升降机构有限元分析
建筑升降施工平台结构有限元分析

建筑升降施工平台结构有限元分析LIU Xiaoming;YANG Xiaoxiang;WEI Tieping【摘要】根据某公司提供的升降施工平台结构尺寸,利用ANSA和ANSYS软件接口,采用精度较高的三维实体单元准确建立施工升降平台结构的有限元模型,并对其进行4种工况下结构的安全校核模拟计算.计算结果表明,工况1、3和工况2、4下作用载荷成线性,仅需考虑最危险载荷工况3和工况4;任意工况下升降施工平台最危险位置发生在风载作用的项部网框横杆与竖杆焊接处,计算结果符合强度要求.分析结果可为施工平台的结构设计与改进提供参考依据.【期刊名称】《机械制造与自动化》【年(卷),期】2018(047)006【总页数】4页(P92-95)【关键词】建筑施工;升降平台;有限元法;结构分析【作者】LIU Xiaoming;YANG Xiaoxiang;WEI Tieping【作者单位】;;【正文语种】中文【中图分类】TP391.90 引言升降施工平台为高层建筑外墙施工用的安全防护、工人操作和解决楼层水平运输的操作平台,平台配合升降系统使用可进行提升和下降操作[1-2]。
在使用状态时,施工平台依靠附墙导座与建筑外墙固定连接;在升降状态时,施工平台脚手架的导轨与附墙导座进行滑道配合升降。
升降施工平台本质上属于机械件,用于建筑施工现场,但是施工平台在搭设与使用过程中存在较多的作业危险因素,因此极易发生倒塌事故 [3-5]。
因此具有较好的承载性能是升降施工平台安全的必要因素,必须对其进行安全性校核计算 [6-8]。
通过有限元软件ANSYS对施工平台的4种工况进行安全校核计算,为其结构的设计和改进提供理论依据。
1 有限元模型建立1.1 力学模型的简化与假设升降施工平台主要由立杆、网框、水平桁架、水平吊点小桁架、上层平台焊接组件、固定机位支撑件、活动机位支撑件、导轨、附墙导座及各部件连接件组成,如图1所示。
为了研究4种不同工况下施工平台各部件的应力分布规律,根据平台运行的工况条件做如下简化:图1 施工平台二维图1) 升降施工平台各部件之间采用螺栓连接,且数量众多,将螺栓连接简化为固定连接,并不影响分析结果[9]。
剪叉式液压升降台的有限元分析

剪叉式液压升降台的有限元分析剪叉式液压升降台是通过液压系统来实现货物起降及搬运的专用设备,其不仅广泛用于厂房维护、工业安装、设备检修物业管理,而且适用于仓库、航空、机场、港口、车站、机械、化工、医药、电子、电力等高空设备安装和检修。
剪叉式液压升降台的结构形式多种多样,从低起升到高起升,组成剪叉臂杆的数目多,液压缸的布置形式多样,其主要由底盘、剪叉机构和工作平台三部分组成,并为中心对称结构[1]。
剪叉机构是升降平台不可或缺的部件之一,因而,剪叉机构的强度及几何尺寸必须合理才能使液压升降平台具有整体的可靠性,从现场剪叉机构的断裂位置来看,其主要损坏部位主要集中在剪叉臂中间销轴的部位[2]。
所以本文先对剪叉臂进行强度分析,然后对简化剪叉式升降台进行模态分析,分析其固有频率和振型,为剪叉式液压升降台的优化和结构设计及维护使用提供参考。
ANSYS Workbench 是ANSYS 公司开发的新一代协同仿真环境,具有协同仿真、项目管理,支持CAD-CAE 间的双向参数传输功能和自动识别复杂装配件接触关系等优点[3]。
本文将在SolidWorks 软件里建立的三维实体模型保存为Parasolid 文件,然后将Parasolid 文件导入ANSYS Workbench 软件,导入后对其进行单元属性、划分网格、施加约束、求解等,建立有限元分析模型。
1 有限元模型建立剪叉臂和升降台模型分别由图3和图4所示。
图3 剪叉臂模型 图4 简化升降台模型Fig.3 Model structure of scissor arms Fig.4 Simplified model structure of lifting platform2.1 剪叉臂的应力分析剪叉臂既要承载工作载荷,又要平台自重,所以其受力最大[4]。
现对剪叉臂施加约束如下:D 处限制所有自由度,O 处销轴两个端面施加17779.06OX F N =和4268.38OY F N =,C 处施加1715C F N =。
剪叉式液压升降机构有限元及实验应力分析

