培优十速度关联类问答求解

合集下载

专题+关联速度的问题

专题+关联速度的问题
让当事人逃离现场的救援方案:用一根不变形的轻杆MN支撑在楼面平台AB上,
N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(

A.v0
B.2v0
C.


D



1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2

A.
B.



C.



D.

绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短

绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(

即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入

5关联速度问题

5关联速度问题

关联速度问题考点规律分析①对“关联速度”的理解用绳、杆相牵连的物体在运动过程中的速度通常不同,但两物体沿绳或杆方向的分速度大小相等。

②“关联速度”问题的解题步骤a.确定合速度:牵连物端点的速度(即所连接物体的实际速度)是合速度。

b.分解合速度:按平行四边形定则进行分解,作好矢量图。

合运动所产生的实际效果:一方面产生使绳或杆伸缩的效果;另一方面产生使绳或杆转动的效果。

两个分速度的方向:沿绳或杆方向和垂直于绳或杆方向。

常见的模型如图所示:c.沿绳或杆方向的分速度大小相等,列方程求解。

例如:v=v∥(甲图);v∥′(乙图、丙图)。

=v∥例题讲解(多选)如图所示,做匀速直线运动的汽车A通过一根绕过定滑轮的长绳吊起一重物B,设重物和汽车的速度的大小分别为v B、v A,则()A.v A=v B B.v A<v BC.v A>v B D.重物B的速度逐渐增大[规范解答]如图所示,汽车的实际运动是水平向左的运动,它的速度v A可以产生两个运动效果:一是使绳子伸长,二是使绳子与竖直方向的夹角增大,所以车的速度v A应有沿绳方向的分速度v0和垂直绳的分速度v1,由运动的分解可得v0=v A cosα;又由于v B=v0,所以v A>v B,故C正确。

因为随着汽车向左行驶,α角逐渐减小,所以v B逐渐增大,故D正确。

[完美答案]CD绳(杆)联问题,关键点是把合速度沿杆垂直杆,沿绳垂直绳分解。

沿杆或者沿绳分速度相等。

另外,实际运动方向就是合速度方向。

举一反三作业1.如图所示,用船A拖着车B前进时,若船匀速前进,速度为v A,当OA绳与水平方向夹角为θ时,则:(1)车B运动的速度v B为多大?(2)车B是否做匀速运动?答案(1)v A cosθ(2)不做匀速运动解析(1)把v A分解为一个沿绳子方向的分速度v1和一个垂直于绳的分速度v2,如图所示,所以车前进的速度v B大小应等于v A的分速度v1,即v B=v1=v A cosθ。

高一物理力学专题提升专题14关联速度问题

高一物理力学专题提升专题14关联速度问题

专题14 关联速度问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则3. 解题方法:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时()A.小车运动的速度为v0 B.小车运动的速度为2v0C.小车在水平面上做加速运动 D.小车在水平面上做减速运动【答案】C【解析】将小车速度沿着绳子方向与垂直绳子方向进行分解,如图:2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtan θC.沿A杆向上,大小为v/cos θD.沿A杆向上,大小为vcos θ【答案】C【解析】两杆的交点P参与了两个分运动:与B杆一起以速度v水平向左的匀速直线运动和沿B杆竖直向上的运动,交点P的实际运动方向沿A杆斜向上,则交点P的速度大小为v P=,故C正确, A、B、D错误.故选C.3. 关联物体的动力学问题典例 3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为FT,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.FT可能小于mgsin θD.FT一定大于mgsin θ【答案】D【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

关联速度问题

关联速度问题

1、如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.则( )A .小船的速度v 2总小于汽车速度v 1B .汽车速度v 1总小于小船的速度v 2C .如果汽车匀速前进,则小船加速前进D .如果汽车匀速前进,则小船减速前进2、如图所示,轻质不可伸长的细绳,绕过光滑定滑轮C ,与质量为m 的物体A 连接,A 放在倾角为θ的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B 连接.现BC 连线恰沿水平方向,从当前位置开始B 以速度v 0匀速下滑.设绳子的张力为T ,在此后的运动过程中,下列说法正确的是( )A .物体A 做变速运动B .物体A 做匀速运动C .T 小于mgsinθD .T 大于mgsinθ3、自行车转弯时,可近似看成自行车绕某个定点O(图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,OB 距离为L ,前轮所在平面与车身夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s.则轮轴A 的速度v 1大小为( )A. m/s B .2 m/s C. m/s D .3 m/s4、一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B. θωcos h C. θω2cos h D .hωtan θ5、如图所示,当小车A以恒定的速度v向左运动时,对于B物体,下列说法正确的是( ) A.匀加速上升B.B物体受到的拉力大于B物体受到的重力C.匀速上升D.B物体受到的拉力等于B物体受到的重力6、(2016上海松江期末)如图所示,A、B两球分别套在两光滑无限长的水平直杆上,两球通过一轻绳绕过一定滑轮(轴心固定不动)相连,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,A 球向左的速度为v,此时B球的速度为______________________7、如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地面上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方0点处,在杆的中点C处拴一细绳,通过两个滑轮后挂上重物M,C点与o点距离为L,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平(转过了90°角).下列有关此过程的说法中正确的是()A.重物M做匀速直线运动B.重物M做变速直线运动C.重物M的最大速度是2ωL D.重物M的速度先减小后增大8、如右图所示,一根长为l的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个高为h的物块上。

