2000~2001年上海高考数学试题
2000年全国普通主等学校招生统一考试上海 数学试卷(理工农医类)

2000年全国普通主等学校招生统一考试上海 数学试卷(理工农医类)考生注意:本试卷共有22道试题,满分150分一、填空题(本大题满分为48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知向量OA (-1,2)、OB =(3,m),若OA ┴OB ,则m = 。
2.函数,xx y --=312log 2的定义域为 。
3.圆锥曲线⎩⎨⎧=+=θθtg y x 31sec 4的焦点坐标是 。
4.计算:nn n )2(lim += 。
5.已知b x f x +=2)(的反函数为)(),(11x f y x f --=若的图象经过点)2,5(Q ,则b= 。
6.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP 是指国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市年人均GDP 达到或超过1999年的2倍,至少需 年。
(按:1999年本市常住人口总数约1300)7.命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥,命题A 的等价题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥。
8.设函数)(x f y =是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上)(x f = 。
9.在二项式11)1(-x 的展开式中,系数最小的项的系数为 ,(结果用数值表示) 10.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码均不相同的概率是 。
11.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线B A ,cos 4于θρ=两点,则=AB 。
12.在等差数列{}n a 中,若0=z a ,则有等式),19(192121N n n a a a a a a n n ∈+++=+++ 成立,类比上述性质,相就夺:在等此数列{}n b 中,若10=b ,则有等式 成立。
2001年高考数学试题(全国文)及答案1

2001年普通高等学校招生全国统一考试数学(文史财经类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式()()[]βαβαβ-++=sin sin 21cos sin a ()()[]βαβαβ--+=sin sin 21sin cos a()()[]βαβαβ-++=cos cos 21cos cos a()()[]βαβαβ--+-=cos cos 21sin sin aS 台侧l c c )(21+'=其中c ′、c 分别表示上、下底面周长, l 表示斜高或母线长 台体的体积公式 V 台体h S S S S )(31+'+'=其中S ′、S 分别表示上、下底面积,h 表示高一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) tg300°+ctg405°的值为( )(A) 31+; (B) 31-; (C) 31--; (D) 31+-。
(2) 过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是( )(A) (x -3)2+(y +1)2 = 4; (B) (x +3)2+(y -1)2 = 4; (C) (x -1)2+(y -1)2 = 4; (D) (x +1)2+(y +1)2 = 4。
(3) 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的面积是( )(A) 3π; (B) π33; (C) 6π; (D) 9π(4) 若定义在区间(-1,0)内的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是 ( )(A)(210,); (B) ⎥⎦⎤ ⎝⎛210,; (C) (21,+∞); (D) (0,+∞)。
2001年春季高考数学试题及答案(上海)

绝密★启用前2001年普通高等学校春季招生考试(上海卷)数学考生注意:本试卷共有22道试题,满分150分. 一、填空题(本大题满分48分)本大题共有12题.只要求直接填写结果,每题填对得4分,否则一律是零分. 1.函数)0(1)(2≤+=x xx f 的反函数=-)(1x f______.2.若复数z 满足方程1-=i i z (i 是虚数单位),则z=________.3.函数xx y cos 1sin -=的最小正周期为________. 4.二项式6)1(xx +的展开式中常数项的值为________. 5.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为________.6.圆心在直线x y =上且与x 轴相切于点(1,0)的圆的方程为________.7.计算:nn n n )13(lim ++∞→=________. 8.若向量α,β满足||||β-α=β+α,则α与β所成角的大小为________.9.在大小相同的6个球中,2个红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示)10.若记号“*”表示求两个实数a与b的算术平均数的运算,即2baba +=*,则两边均含有运算符号“*”和“+”,且对于任意3个实当选a、b、c都能成立的一个等式可以是_______。
11.关于x的函数)sin()(φ+=xxf有以下命题:(1)对任意的φ,)(x f都是非奇非偶函数;(2)不存在φ,使)(x f既是奇函数,又是偶函数;(3)存在φ,使)(x f是奇函数;(4)对任意的φ,)(x f都不是偶函数。
其中一个假命题的序号是_______。
因为当φ=_______时,该命题的结论不成立。
12.甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为 2.88%。
乙存一年期定期储蓄,年利率为 2.25%,并在每年到期时将本息续存一年期定期储蓄。
2001年高考数学试题(全国文)

2001年普通高等学校招生全国统一考试数学(文史财经类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) tg300°+ctg405°的值为 ( )(A) 31+(B) 31-(C) 31--(D) 31+-(2) 过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是 ( )(A) (x -3)2+(y +1)2 = 4(B) (x +3)2+(y -1)2 = 4(C) (x -1)2+(y -1)2 = 4 (D) (x +1)2+(y +1)2 = 4(3) 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的面积是 ( ) (A) 3π(B) π33(C) 6π(D) 9π(4) 若定义在区间(-1,0)内的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,) (B) ⎥⎦⎤ ⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 已知复数i z 62+=,则z1arg是 ( )(A)6π (B)611π(C)3π (D)35π (6) 函数y = 2-x +1(x >0)的反函数是( )(A)11log 2-=x y ,x ∈(1,2) (B) 11log 2--=x y ,x ∈(1,2) (C) 11log 2-=x y ,(]21,∈x(D) 11log 2--=x y ,(]21,∈x(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43 (B)32 (C)21 (D)41 (8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题: ( )① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减. 其中,正确的命题是 ( )(A) ①③(B) ①④(C) ②③(D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则( )(A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26(B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) (121+x )10的二项展开式中x 3的系数为 . (14) 双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为 .