analyfis ofthe scissors mechanism’S mechanics characteristic such嬲it’S status under
与此同时,经过近年来的不断努力,国产剪叉升降平台的质量有了较大提 高。许多制造厂也已逐步扭转了一直以来只注重剪叉机构的破断强度,而对剪 叉机构的疲劳强度重视不够的做法,开始下功夫提高剪叉机构在循环疲劳应力 下的强度。因此,在目前国产剪叉升降平台可靠性不断提高的情况下,必须研 制出相应的具有高破断强度、高疲劳寿命的剪叉升降平台。要保证剪叉机构的 破断强度并使之不断提高,则要在加工工艺和材料的选择方面以及从设计角度 来保证剪叉机构的质量,以使之具有最佳的工作状态,这已经在实际工作中成 为各厂家共同关注的焦点。提高使用寿命和持久工作能力已是实际生产中必须 解决的问题,也是完善整个剪叉升降平台机械系统的关键,这也确定了本课题 对剪叉机构进行研究分析的必要性。
V
中国民航大学学位论文独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成 果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或 撰写过的研究成果,也不包含为获得中国民航大学或其它教育机构的学位或证书而使用过 的材料。与我一同工作的同志对本研究所做的任何贡献均己在论文中作了明确的说明并表 示了谢意。
2
中团民航人学硕l:学降平台设备中不可缺少的部件之一,根据它的使用和承载要 求,它应具有高破断强度、高疲劳寿命、耐磨损、抗腐蚀、拆装方便以及工艺 简单等特点。因此,剪叉机构的强度以及各项几何尺寸必须合理化,才能使整 个升降平台具有整体可靠性,这也给剪叉机构的设计带来了较大的困难。
汽车举升机结构有限元分析及优化设计

条件的制约,与欧美日等西方国家比较,还存在着一段的差距。
目前,我国有限元法也广泛地应用于航空航天、机械、船舶、土木建筑、机电工业、铁道交通、轻工、地质等领域,许多研究处于世界前列。
在有限元通用程序方面,由于我国计算机发展条件的制约,与欧美日等西方国家比较,还存在着一段的差距。
随着我国经济的增长,科学技术现代化的迫切需要,加之有限元方面的专家和学者不懈努力,这种局面正在逐步改善。
特别是近年来,我国汽车行业引进了一些大型的有限元分析软件和CAD/CAM/CAE软件用于零部件的设计和计算【21,22],极大地促进了有限元分析技术在汽车行业的运用,但在整车有限元分析方面,国内尚没形成一致的计算方法。
随着社会的进步,特别是70年代能源危机以来,新的高强度材料、制造工艺和新的结构设计不断地投入使用又要求能及早发现材料、工艺和设计中的弱点,进行优化改进。
从经济上考虑,在产品的开发和试验过程中,尽量降低时间消耗、缩短产品开发周期,使产品及早投放市场也是十分必要的。
如果能够在产品开发的设计初期就能够预测出产品的结构强度和整车稳定性,那么这将在一定程度上促进产品的进一步开发研制,减少时间耗费。
另外,如果仅仅依靠试验后的数据,则需要在不同的加载条件下进行试验,这需要花费很长的一段周期,在经济上和效率上都是不合算的。
所以在设计阶段即能预测出整机的性能是极其必要的。
1.3主要研究内容根据中华人民共和国交通行业制定的汽车举升机标准JT/T155.2004,本文利用有限元技术对BL-2350型双柱举升机进行结构分析,主要研究内容包括以下五个方面:(1)利用Pro/E软件建立双柱举升机三维参数化实体模型:(2)利用Pro/MEcHANIcA软件分别对双柱举升机总成在不同的工况下进行强度分析;(3)对模型的计算结果进行分析,评价其结构性能:(4)利用Pro/MEcHANIcA软件对双柱举升机进行模态分析:(5)根据计算结果对双柱举升机结构进行改进优化设计。
基于solidworks simulation的升降架有限元分析

