y域 : ( 0 , + ∞ 当)x > 0 时,0<y < 1 。 值 > 1. 必过 点: 0 , 1 ) ,即 x = 0 时, y = 1 . ( 质 在 R 上是 增函数 在 R 上是 减函数
a 和a
1 2
1 3
的大小,其中a>0
2.1.2指数函数及其性质(2)课件人教新课标

课堂小结
1. 指数复合函数的单调性; 2. 指数函数图象的变换.
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
(0,1)
y=1
(0,1) y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
在R上是减函数
x>0时,ax>1; x>0时,0<ax<1;
x<0时,0<ax<1 x<0时,ax>1
复习引入
练习
1.解不等式:
复习引入
练习
2.
复习引入
练习
3. 函数y=a x-1+4恒过定点
.
A.(1,5) C.(0,4)
B.(1,4) D.(4,0)
复习引入
练习
4. 下列函数中,值域为(0,+∞)的函数
是
()
讲授新课
一、指数函数图象的变换 1.说明下列函数图象与指数函数y=2x的 图象关系,并画出它们的图象:
9 8 7 6 5 4 3 2 1
-4 -2 O
2 4x
作出图象,显示出函数数据表
x
-3
-2 -1 0 1 2 3
0.125 0.25 0.5 1 2 4 8
0.0625 0.125 0.25 0.5 1 2 4
0.03125 0.0625 0.125 0.25 0.5 1 2
y
9 8 7 6 5 4 3 2 1
2.1.2指数函数 及其性质
复习引入
指数函数的图象和性质:
a>1
0<a<1
图 象
定义域 R;值域(0,+∞)
指数函数及其性(一)(二)

课堂小结
1、指数函数概念;
函数y = ax(a0,且a 1)叫做指数函数, 其中x是自变量 .函数的定义域是R .
2、指数比较大小的方法; ①、构造函数法:要点是利用函数的单调性,数的 特征是同底不同指(包括可以化为同底的),若底 数是参变量要注意分类讨论。 ②、搭桥比较法:用别的数如0或1做桥。数的特 征是不同底不同指。
提炼:
(1)y=1.073X(X∈N*,X≤20) (2)P=(1/2)t/5730(t ≥0)
设问1:以上两个函数有何共同特征?
(1)均为幂的形式; (2)底数是一个正的常数且不等于1; (3)自变量在指数位置.
定义: x 一般地,函数y a (a 0, a 1)叫做指数
函数,其中x是自变量,函数的定义域是 R。
;
, 2.3 , 0.9
; 4 1.7
1 1 3 3
, 0.9
3.1 3.1
;
2 0.7 2 0.7 , ,1.3 1.3 5 1.5 , 3 3 分析: (1)(2)利用指数函数的单调性.
0.7
1 30.2 0.2
(3) 找中间量是关键.
应用
(1)1.7 2.5 <
§2.1.2指数函数及其性质
秀山中学
曹凤婷
复习回顾
一、根式的概念
如果一个数的 n 次方等于 a(n>1 且 n∈N*), 那么这个数叫做 a 的 n 次方根. 即: 若 xn=a, 则 x 叫做 a 的 n 次方根, 其中 n>1且 n ∈N * . 式子n a 叫做根式, 这里 n 叫做根指数, a 叫做被开方 数.
8 8
7 7
6 6
5 5
4 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、运用指数函数单调性比较大小:
5. 将下列各数值按从小到大的顺序排列
(
4
)
1 3
,
2
23 ,
( 2)3,
(
3
)
1 2
,
( 5 )0 .
3
34 6
一、运用指数函数单调性比较大小:
5. 将下列各数值按从小到大的顺序排列
(
4
)
1 3
,
2
23 ,
( 2)3,
(
3
)
1 2
,
( 5 )0 .
3
34 6
(
2 )3
x>0时,ax>1;
在 R 上是减函数
x<0时,0<ax<1
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在 R 上是增函数
x>0时,ax>1;
在 R 上是减函数
x<0时,0<ax<1
质 在R上是增函数
x>0时,ax>1;
在R上是减函数
x<0时,0<ax<1
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
y=1
y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
x>0时,ax>1;
在R上是减函数
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
2.1.2指数函数 及其性质
指数函数的图象和性质:
a>1
0<a<1
图 象
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在 R 上是增函数
x>0时,ax>1;
在 R 上是减函数
x<0时,0<ax<1
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax
(a>1)
象
O
x
定义域 R;值域(0,+∞)
y
(a>1) (0<a<1)
象
(0,1)
y=1
(0,1) y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
在R上是减函数
x>0时,ax>1; x>0时,0<ax<1;
x<0时,0<ax<1 x<0时,ax>1
例1 比较下列各题中两个值的大小:
① 1.72.5,1.73; ② 0.8-0.1,0.8-0.2; ③ 1.70.3,0.93.1.
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
x<0时,0<ax<1
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
(0,1)
y=1
(0,1) y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
x>0时,ax>1;
在R上是减函数
x<0时,0<ax<1
指数函数的图象和性质:
练习:
1.
用“>3 ”或“<”填空: 15
4
3
1 5
<
1 0
4
4
5
46
>
4 0
3
3
7
5.06 4
5.060
2
0.19 3
0.190
练习:
1.
用“>3 ”或“<”填空: 15
4
3
1 5
<
1 0
4
4
5
46
>
4 0
3
3
7
5.06 4
<
5.060
2
0.19 3
0.190
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在 R 上是增函数
x>0时,ax>1;
在 R 上是减函数
x<0时,0<ax<1
复习引入
指数函数的图象和性质:
a>1
0<a<1
图
y
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
(0,1)
y=1
(0,1) y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
x>0时,ax>1;
在R上是减函数
x<0时,0<ax<1
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
思考
作出下列函数的图象 (1) y=2x+1 (2) y=2x+2
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
(1) 2 x 4x1 (2) a3x1 a2x4 (a 0, a 1)
例4 已知 y1 a 3 x1, y2 a2x (a 0, a 1),
x为何值时,y1 y2 ?
课堂小结
1. 运用指数函数的单调性比较大小; 2. 求指数复合函数的定义域、值域.
课后作业
1.阅读教材P.54-P.58; 2.《习案》作业十八.
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
x>0时,ax>1;
在R上是减函数
x<0时,0<ax<1
复习引入
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
(
3
)
1 2
( 5 )0
(
4
)
1 3
2
23
34 63
6. 如图为指数函数: (1) y a x (2) y bx (3) y c x (4) y d x的图象,
y
(2)
(1)
比较a, b, c, d与1的大小关系. O
(3) (4)
x
二、求指数复合函数的定义域、值域:
二、求指数复合函数的定义域、值域:
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
y=ax y=ax
y
(a>1) (0<a<1)
象
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
x>0时,ax>1;
在 R 上是减函数
x<0时,0<ax<1
复习引入
指数函数的图象和性质:
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
例2 求下列函数的定义域、值域
1
(1) y 0.4 x1
(2) y 3 5x1
(3) y 2x 1 (4) y 4x 2x1 1
练习:
7.求下列函数的定义域、值域:
1
(1) y 32 x