(15) 设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q = .(16) 圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 __________ .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知等差数列前三项为a ,4,3a ,前n 项和为S n ,S k = 2550. (Ⅰ)求a 及k 的值; (Ⅱ)求∞→n lim (++2111S S …nS 1). (18) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (19) (本小题满分12分)已知圆内接四边形ABCD 的边长分别为AB = 2,BC = 6,CD = DA = 4 求四边形ABCD的面积. (20) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(21) (本小题满分12分)设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为λ (λ<1=,画面的上、下各留8cm 空白,左、右各留5cm 空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?(22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈⎥⎦⎤⎢⎣⎡210,都有f (x 1+x 2) = f (x 1) · f (x 2).(Ⅰ)求⎪⎭⎫⎝⎛21f 及⎪⎭⎫ ⎝⎛41f ; (Ⅱ)证明f (x ) 是周期函数;。
(详细解析)2000年高考(全国旧课程)数学试题及答案(文科)

2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}{}|101,|||5A x x Z x B x x Z x =∈-≤≤-=∈≤且且,则A B 中的元素个数是A .11B .10C .16D .15 【答案】C【解析】由题设可得{}{}|101,|55A x x B x x =-≤≤-=-≤≤,所以A B 中有11个元素,即10,9,8,7,6,5,4,3,2,1,0,1,2,3,4,5----------.2.在复平面内,把复数3对应的向量按顺时针方向旋转3π,所得向量对应的复数是A .B .-C 3iD .3 【答案】B【解析】所求复数为1(3)sin()](3)()332i ππ-+-==-.3,这个长方体对角线的长是A .B .C .6D .6 【答案】D【解析】设长、宽和高分别为,,a b c ,则ab bc ac =abc =,∴1,a b c ===l ==.4.已知βαsin sin >,那么下列命题成立的是 A .若,αβ是第一象限角,则βαcos cos > B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则βαcos cos > D .若,αβ是第四象限角,则tan tan αβ> 【答案】D【解析】用特殊值法:取60,30αβ=︒=︒,A 不正确;取120,150αβ=︒=︒,B 不正确; 取210,240αβ=︒=︒,C 不正确;D 正确.5.函数cos y x x =-的部分图像是【答案】D【解析】函数cos y x x =-是奇函数,A 、C 错误;且当(0,)2x π∈时,0y <.6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于A .800~900元B .900~1200元C .1200~1500元D .1500~2800元 【答案】C【解析】当月工资为1300元时,所得税为25元;1500元时,所得税为252045+=元,所以选C .7.若1a b >>,()1lg lg ,lg 22a b P Q a b R +⎛⎫==+= ⎪⎝⎭,则 A .R P Q << B .P Q R << C .Q P R << D .P R Q << 【答案】B【解析】方法一:()11lg lg 22a b +>=lg 2a b +⎛⎫>= ⎪⎝⎭()1lg lg 2a b +,所以B 正确. 方法二:特殊值法:取100,10a b ==,即可得答案.8.已知两条直线12:,:0l y x l ax y =-=,其中a 为实数.当这两条直线的夹角在(0,)12π内变动时,a 的取值范围是A .(0,1)B .(3C .((1,3)3D . 【答案】C【解析】直线1l 的倾斜角为4π,设2l 的倾斜角为θ,则412412ππππθ-<<+,且4πθ≠,即64ππθ<<或43ππθ<<,所以a 的取值范围是(1,3).9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 A .122ππ+ B .144ππ+ C .12ππ+ D .142ππ+ 【答案】A【解析】设圆柱的半径为r ,则高2h r π=,2222(2)12(2)2S r r S r πππππ++==全侧.10.过原点的直线与圆22430x y x +++=相切,若切点在第三象限,则该直线的方程是A .y =B .y =C .x y 33=D .x y 33-= 【答案】C【解析】圆的标准方程为22(2)1x y ++=,设直线的方程为0kx y -=,由题设条件可得1=,解得k =,由于切点在第三象限,所以k =,所求切线x y 33=.11.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 与FQ 的长分别是,p q ,则qp 11+等于 A .2a B .12a C .4a D .4a【答案】C【解析】特殊值法.作PQ y ⊥轴,即将14y a =代入抛物线方程得12x a=±, ∴114a p q+=.12.如图,OA 是圆锥底面中心A 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为 A .321B .21 C .21 D .421【答案】【解析】设圆锥的底面半径为r ,高为h ,上半部分由共底的两个圆锥构成,过A 向轴作垂线AC ,垂足为C ,2cos ,cos cos OA r CA OA r θθθ===,∴2211(cos )3V r h πθ=,原圆锥的体积为2241122cos 33V r h V r h ππθ===,解得cos θ=.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种(用数字作答). 【答案】252【解析】不同的出场安排共有3237252A A =.14.椭圆22194x y +=的焦点为12,F F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是 .【答案】( 【解析】方法一:(向量法)设(,)P x y ,由题设120PF PF ⋅<,即(,)(,)0x c y x c y +⋅-<,2220x c y -+<,又由22194x y +=得22449x y =-,代入2220x c y -+<并化简得 225419x c <-=,解得x <<. 方法二:(圆锥曲线性质)设(,)P x y ,∵3,2a b ==,∴c =133PF x =+,23PF x =-,当12F PF ∠为钝角时,2221212PF PF F F +<,解得x <<.15.设{}n a 是首项为1的正项数列,且2211(1)0(1,2,3,...)n n n n n a na a a n +++-+==,则它的通项公式是n a = . 【答案】n1【解析】条件化为11()[(1)]0n n n n a a n a na ++++-=,∵0n a >∴1(1)0n n n a na ++-=,即11n n a na n +=+,累成得1n a n =.16.如图,,E F 分别为正方体的面11ADD A 、面11BCC B 的中心,则四边形1BFD E 在该正 方体的面上的射影可能是 .(要求:把可能的图的序号都. 填上)【答案】②③【解析】投到前后和上下两个面上的射影是图形②;投到左右两个面上的射影是图形③.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数cos ,y x x x R +∈.(Ⅰ)当函数y 取得最大值时,求自变量x 的集合;(Ⅱ)该函数的图像可由sin ()y x x R =∈的图像经过怎样的平移和伸缩变换得到? 【解】本小题主要考查三角函数的图像和性质,利用三角公式进行恒等变形的技能以及运算能力.满分12分.