速度关联问题常见模型与解题方法

速度关联问题常见模型与解题方法

速度关联问题常见模型与解题方法1. 速度与时间的关系1.1 速度、时间与距离的基本关系速度问题就像是生活中的“速食餐”,简单快捷但又能让你饱腹。

要搞懂速度问题,我们得知道几个基本概念:速度、时间和距离。

速度就像你开车的速度,时间是你开车的时长,距离则是你走过的路。

公式是这样的:距离等于速度乘以时间。

简单吧?比如说,你开车的速度是60公里每小时,开了2小时,那你就跑了120公里。

这个公式很基础,却是解题的“必杀技”。

1.2 常见的速度问题类型有时候,速度问题就像是刮风的日子,复杂又不确定。

比如说,两个小伙伴一起跑步,一个跑得快,一个跑得慢,他们要怎么才能赶到同一个地点?这时候,你得用到“相对速度”了。

相对速度就是两者之间的速度差。

比如说,甲和乙一前一后跑,甲的速度是5米每秒,乙的速度是3米每秒,那他们之间的相对速度就是2米每秒。

这种问题看似简单,但解决起来却需要耐心和细心。

2. 速度与其他因素的关系2.1 速度与加速度的关系说到加速度,这就像是在开车的时候突然踩油门,车子一下子就飞了起来。

加速度就是速度变化的快慢,越大表示速度变得越快。

公式是这样的:加速度等于速度变化量除以时间。

如果你车子的速度从0到60公里每小时用了5秒,那加速度就是12公里每小时每秒。

这种计算常见于物理题目里,不过有时候它就像是恶作剧一样,搞得你一头雾水。

2.2 速度与阻力的关系我们生活中常常会碰到阻力,比如走在风中感觉特别累,或者水里的游泳感觉有些费劲。

阻力就是影响速度的那个“无形敌人”。

在物理问题中,阻力会影响物体的速度,导致物体的运动变得缓慢。

阻力的计算有点儿复杂,通常需要考虑很多因素,比如物体的形状、表面光滑程度等。

不过,掌握了这些,你就能在遇到实际问题时得心应手。

3. 解题方法与技巧3.1 基本公式的应用速度问题最基础的解题方法就是用公式。

公式就像是你的“万用工具”,简单易懂却功能强大。

只要你把公式运用熟练了,各种速度问题就像是手到擒来的小猫咪。

速度关联类问题求解

速度关联类问题求解

速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v =③由①②③解之:v 物=解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.θcos BDtBCt s ∆=∆∆1t BDt s ∆=∆∆2θcos v 图4-1图4-2图4-3图4-4图4-5图4-6所以v 物=解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=图4-7[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练θcos v θcos v一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A v .沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

(尖子生培优)行程问题-四年级数学思维拓展含参考答案

(尖子生培优)行程问题-四年级数学思维拓展含参考答案

专题08行程问题行程问题是研究速度、时间和路程之间的关系的实际问题,解决这类问题,我们一般是根据数量关系式进行解答。

一般行程问题的数量关系式有:速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米? 3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车? 4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间? 10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?能力巩固提升综合拔高拓展19.A、B两地相距960km。

四年级数学上册 解决问培优解答应用专项训练专项训练带答案解析

四年级数学上册 解决问培优解答应用专项训练专项训练带答案解析

四年级数学上册解决问培优解答应用专项训练专项训练带答案解析一、四年级数学上册应用题解答题1.某人步行每分钟走90米,从甲地到乙地要22分钟才能到达,当他步行了480米后,改乘汽车,他乘汽车行了多少米?解析:1500米【分析】首先根据速度×时间=路程,用某人步行的速度乘从甲地到乙地用的时间,求出两地之间的距离;然后用两地之间的距离减去已经行的路程,求出他乘汽车行了多少米即可。

【详解】90×22-480=1980-480=1500(米)答:他乘汽车行了1500米。

【点睛】此题主要考查行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握。

2.下图中长方形花圃的长增加到54米,宽不变,扩建后的面积是多少平方米?②你喜欢谁的想法,说说她解决问题的思路。

解析:见详解【分析】÷=(米),小兰的做题思路是先根据面积和长,求出长方形的宽,126187⨯=(平方米)。

根据题意可知宽不变,再根据扩建后的长可求出面积,754378÷=,小慧在解决这道题目时,先求出长方形的长增加到了原来的多少倍,54183⨯=(平方再根据宽不变,则长扩大到原来的3倍,面积扩大到原来的3倍,为3126378米)。

÷=(米),小丽的做题思路是先根据面积和长,求出长方形的宽,126187⨯=(平方米),根据题意可知宽不变,再根据扩建后的长可求出面积,754378-=(平方米),求出的结果是扩建后增加的面积,不符合题中的问题。

378126252÷=,小美在解决这道题目时,先求出长方形的长增加到了原来的多少倍,54183再根据宽不变,则长扩大到原来的3倍,面积扩大到原来的3倍,扩大后的面积比原来的面积多2倍,(3−1)×126=2523−1×126=252(平方米),求出的结果是扩建后增加的面积,不符合题中的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题: (1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动. (2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算. 其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图所示进行分解其中:v=v物cosθ,使绳子收缩v⊥=v物sinθ,使绳子绕定滑轮上的A点转动v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos2.(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角解析钉子沿斜面匀速运动,橡皮具有向上的分速度v,同时具有沿斜面方向的分速度v,根据运动的合成可知,橡皮的速度大小为3v,速度与水平方向成60°角,选项B、C正确.答案BC2、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB ’,如图所示. 过B ’点作B ’E ⊥BD .当Δt →0时,∠BDB ’极小,在△BDB ’中,可以认为DE =B ’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB ’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=tBB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大?解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgLgL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零. 将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是? 解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合tt =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ① 由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v(6)。

相关文档
最新文档