基于solidworks simulation的升降架有限元分析学院(部):机械工程学院专业班级: 2011级研究生学生姓名:指导教师:陈老师基于SolidWorks的升降架装配体限元分析摘要随着solidworks功能的增大和设计需要的加大,设计条件要近乎接近真实条件,所以要对设计的产品进行动态仿真。
本报告就升降架装配体做了一个实例,来说明反正的步骤和重要性。
关键词 solidworks 动态仿真升降架装配体1 有限元简介1.1 SolidWorks Simulation概述SolidWorks Simulation是一款基于有限元(即FEA数值)技术的设计分析软件,是SRAC开发的工程分析软件产品之一。
SRAC是SolidWorks公司的子公司,成立于1982年,是将有限元分析带入微型电脑的先驱。
1995年,SRAC开始与SolidWorks公司合作开发了COSMOSWorks软件,从而进入了工程界主流有限元分析软件的市场,成为了SolidWorks公司的金牌产品之一。
同时它作为嵌入式分析软件与SolidWorks无缝集成,迅速成为顶级销售产品。
整合了SolidWorks CAD软件的COSMOSWorks软件在商业上取得了成功,并与2001年获得了Dassault Systemes(SolidWorks母公司)的认可。
2003年,SRAC公司与SolidWorks公司合并。
COSMOSWorks推出的2009版被重命名为SolidWorks Simulation。
SolidWorks是一款基于特征的参数化CAD系统软件。
和许多最初在UNIX环境中开发,后来才向Windows操作系统开放的CAD系统不同,SolidWorks 与SolidWorks Simulation在一开始就是专为Windows操作系统开发的,所以相互整合是完全可行的。
1.2 有限元分析概述在数学术语中,FEA也称之为有限单元法,是一种求解关于场问题的一系列偏微分方程的数值方法。
烟苗移栽机中车架升降机构的设计及有限元仿真

烟苗移栽机中车架升降机构的设计及有限元仿真工作状态下的总变形如图5所示,由总变形图可以看出在工作状态时升降机构的主要受力构件变形量均较小,最大变形出现在丝杆旋转把手上。
把手作为一个整体在负载的作用下整体发生的位置变化,最大变形为0.9mm,变形量较小。
主要受力部的丝杠、升降架并没有发生明显的变形。
升降架底部几乎没有变形,升降架中间位置的横梁的变形量为0.4mm,变形量微小满足工作状态时的安全要求。
丝杠作为升降机构工作的核心构件,在丝杠与套筒的接触面上也存在着巨大的载荷,丝杠的变形量为0.5mm仍屬于微小变形。
故升降机构的总变形微小,主要受力部件安全稳定。
4 动力学分析4.1 升降机构的模态分析模态分析是针对机械结构的振动频率进行分析,避免机械系统发生共振,引起机械结构巨大的变形和动应力导致破坏性事故。
升降机构的模态分析对升降系统的固有频率要求包括:升降机构的一阶扭转频率、一阶弯曲频率低于动力源发动机怠速激励频率;升降机构的模态频率与路面激励频率不重合、升降机构的各阶模态频率变化平稳。
模态的振型和频率属于结构的固有特性,对升降机构系统做无预应力模态计算即自由模态,不对升降机构施加任何载荷和约束[13],通过计算得到升降机构的六阶自由模态振型如图6所示,固有频率如表1所示。
4.2 谐响应分析在静力学分析中可以发现当升降机构承载静力载荷时最大应力出现在支架横管的表面上,对于静载荷升降机构已经符合力学性能要求。
在实际生产中移栽机由减震系统、轮胎气压、地面不平等诸多因素升降机构会承受持续动载荷,因此需要对升降机构的支架横管表面做持续动载荷仿真,已检测其在承受持续动载荷时最大应力是否超出许用应力。
仿真对象为支架横管表面,在机构与车架固定表面施加竖直向下方向的正弦激励载荷,其中为角速度,为时间,载荷幅值为3000N,设定计算频率范围为0Hz~100Hz,计算步长为2Hz。
求解方法选用模态叠加法进行计算[16],得到支架横管表面谐响应应力结果如图7所示从图中可以看出支架横管表面在频率为54Hz时最大应力为0.0219MPa,激励频率为54Hz与分析自由模态时升降机构同时出现弯曲和扭转的激励频率及振型基本对应,而支撑架材料的屈服极限为345MPa,符合可靠性要求。
剪叉式升降工作平台整机结构有限元分析和试验验证