(Ⅰ)cos 2(sin coscos sin )66y x x x x ππ=+=+2sin()6x π=+,x R ∈. ——3分y 取得最大值必须且只需2,62x k k Z πππ+=+∈,即2,3x k k Z ππ=+∈.所以,当函数y 取得最大值时,自变量x 的集合为2,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭|. ——6分 (Ⅱ)变换的步骤是:(ⅰ)把函数sin y x =的图像向左平移6π,得到函数sin()6y x π=+的图像;—9分(ⅱ)令所得到的图像上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数2sin()6y x π=+的图像;经过这样的变换就得到函数cos y x x =+的图像. ——12分18.(本小题满分12分)设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列⎭⎬⎫⎩⎨⎧n S n 的前n 项和,求n T . 【解】本小题主要考查等差数列的基础知识和基本技能,运算能力,满分12分.设等差数列{}n a 的公差为d ,则11(1)2n S na n n d =+-. ∵7157,75S S ==,∴ ⎩⎨⎧=+=+.7510515,721711d a d a ——6分即⎩⎨⎧=+=+.57,1311d a d a ——8分解得12,1a d =-=. ∴()()12121211-+-=-+=n d n a n S n , ∵2111=-++n S n S n n , ∴数列{nS n }是等差数列,其首项为2-,公差为21,∴ n n T n 49412-=. ——12分19.(本小题满分12分)如图,已知平行六面体1111ABCD A BC D -的底面ABCD 是菱形,且1C CB ∠=1C CD BCD ∠=∠.(Ⅰ)证明:1C C BD ⊥; (Ⅱ)当1CC CD的值为多少时,能使1AC ⊥平面1C BD ?请给出证明.【解】本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分.(Ⅰ)证明:连结11,AC AC ,AC 和BD 交于O ,连结1C O .∵ 四边形ABCD 是菱形,∴,AC BD BD CD ⊥=. 又∵1111,BCC DCC C C C C ∠=∠=, ∴11C BC C DC ∆≅∆,∴11C B C D =, ∵ DO OB =,∴ 1C O BD ⊥, ——3分 但1,AC BD ACC O O ⊥=,∴BD ⊥平面1AC ,又1CC ⊂平面1AC ,∴1CC BD ⊥. ——6分 (Ⅱ)当11CDCC =时,能使1AC ⊥平面1C BD . 证明一:∵11CDCC =,∴1BC CD C C ==, 又11BCD C CB C CD ∠=∠=∠,由此可推得11BD C B C D ==.∴ 三棱锥1C C BD -是正三棱锥. ——9分 设1AC 与1C O 相交于G .∵11//AC AC ,且11:2:1AC OC =,∴1:2:1C G GO =. 又1C O 是正三角形1C BD 的BD 边上的高和中线,∴ 点G 是正三角形1C BD 的中心,∴ CG ⊥平面1C BD .即1AC ⊥平面1C BD . ——12分 证明二:由(Ⅰ)知,BD ⊥平面1AC ,∵1AC ⊂平面1AC ,∴1BD AC ⊥. ——9分 当11CDCC =时,平行六面体的六个面是全等的菱形, 同1BD AC ⊥的证法可得11BC AC ⊥, 又1BD BC B =,∴1AC ⊥平面1C BD . ——12分20.(本小题满分12分)设函数()f x ax =,其中0>a .(Ⅰ)解不等式()1f x ≤;(Ⅱ)证明:当1a ≥时,函数()f x 在区间[0,)+∞上是单调函数.【解】小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.(Ⅰ)不等式()1f x ≤1ax ≤+,由此得11ax ≤+,即0ax ≥,其中常数0>a .所以,原不等式等价于⎩⎨⎧≥+≤+.0,)1(122x ax x 即⎩⎨⎧≥+-≥.02)1(,02a x a x ——3分所以,当01a <<时,所给不等式的解集为2201a x x a ⎧⎫≤≤⎨⎬-⎩⎭|; 当1a ≥时,所给不等式的解集为{}0x x ≥|. ——6分(Ⅱ)证明:在区间),0[+∞上任取12,x x ,使得12x x <.22121212()()()()f x f x a x x a x x -=-=-12()x x a =-. ——9分1<,且1a≥,a-<,又12x x<,∴12()()0f x f x->,即12()()f x f x>.所以,当1a≥时,函数()f x在区间),0[+∞上是单调递减函数.——12分21.(本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式()P f t=;写出图二表示的种植成本与时间的函数关系式()Q g t=;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg,时间单位:天)【解】本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.(Ⅰ)由图一可得市场售价与时间的函数关系为3000200,()2300,200300;t tf tt t-≤≤⎧=⎨-<≤⎩,——2分由图二可得种植成本与时间的函数关系为21()(150)100,0300200g t t t =-+≤≤. ——4分 (Ⅱ)设t 时刻的纯收益为()h t ,则由题意得()()()h t f t g t =- 即2211175020020022()17102520030020022t t t h t t t t ⎧-++≤≤⎪⎪=⎨⎪-+-<≤⎪⎩,, ——6分当0200t ≤≤时,配方整理得21()(50)100200h t t =--+, 所以,当50t =时,()h t 取得区间[0,200]上的最大值100;当200300t <≤时,配方整理得21()(350)100200h t t =--+ 所以,当300t =时,()h t 取得区间[200,300]上的最大值87.5. ——10分综上,由10087.5>可知,()h t 在区间[0,300]上可以取得最大值100,此时50t =,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ——12分22.(本小题满分14分)已知梯形ABCD 中2AB CD =,点E 分有向线段AC 所成的比为118,双曲线过,,C D E 三点,且以,A B 为焦点.求双曲线离心率e 的取值范围.【解】本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD y ⊥轴.因为双曲线经过点,C D ,且以,A B 为焦点,由双曲线的对称性知,C D 关于y 轴对称. ——2分 依题意,记(,0),(,),(,0)2cA c C hB c -,其中12c AB =为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式,得点E 的坐标为c c c x E 19711812118-=+⨯+-=, h h y E 198********=+⨯+=. ——5分 设双曲线的方程为12222=-by a x ,则离心率a c e =. 由点,C E 在双曲线上,将点,C E 的坐标和ac e =代入双曲线方程得 2222222211,44964 1.361361c h a b c h a b ⎧⋅-=⎪⎪⎨⎪⋅-⋅=⎪⎩ ——10分 由①式得1412222-⋅=a c bh ,代入②式得922=a c . 所以,离心率322==a c e . ——14分。
(详细解析)2001年上海高考数学(理科)

2001年上海市高考数学试卷(理科)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.已知812,(,1]()log ,(1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩,则满足1()4f x =的x 值为 ___ .【答案】3【解析】1x ≤时,1()24xf x -==,2x =,不合题意,舍去;1x >时,81()log f x x = 14=,14813x ==,综上可得3x =. 【点评】本题考查分段函数求值问题,属基本题.2.设数列{}n a 的通项为27,n a n n N =-∈,则1215a a a ++⋅⋅⋅+= ____ . 【答案】153【解析】由270n a n =-≥,解得72n ≥,所以数列的前3项为负数, 则1215123(531)(13523)9121532a a a +++⋅⋅⋅+=++++++⋅⋅⋅+=+⨯=.【点评】此题考查学生灵活运用等差数列的前n 项和的公式化简求值,是一道基础题.3.设P 为双曲线2214x y -=上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的 轨迹方程是 _____ . 【答案】2241x y -=【解析】设(,)M x y ,则(2,2)P x y ,代入双曲线方程2214x y -=得2241x y -=,即为所求. 【点评】代入法是圆锥曲线问题的常用方法.4.设集合{}2lg lg(815),,cos 0,2x A x x x x R B x x R ⎧⎫==-∈=>∈⎨⎬⎩⎭||,则A B 的元素 个数为 _____ 个.【解析】由2lg lg(815)x x =-,可得28150x x -+=,∴3x =或5x =,检验知符合题意,∴{}3,5A =,3x =时,cos02x >;5x =时,5cos 02<,∴A B 的元素个数为1个,故答案为1. 【点评】本题考查集合的化简,考查学生的计算能力,属于基础题.5.抛物线2430x y --=的焦点坐标为 ______ . 【答案】1(0,)4【解析】由2430x y --=得,234()4x y =+,表示顶点在3(0,)4-,开口向上的抛物线,2p =,∴故焦点坐标是1(0,)4.【点评】本题考查抛物线的标准方程,以及简单性质的应用,求出抛物线的顶点坐标和p 是解题的关键.6.设数列{}n a 是公比为0q >的等比数列,n S 是它的前n 项和,若lim 7n x S →∞=,则此数列的首项1a 的取值范围为 _____ . 【答案】(0,7)【解析】若该等比数列是一个递增的等比数列,则n S 不会有极限.因此这是一个无穷递缩等比数列.设公比为q ,则01q <<,01q <<.而等比数列前n 项和1(1)1n n a q S q-=-,因此lim 0nx q →∞=,而根据极限的四项运算法则有,1lim 71n x a S q→∞==-,因此17(1)a q =-,解得1(0,7)a ∈. 【点评】本题是中档题,考查等比数列前n 项和的极限问题,注意公比的范围,是解题的关键,考查计算能力.7.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种 _____ 种.(结果用数值表示) 【答案】7【解析】设素菜n 种,则225200(1)40n C C n n ≥⇒-≥,所以n 的最小值为7.【点评】正确应用乘法计数原理,组合数以及不等式运算,n 为最小正整数.8.在2521(425)(1)x x x --+的展开式中,常数项为 _____ .【解析】由于25200122455521(425)(1)(425)(x x x x C x C x C x x----+=--⋅+⋅+⋅+ 3648485105555)C x C x C x C x ----⋅+⋅+⋅+⋅,故展开式中,常数项为10554(5)15C C +-=.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.9.设sin x α=,且5[,]66ππα∈-,则cos arc x 的取值范围是 _____ .【答案】2[0,]3π 【解析】由题意可得112x -≤≤,而cos arc x 表示在区间[0,]π上余弦值等于x 的一个角,∴20cos 3arc x π≤≤,故答案为 2[0,]3π.【点评】本题主要考查正弦函数的定义域和值域,反余弦函数的意义,属于中档题.10.直线122y x =-与曲线sin cos 2x y ϕϕ=⎧⎨=⎩(ϕ为参数)的交点坐标是 _____ . 【答案】11(,)22【解析】∵2cos 212sin ϕϕ=-,∴曲线方程化为212y x =-,与直线122y x =-联立,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩或3272x y ⎧=-⎪⎪⎨⎪=-⎪⎩,由1sin 1ϕ-≤≤,故3272x y ⎧=-⎪⎪⎨⎪=-⎪⎩不合题意,舍去,则直线与曲线的交点坐标为11(,)22. 【点评】此题考查了参数方程与普通方程的转化,二倍角的余弦函数公式,以及正弦函数的值域..,熟练掌握二倍角的余弦函数公式是解本题的关键11.已知两个圆:221x y +=①;22(3)1x y +-=②,则由①式减去②式可得上述两个圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为 _____ .【答案】设圆方程222()()x a y b r -+-=①,222()()x c y d r -+-=②(a c ≠或b d ≠, 则由①—②,得两圆的对称轴方程.【解析】将上述命题在曲线仍为圆的情况下加以推广:设圆方程222()()x a y b r -+-=①,222()()x c y d r -+-=②(a c ≠或b d ≠),由①—②,得两圆的对称轴方程.【点评】本题考查的知识点是类比推理....,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在解决类似题目时,一定要注意观察原题特点,找到其特征,再类比写结论.12.据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.左下图表示我国土地沙化总面积在20世纪五六十年代、七八十年代、九十年代的变化情况,由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在右下图中图示为_______ .【答案】【解析】1950﹣1970:土地沙化面积增加了3.2(万平方公里), 平均沙化面积为:0.32(万平方千米)16=(百平方公里)1970﹣1990:平均沙化面积为:0.21(万平方千米)21=(百平方公里); 1990﹣2000:平均沙化面积为:0.25(万平方千米)25=(百平方公里).如上图.【点评】本题主要考查了函数的图象与图想的变化,考查了变量的变化与平均变化的基本概念,考查了识图、作图的能力.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.13.3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行且不重合的 A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件 【答案】C【解析】当3a =时,两直线分别为3290,3240x y x y ++=++=,∴两直线斜率相等,则平行且不重合;若两直线平行且不重合,则23317a aa a=≠---,∴3a =综上所述,3a =是两直线平行且不重合的充要条件.故选C .【点评】本题以直线为载体,考查四种条件.判定两条直线位置关系的时候,注意到直线一般式系数满足的关系式.14.如图,在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a =,111,A D b A A c ==.则下列向量中与1B M 相等的向量是A .1122a b c -++B .1122a b c ++ C .1122a b c -+ D .1122a b c --+【答案】A【解析】由题意可得11112B M B B BM A A BD =+=+111111111111()()22222A AB D c A D A B c b a a b c =+=+-=+-=-++.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.15.已知,a b 为两条不同的直线,,αβ为两个不同的平面,且,a b αβ⊥⊥,则下列命题中的假命题是 A .若//a b ,则//αβ B .若αβ⊥,则a b ⊥ C .若,a b 相交,则,αβ相交 D .若,αβ相交,则,a b 相交 【答案】D 【解析】略.16.用计算器验算函数lg (1)xy x x=>的若干个值,可以猜想下列命题中的真命题只能是 A .lg x y x =在(1,)+∞上是单调减函数 B .lg ,(1,)x y x x =∈+∞的值域为lg3(0,]3 C .lg ,(1,)x y x x =∈+∞有最小值 D .lg lim 0,n nn N n→∞=∈ 【答案】D【解析】∵lg (1)x y x x =>的导数lg (1)x y x x =>,221lg lg lg ln10x xe xx y x x ⋅--'==,∴当(1,)x e ∈时,0y '>;当(,)x e ∈+∞时,0y '<. 可得函数在(1,)e 上为增函数,在(,)e +∞为减函数,最大值lg e y e =,值域为lg (0,]ee,由此可得A 、B 、C 三项都不正确.由极限的运算法则,可得1lg 1ln10lim lim lim 01ln10n n n n n n n →∞→∞→∞===,D 项正确.