设计计算DESIGN & CALCULATION剪叉式升降工作平台整机结构有限元分析和试验验证靳翠军1,霍晓春2,姜文光2,刘树林1(1. 徐工消防安全装备有限公司,江苏徐州221004;2. 燕山大学机械工程学院,河北秦皇岛066004)[摘要]利用APDL参数化设计语言,建立了某剪叉式升降工作平台的参数化有限元模型,进行静载应力试验并与模拟值进行对比,最大误差为13%,在工程应用许可范围内,验证了整机模拟的正确性。
对两种危险工况下的整机结构进行了静力强度、刚度有限元分析,得出剪叉臂体的薄弱部位,为下一步改进设计提供了依据。
[关键词]剪叉式升降工作平台;有限元分析;应力对比;变幅油缸推力分配[中图分类号]TH211 [文献标识码]B [文章编号]1001-554X(2016)06-0051-04Whole structural finite element analysis and experimental verificationof scissor lift work platformJIN Cui-jun,HUO Xiao-chun,JIANG Wen-guang,LIU Shu-lin剪叉式升降工作平台结构简单紧凑、承载能力强,通过性和操控性好,但作业范围小、作业高度低。
本文基于ANSYS提供的APDL语言,建立了剪叉式升降工作平台的参数化有限元模型并进行了整机有限元分析,对模拟结果进行了试验验证,保证了模拟计算精度。
1 剪叉式升降工作平台结构某剪叉式升降工作平台主要由底盘、支腿、滑块、限位连杆、剪叉内臂、剪叉外臂、变幅油缸以及工作平台等部件组成,为中心对称结构。
其工作平台最低高度为2m、最大高度为18m,工作平台尺寸为4300mm×1800mm,可延伸长度1350mm,额定承载重量为700kg,其结构如图1 所示。
各剪叉臂通过销轴铰接,最底层和最高层的剪叉臂通过滑块与底盘和工作平台连接,相对滑动,并通过限位连杆限制其位置。
剪叉式升降结构的有限元二次开发

剪叉式升降结构的有限元二次开发利用ANSYS用户界面设计语言UIDL及参数化设计语言APDL,开发出高空作业平台剪叉式升降结构的有限元分析程序,方便了人员设计,提高了分析效率。
标签:剪叉结构;APDL语言;UIDL语言1 概述ANSYS参数化设计语言APDL是一种解释性语言。
利用APDL语言可以实现参数化建模、参数化的网格划分与控制、参数化的材料定义、参数化载荷和边界条件定义、参数化的分析控制和求解以及参数化后处理结果的显示,从而实现参数化有限元分析的全过程。
在参数化的分析过程中可以简单地修改其中的参数达到反复分析各种尺寸、不同载荷大小的多种设计方案或者序列性产品,极大地提高了分析效率,减少分析成本[1]。
ANSYS用户界面设计语言UIDL是编写和改造ANSYS图形界面的专用语言,是一种程序化的语言。
它允许改变ANSYS的图形用户界面(GUI)中的一些选项,通过UIDL语言,将用APDL语言开发的专用有限元程序放进ANSYS 应用程序中,从而建立具有本专业特性的ANSYS有限元分析程序[1]。
剪叉式高空作业平台是一种升降设备,叉架组结构及举升油缸是其最为重要的承载部件。
文章将利用ANSYS有限元分析软件的APDL语言及UIDL语言对不同组数、不同截面及长度参数的叉架及油缸进行参数化建模及整体有限元分析,设计出中文用户菜单及界面,极大地方便了设计人员使用。
2 程序结构文章所设计的程序结构如图1所示。
以叉架组数不同,分为一组、二组、三组、四组、五组。
每组又分为前处理器、求解器、后处理器三大部分,每个处理器目录下对应相应的操作菜单,对应各参数对话框,填写设计参数,最终建模求解得出结果。
使用UIDL语言编写菜单及对话框,并调用对应于各菜单的APDL 语言参数化宏程序。
3 实例分析以某剪叉式高空作业平台的五组叉架,两个举升油缸的升降结构为例来阐述文章所开发的基于ANSYS的用户菜单及其功能。
单片升降结构如图2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升降机构有限元分析
设计要求:
(1)输入转速1500rpm。
(2)额定提升载荷2000N。
分析零件
该升降装置中,蜗杆、蜗轮是传动装置,本体零件是主要的承载部分。
因此,这里对本体零件进行静力分析。
分析目的
验证本体零件在给定的载荷下静强度是否满足要求。
分析结果
按书中尺寸建立模型,零件体积为68.7cm3。
材料选用可锻铸铁,极限应力275.7MPa。
根据零件的工作情况,对该零件进行静力分析,结果如图1-9所示。
模型的最大von Mises 为62.1MPa,零件的安全系数约为4.4。
图1-9 本体零件应力云图
零件改进
由零件的应力云图可以看出,零件上的最大应力为62.1MPa,零件上应力小的部分比较多,同时考虑零件的结构,如钻螺纹孔,可以对这些部位减小尺寸,从而减轻零件的质量。
除了减小了零件的厚度外,还更改了模型上加强筋结构的尺寸和结构。
改进后零件的体积为60cm3
进后的模型运行静力分析,结果如图1-10所示:最大von Mises为120.5MPa,安全系数约2.3。
图1-10 改进模型应力云图
成本节约
模型原来的体积为68.7cm3,改进后的模型的体积为60cm3,体积减少了8.7cm3,每件减少的重量为63.5g,如果生产10000件,那么总共可节省材料635kg,以当前可锻铸铁的市场价格为10000元/吨,那么可以节省6350元。