【点评】本题给出关于函数lg (1)xy x x=>的几个结论,要我们找出其中的正确结论,着重考查了利用导数研究函数的单调性、函数的值域求法和极限的运算法则等知识,属于中档题.三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分)已知,,a b c 是ABC ∆中,,A B C ∠∠∠的对边,S 是ABC ∆的面积,若4,5,a b S ===c 的长度.【解】∵1sin 2S ab C =,∴sin 2C =, ......(4分) 于是60C ∠=︒,或120C ∠=︒, ......(6分) 又2222cos c a b ab C =+- ......(8分) 当60C ∠=︒时,222c a b ab =+-,c = ...... (10分) 当120C ∠=︒时,222c a b ab =++,c = ...... (12分)故c【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.18.(本题满分12分)设12,F F 为椭圆22194x y +=的两个焦点,P 为椭圆上的一点,已知12,,P F F 是一个直角三角形的三个顶点,且12PF PF >,求12PF PF 的值. 【解】解法一:由已知得12126,PF PF F F +==......(4分) 根据直角的不同位置,分两种情况:若21PF F ∠为直角,则2221212PF PF F F =+,即2211(6)20PF PF =-+,得12144,33PF PF ==,故1272PF PF =; ......(9分) 若12F PF ∠为直角,则2221212F F PF PF =+,即221120(6)PF PF =+-,得124,2PF PF ==,故122PF PF =.. .....(12分) 解法二:由椭圆的对称性不妨设(,)(0,0)P x y x y >>,则由已知可得12(5,0),(5,0)F F -. ......(4分) 根据直角的不同位置,分两种情况:若21PF F ∠为直角,则4(5,)3P ,于是12144,33PF PF ==,故1272PF PF =;...(9分) 若12F PF ∠为直角,则22194155x y x x ⎧+=⎪⎪⎨⎪⋅=-⎪+-⎩,解得3545,x y ==,即3545(,)P , 于是124,2PF PF ==,故122PF PF =.. .....(12分) (说明:两种情况,缺少一种扣3分).【点评】本题考查椭圆的定义和标准方程,以及椭圆的简单性质的应用,体现了分类讨论的数学思想,注意考虑2PF x ⊥轴时的情况.19.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分.在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且AE BF =. (Ⅰ)求证:A F C E ''⊥;(Ⅱ)当三棱锥B BEF '-的体积取得最大值时,求二面角B EF B '--的大小.(结果用反三角函数表示) 【解】(I )证明:如图,以O 为原点建立空间直角坐标系. 设AE BF x ==,则(,0,),(,,0),(0,,)A a a F a x a C a a ''-,(,,0)E a x .∴(,,),(,,)A F x a a C E a x a a ''=--=--.......(4分)∵2()0A F C E xa a x a a ''⋅=-+-+=,∴A F C E ''⊥. ......(6分) (II )记,BF x BE y ==,则x y a +=, 三棱锥B BEF '-的体积2311()66224a x y V xya a +=≤=, 当且仅当2ax y ==时,等号成立. 因此,三棱锥B BEF '-的体积取得最大值时,2aBF BE ==.......(10分) 过B 作BD EF ⊥交EF 于D ,连B D ',可知B D EF '⊥. ∴B DB '∠是二面角B EF B '--的平面角. 在直角三角形BEF 中,直角边2aBE BF ==,BD 是斜边上的高,∴,tan 4B B BD a B DB BD''=∠==, 故二面角B EF B '--的大小为tan arc ......(14分)【点评】本题考查线线垂直,考查面面角,考查向量知识的运用,考查三棱锥的体积,考查基本不等式的运用,属于中档题. 20.(本题满分14分)本题有2个小题,第1小题满分10分,第2小题满分4分.对任意一个非零复数z ,定义集合{}21,n z M w w z n N -==∈|. (Ⅰ)设α是方程1x x+=的一个根.试用列举法表示集合M α,若在M α中任取两个数,求其和为零的概率P ;(Ⅱ)设复数z M ω∈,求证:z M M ω⊆.【解】(Ⅰ)∵α是方程210x +=的根,∴1)i α=+或2)i α=-. ......(2分)当1)i α=+时,∵222111111(),n n n i i ααααα-===,∴1111111,,,(1),(1),(1),)2222i i M i i i i ααααα⎫⎧⎫--⎪==+---+-⎨⎬⎬⎪⎪⎩⎭⎩⎭.当2)2i α=-时,∵22i α=-,∴21222211,,,ii M M αααααα⎧⎫--==⎨⎬⎩⎭.因此,不论α取哪一个值,集合M α是不变的,即),(1),),(1)2222M i i i i α⎫⎪=+---+-⎬⎪⎪⎩⎭. ......(8分)于是,24213P C ==. ......(10分) (Ⅱ)证明:∵z M ω∈,∴存在m N ∈,使得2(1)m z ω-=.......(12分)于是对任意2(1)(21)(21),n m n n N z ω---∈=,由于(21)(21)m n --是正奇数,21n z M ω-∈,所以z M M ω⊆.......(14分)【点评】本题主要考查两个复数代数形式的混合运算,等可能事件的概率求法,体现了分类讨论的数学思想,属于中档题. 21.(本题满分16分)本题有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次....的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x .(Ⅰ)试规定(0)f 的值,并解释其实际意义;(Ⅱ)试根据假定写出函数()f x 应该满足的条件和具有的性质; (Ⅲ)设21()1f x x=+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较省?说明理由.【解】(Ⅰ)(0)1f =,表示没有用水洗时,蔬菜上的农药量将保持原样.......(2分) (Ⅱ)函数()f x 应该满足的条件和具有的性质是:1(0)1,(1)2f f ==, 在[0,)+∞上()f x 单调递减,且0()1f x <≤. ......(8分)(Ⅲ)设仅清洗一次,残留在农药量为1211f a =+, 清洗两次后,残留的农药量为22222116[](4)1()2f a a ==++, ......(12分)则2212222222116(8)1(4)(1)(4)a a f f a a a a --=-=++++. 于是,当22a >时,12f f >;当22a =时,12f f =;当022a <<时,12f f <. 因此,当22a >时,清洗两次后残留在农药量较少; 当22a =时,两种清洗方法具有相同的效果;当022a <<时,一次清洗残留的农药量较少. ......(16分)【点评】本小题主要考查函数模型的选择与应用、不等式的解示及比较法比较大小等,属于基础题.考查根据实际问题建立数学模型,以及运用函数的知识解决实际问题的能力. 22.(本题满分18分)本题有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.对任意函数(),f x x D ∈,可按图示构造一个数列发生器,其工作原理如下: ①输入数据0x D ∈,经数列发生器输出10()x f x =;②若1x D ∉,则数列发生器结束工作;若1x D ∈,则将1x 反馈回输入端,再输出21()x f x =,并依此规律继续下去,现定义42()1x f x x -=+. (Ⅰ)若输入04965x =,则由数列发生器产生数列{}n x .请写出数列{}n x 的所有项;数据0x 的(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始值;(Ⅲ)若输入0x 时,产生的无穷数列{}n x 满足;对任意正整数n ,均有1n n x x +<,求0x 的取值范围.【解】(Ⅰ)∵()f x 的定义域(,1)(1,)D =-∞--+∞,∴数列{}n x 只有三项:123111,,1195x x x ===-. ......(3分) (Ⅱ)∵42()1x f x x x -==+,即2320x x -+=,∴1x =,或2x =. 即当01x =或2时,1421n n n n x x x x +-==+.故当01x =时,1n x =;word 格式-可编辑-感谢下载支持当02x =时,2()n x n N =∈. ......(9分) (Ⅲ)解不等式421x x x -<+,得1x <-或12x <<. 要使12x x <,则11x <-或112x <<. ......(12分) 对于函数426()411x f x x x -==-++, 若11x <-,则21322()4,()x f x x f x x =>=<. ......(15分) 当112x <<时,21()x f x x =>,且212x <<, 依此类推,可得数列{}n x 的所有项均满足1()n n x x n N +>∈. 综上所述,1(1,2)x ∈.由10()x f x =,得0(1,2)x ∈.. .....(18分)【点评】本题考查数列与函数的综合,考查新定义,考查学生的计算能力,属于中档题.。
2000年普通高等学校招生全国统一考试数学试卷上海卷理

2000年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)第Ⅰ卷一、填空题(本大题满分为48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
(1)已知向量OA (-1,2)、OB =(3,m),若OA ┴OB ,则m= 。
(2)函数,x x y --=312log 2的定义域为 。
(3)圆锥曲线⎩⎨⎧=+=θθtg y x 31sec 4的焦点坐标是 。
(4)计算:nn n )2(lim += 。
(5)已知b x f x+=2)(的反函数为)(),(11x fy x f --=若的图象经过点)2,5(Q ,则b = 。
(6)根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP 是指国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市年人均GDP 达到或超过1999年的2倍,至少需 年。
(按:1999年本市常住人口总数约1300)(7)命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥, 命题A 的等价题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥 (8)设函数)(x f y =是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上)(x f = 。
(9)在二项式11)1(-x 的展开式中,系数最小的项的系数为 ,(结果用数值表示)(10)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码均不相同的概率是 。
(11)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线B A ,cos 4于θρ=两点,则=AB 。
(12)在等差数列{}n a 中,若=n a ,则有等式),19(192121N n n a a a a a a n n ∈+++=+++ 成立,类比上述性质,相就夺:在等此数列{}n b 中,若1=b ,则有等式 成立。
2000年普通高等学校招生全国统一考数学试题及答案(文)

2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 设集合A ={x |x ∈Z 且-10≤x ≤-1},B ={x |x ∈Z 且|x |≤5},则A ∪B 中的元素个数是( )(A) 11(B) 10(C) 16(D) 15(2) 在复平面内,把复数3-3i 对应的向量按顺时针方向旋转3,所得向量对应的复数是( )(A) 23(B) -23i(C)3-3i (D) 3+3i(3) 一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是( )(A) 23(B) 32(C) 6(D)6(4) 已知sin α>sin β,那么下列命题成立的是 ( )(A) 若α、β是第一象限角,则cos α>cos β (B) 若α、β是第二象限角,则tg α>tg β (C) 若α、β是第三象限角,则cos α>cos β (D) 若α、β是第四象限角,则tg α>tg β (5) 函数y =-x cos x 的部分图像是( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( )(A) 800~900元(B) 900~1200元(C) 1200~1500元(D) 1500~2800元(7) 若a >b >1,P =b a lg lg ⋅,Q =21(lg a +lg b ),R =lg ⎪⎭⎫ ⎝⎛+2b a ,则( )(A) R <P <Q(B) P <Q <R(C) Q <P <R(D) P <R <Q(8) 已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )(A) (0,1)(B) (33,3) (C) (33,1) ∪(1,3) (D) (1,3)(9) 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ) (A)ππ221+ (B)ππ441+ (C)ππ21+ (D)ππ241+ (10) 过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )(A) y =3x(B) y =-3x(C) y =33x (D) y =-33x (11) 过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ的长分别是p 、q ,则qp 11+等于 ( )(A) 2a(B)a21 (C) 4a (D)a4 (12) 如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为 ( )(A)321(B)21 (C)21 (D)421第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) 乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有___________种(用数字作答)(14) 椭圆14922=+y x 的焦点为F 1、F 2,点P 为其上的动点.当∠F 1PF 2为钝角时,点P 横坐标的取值范围是________________(15) 设{a n }是首项为1的正项数列,且(n +1)21+n a —2n na + a n +1a n =0(n =1,2,3…),则它的通项公式是a n =_______________(16) 如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是________________(要求:把可能的图的序号都.填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知函数y =3sin x +cos x ,x ∈R .(Ⅰ)当函数y 取得最大值时,求自变量x 的集合;(Ⅱ)该函数的图像可由y = sin x (x ∈R )的图像经过怎样的平移和伸缩变换得到? (18) (本小题满分12分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎭⎬⎫⎩⎨⎧n S n 的前n 项和,求T n .(19) (本小题满分12分)如图,已知平行六面体ABCD -A1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(Ⅰ)证明:C 1C ⊥BD ; (Ⅱ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.(20) (本小题满分12分)设函数f (x )=12+x -ax ,其中a >0. (Ⅰ)解不等式f (x )≤1;(Ⅱ)证明:当a ≥1时,函数f (x )在区间[)∞+,0上是单调函数. (21) (本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式p =f (t ); 写出图二表示的种植成本与时间的函数关系式Q =g (t );(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg ,时间单位:天) (22) (本小题满分14分)如图,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线的离心率.2000年普通高等学校招生全国统一考试数学试题(文史类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.(1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13)252 (14)5353<<-x (15)n1(16)②③ 三、解答题(17)本小题主要考查三角函数的图像和性质,利用三角公式进行恒等变形的技能以及运算能力.满分12分.解:(Ⅰ) y =3sin x +cos x =2(sin x cos 6π+cos x sin 6π) =2sin(x +6π),x ∈R ——3分 y 取得最大值必须且只需x +6π=ππk 22+,k ∈Z , 即x =ππk 23+,k ∈Z .所以,当函数y 取得最大值时,自变量x 的集合为 {x |x =3π+2k π,k ∈Z }. ——6分 (Ⅱ)变换的步骤是:(1)把函数y =sin x 的图像向左平移6π,得到函数y =sin(x +6π)的图像; ——9分 (2)令所得到的图像上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y =2sin(x +6π)的图像; 经过这样的变换就得到函数y =3sin x +cos x 的图像. ——12分 (18)本小题主要考查等差数列的基础知识和基本技能,运算能力,满分12分. 解:设等差数列{a n }的公差为d ,则 S n =na 1+21n (n -1)d . ∵ S 7=7,S 15=75,∴ ⎩⎨⎧=+=+.7510515,721711d a d a ——6分即⎩⎨⎧=+=+.57,1311d a d a ——8分解得a 1=-2,d =1. ∴()()12121211-+-=-+=n d n a n S n , ∵2111=-++n S n S n n , ∴数列{n S n }是等差数列,其首项为-2,公差为21, ∴ n n T n 49412-=. ——12分 (19)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A 1C 1、AC ,AC 和BD 交于O ,连结C 1O . ∵ 四边形ABCD 是菱形,∴ AC ⊥BD ,BC =CD .又∵ ∠BCC 1=∠DCC 1,C 1C =C 1C , ∴ △C 1BC ≌△C 1DC , ∴ C 1B =C 1D , ∵ DO =OB ,∴ C 1O ⊥BD , ——3分 但AC ⊥BD ,AC ∩C 1O = O , ∴ BD ⊥平面AC 1. 又 C 1C ⊂平面AC 1,∴ C 1C ⊥BD . ——6分 (Ⅱ)当1CC CD=1时,能使A 1C ⊥平面C 1BD . 证明一: ∵1CC CD=1, ∴ BC =CD =C 1C ,又∠BCD =∠C 1CB =∠C 1CD , 由此可推得BD =C 1B =C 1D .∴ 三棱锥C -C 1BD 是正三棱锥. ——9分 设A 1C 与C 1O 相交于G .∵ A 1C 1∥AC ,且A 1C 1:OC =2:1, ∴ C 1G ︰GO =2︰1.又C 1O 是正三角形C 1BD 的BD 边上的高和中线, ∴ 点G 是正三角形C 1BD 的中心, ∴ CG ⊥平面C 1BD .即A 1C ⊥平面C 1BD . ——12分 证明二:由(Ⅰ)知,BD ⊥平面AC 1, ∵ A 1C ⊂平面AC 1,∴ BD ⊥A 1C . ——9分 当11=CC CD时,平行六面体的六个面是全等的菱形, 同BD ⊥A 1C 的证法可得BC 1⊥A 1C . BD BC 1=B ,∴ A 1C ⊥平面C 1BD . ——12分 (20)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.(Ⅰ) 解:不等式f (x )≤1即12+x ≤1+ax ,由此得1≤1+ax ,即ax ≥0,其中常数a >0. 所以,原不等式等价于()⎩⎨⎧≥+≤+.0,1122x ax x 即()⎩⎨⎧≥+-≥.021,02a x a x ——3分所以,当0<a <1时,所给不等式的解集为{x |0≤x ≤212a a-}; 当a ≥1时,所给不等式的解集为{x |x ≥0}. ——6分 (Ⅱ)证明:在区间[)∞+,0上任取x 1、x 2,使得x 1<x 2.f (x 1)-f (x 2)=112221+-+x x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a ). ——9分∵11222121++++x x x x <1,且a ≥1,∴11222121++++x x x x -a <0,又x 1-x 2<0, ∴f (x 1)-f (x 2)>0, 即f (x 1)> f (x 2).所以,当a ≥1时,函数f (x )在区间[)∞+,0上是单调递减函数. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.解:(Ⅰ)由图一可得市场售价与时间的函数关系为()⎩⎨⎧≤<-≤≤-=.3002003002,2000300t t t t t f ,, ——2分 由图二可得种植成本与时间的函数关系为 g (t )=2001(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t ),即()⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-=.30020021025272001,20002175********t t t t t t t h ,, ——6分当0≤t ≤200时,配方整理得 h (t )=-2001(t -50)2+100, 所以,当t =50时,h(t)取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h (t )=-2001(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5. ——10分 综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大 ——12分(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称. ——2分依题意,记A (-c ,0),C (2c ,h ),B (c ,0),其中c 为双曲线的半焦距,c =21|AB |,h 是梯形的高.由定比分点坐标公式,得点E 的坐标为c cc x E 19711812118-=+⨯+-=, h hy E 19811811180=+⨯+=.——5分 设双曲线的方程为12222=-by a x ,则离心率a ce =.由点C 、E 在双曲线上,得⎪⎪⎩⎪⎪⎨⎧=⋅-⋅=-⋅.136********,14122222222b h ac bh a c——10分 ① ②由①式得1412222-⋅=a c bh 代入②式得922=a c 所以,离心率322==a c e ——14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年上海高考数学试题一、填空题1.(理)设函数f(x)=,则满足41)(=x f 的x 值为 . (文) 设函数x x f 9log )(=, 则满足21)(=x f 的x 值为 .2.(理)设数列的通项为a n =2n -7(n ∈N*),则|a 1|+|a 2|……+|a 15|= . (文) 设数列的首项,且满足,则a 1+a 2……+a 17= . 3.设P 为双曲线-y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程为 . 4.设集合A={x|2lgx=lg(8x —15),x ∈R}B={x|cos>0,x ∈R},则A∩B 的元素个数为 个. 5.抛物线x 2-4y -3=0的焦点坐标为 .6.设数列是公比q >0的等比数列,S n 是它的前n 项和.S n =7,则此数列的首项a 1的取值范围是 .7.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需要准备不同的素菜品种 种.(结果用数值表示)8.(理)在代数式(4x 2-2x -5)(1+)5的展开式中,常数项为 .(文) 在代数式62)1(x x -的展开式中,常数项为 .9.设x=sinα,α∈[-,],则arccosx 的取值范围为 .10.(理)直线y=2x -与曲线(φ为参数)的交点坐标为 .11.已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则又①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为.12. 据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.下左图表示我国土地沙化总面积在上个世纪五六十年代、七八十年代、九十年代的变化情况.由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在下右图中图示为.二、选择题13.a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.如图在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若=、=、=,则下列向量中与相等的向量是()A.-++B.++C.-+D.--+15.已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A. 若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交16. 用计算器验算函数y=(x>1)的若干个值,可以猜想下列命题中的真命题只能是()A. y=在(1,+∞)上是单调减函数B. y=,x∈(1,+∞)的至于为(0,C. y=,x∈(1,+∞)有最小值D.=0 ,n∈N三、解答题17.已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.18.设F1、F2为椭圆=1的两个焦点,P为椭圆上的一点.已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.19.在棱长为a的正方体OABC-O'A'B'C'中,E、F分别是棱AB、BC上的动点,且AE=BF. (1)求证:A'F⊥C'E;(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小.(结果用反三角函数表示)20.(理)对任意一个非零复数z,定义集合M z={ω|ω=z2n-1,n∈N*}.(1)设a是方程x+=的一个根,试用列举法表示集合M a.若在M a中任取两个数,求其和为零的概率P;(2)设复数ω∈M z,求证MωM z .(文) 对任意一个非零复数z,定义集合M z={ω|ω=z n,n∈N*}.(1)设a是方程1=+xx的一个根,试用列举法表示集合M a.若在M a中任取两个数,求其和为零的概率P;(2)设集合M z中只有3个元素,试写出满足条件的一个z的值,并说明理由 .21. 用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药用量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x单位量的水清洗一次以后,蔬菜上残留的农药与本次清洗前残留有农药量之比为函数f(x).(1)试规定f(0)的值,并解释其实际意义;(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;(3)设f(x)=,现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.试问用哪种方案清洗后蔬菜上的农药量比较少?说明理由22. 对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②x1D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义f(x)=.(1)若输出x0=,则由数列发生器产生数列{x n}.请写出数列{x n}的所有项;(2)若要数列发生器产生一个无穷的常数数列,试求输出的初始数据x0的值;(3)(理)若输出x0时,产生的无穷数列{x n}满足:对任意正整数n均有x n<x n+1,求x0的取值范围.(文)是否存在x0,,在输入数据x0时, 该数列发生器产生一个各项均为负数的无穷数列?若存在,求出x0的值;若不存在,请说明理由.2000年全国普通高等学校招生统一考试上海数学试卷一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知向量{}12-=OA 、{}m OB ,3=,若AB OA ⊥,则=m 。
2.函数xx y --=312log 2的定义域为。
3文.圆锥曲线1916)1(22=--y x 的焦点坐标是。
3理.圆锥曲线⎩⎨⎧=+=θθtan 31sec 4y x 的焦点坐标是。
4.若常数t 满足|t|>1,计算:=++++-∞→)...1(lim 12n n n tt t t 。
5.已知b x f x +=2)(的反函数为)(1x f -,若)(1x f y -=的图象经过点)2,5(Q ,则=b 。
6.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP (GDP 是指国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市年人均GDP 达到或超过1999年的2倍,至少需年。
(按:1999年本市常住人口总数约1300万)7.命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥,命题A 的等价命题B 可以是:底面为正三角形,且的三棱锥是正三棱锥。
8.设函数)(x f v =是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上,)(x f =。
9.在二项式11)1(-x 的展开式中,系数最小的项的系数为。
(结果用数值表示)10.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码不相同的概率是。
11文.所有满足不等式组 ⎪⎩⎪⎨⎧≥≥≤+≤+0,0625y x y x y x 的点中,使目标函数y x k 86+=取得最大值的点的坐标是。
11理.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线B A ,cos 4于θρ=两点,则=AB 。
12.在等差数列{}n a 中,若010=a ,则有等式*),19(192121N n n a a a a a a n n ∈+++=+++- 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式成立。
二、选择题。
13.函数]2,2[),2sin(πππ-∈+=x x y 是 (A )增函数(B )减函数(C )偶函数(D )奇函数[答]() 14.设有不同的直线a 、b 和不同的平面a 、β、γ,给出下列三个命题:(1)若a a //,a b //,则b a //。
(2)若a a //,β//a ,则β//a 。
(3)若γ⊥a ,γβ⊥,则β//a 。
其中正确的个数是(A )0 (B )1 (C )2 (D )3[答]()15.若集合{}{}T S R x x y y T R x y y S x 则,,1|..3|2∈-==∈==是(A )S (B )T (C )φ(D )有限集[答]()16.下列命题中正确的命题是(A )若点)0)(2,(≠a a a P 为角a 终边上一点,则552sin =a 。
(B )同时满足23cos ,21sin ==a a 的角a 有且只有一个。
(C )当1|| a 时,)(arcsin a tg 的值恒正。
(D )三角方程3)3(=+πx tg 的解集为{}Z k k x x ∈=,|π。
三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤17.(本题满分12分)已知椭圆C 的焦点分别为)0,22(1-F 和)0,22(2F ,长轴长为6,设直线2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
[解]18.(本题满分12分)如图所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB=BC=2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为1010arccos,求四面体ABCD 的体积。
19.(本题满分14分)本题共有2个小题,第1个小题满分6分,第2小题满分8分。
已知函数],1[,2)(2+∞∈++=x xa x x x f 。
(1)当21=a 时,求函数)(x f 的最小值。
(2)若对任意],1[+∞∈x ,0)( x f 恒成立,试求实数a 的取值范围20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分。
根据指令),(θr )180180,0(≤-≥θr ,机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r 。
(1)现机器人在直角坐标系的坐标原点,且面对x 轴正方向,试给机器人下一个指令,使其移动到点(4,4)。
(2)机器人在完成该指令后,发现在点(17,0)处有一小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位)。