正比例和反比例应用题
正比例与反比例

正比例与反比例一、判断下面各题中的两个量成什么比例,并说明理由。
1、订《少先队员》的份数和总钱数。
2、三角形的面积一定,底和高。
3、总人数一定,行数和每行人数。
4、总价一定,单价和数量。
5、购买同一种钢笔的数量和总价。
6、正方形的周长与它的边长。
7、圆的面积与它的半径。
8、圆的周长与它的半径。
1、长方形的长一定,它的面积与宽。
2、分数值一定,分子和分母。
3、一个加数一定,另一个加数与和。
4、路程一定,速度和时间。
5、圆柱的底面积一定,它的体积与高。
6、看一本故事书,每天看的页数和所剩下的页数。
7、圆锥的体积一定,它的底面积与高。
8、购买苹果的总价一定,购买苹果的千克数和单价。
9、圆柱的侧面积一定,它的底面积周长与高。
10、正方体的棱长与表面积。
11、被减数一定,减数和差。
12、总人数一定,每行人数和行数。
13、长方体的底面积一定,体积和高。
14、路程一定,已走的路程和剩下的路程。
15、百米赛跑中,跑步速度和所用时间。
16、车轮的转数一定时,车轮的直径和行驶的路程。
17、x=2y,(x、y不为0)那么x和y.18、大豆的出油率一定,大豆的数量和出油的数量(1)买相同的电脑,购买的电脑台数与总价(2)每捆练习本的本数相同,练习本的总本数与捆数(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母(5)长方形的长一定,它的面积和宽(6)长方体的体积一定,底面积和高(7)一本书的总页数一定,看的天数与平均每天看的页数(8)圆的周长和直径(9)订阅《扬子晚报》,订的份数与总价(10)图上距离一定,实际距离与比例尺(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数1、天数一定,每天烧煤量和烧煤总量()比例。
2、圆的直径和面积()比例。
3、订《少年科学画报》的份数和所需要的钱数()比例。
4、生产时间一定,每小时生产的个数和总个数()比例。
5、被除数一定,除数和商()比例。
应用题第50讲_正反比例的基本认识(学生版)A4

1.两种相关联的量,一种量变化,另一种量也随之变化,如果两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,或者简写为成正比.2.两种相关联的量,一种量变化,另一种量也随之变化,如果两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,或者简写成反比.3.在实际应用过程中,我们常常用到这样的一些结论.如果两个量成正比,例如:总价=单价×数量,当单价一定的时候,总价比等于数量比,即1212总价:总价=数量:数量.如果两个量成反比,例如:路程=速度×时间,当路程一定的时候,速度比等于时间比反过来,即1212::v v t t . 重难点:正反比例的认识及基本应用. 题模一:认识正反比及简单计算例1.1.1判断下列各数量之间,哪些成正比例关系,哪些成反比例关系,哪些不成比例? (1)《小学生作文》的单价一定,总价和订阅的数量.( ) (2)小高跳高的高度和他的身高.( )(3)全班的人数一定,每组的人数和组数.( )(4)小麦每公顷产量一定,小麦的公顷数和总产量.( ) (5)书的总页数一定,已经看的页数和未看的页数.( ) (6)圆的半径和周长.( )(7)学校食堂新进一批煤,每天的用煤量与使用天数.( ) (8)长方体体积一定,长方体的底面积和高.( )(9)一块菜地的总面积一定,种的黄瓜和西红柿的面积.( ) (10)书的总册数一定,每包的册数和包数.( ) (11)正方形的边长和面积.( )例1.1.2阿呆和阿瓜,一起去超市买可乐,可乐的价钱相同.若阿呆买了12瓶,阿瓜买了15瓶,那阿呆与阿瓜所花的钱数比为____________.例1.1.3飞扬与文雯去商店采购糖果,飞扬买的都是奶糖,文雯买的都是水果糖,并且两人花的钱数一样多.假如奶糖与水果糖的单价比为4:3,那飞扬与文雯买的数量之比是_________.例1.1.4康师傅加工一批零件.如果他的工作效率提高15,那么提高前后的工作时间之比是______________.题模二:正反比解简单应用题例1.2.1(1)甲每小时比乙多做2个零件,甲完成一批零件需要3小时,乙完成同样的一应用题第50讲_正反比例的基本认识批零件需要4小时,这批零件一共有__________个.(2)甲、乙花同样的钱去买铅笔,甲买的铅笔每支都比乙买的铅笔贵5元,甲买的铅笔数是乙的34,甲买的铅笔每只__________元.(3)有A 、B 两个齿轮相互咬合.如果A 齿轮转动7圈时,B 齿轮恰好转动5圈,且A 的齿数比B 的齿数少10个,那么A 有__________齿.(4)甲、乙两人的速度比是6:5,那么在相同的时间内,甲比乙多走了5米,乙走了__________米.(5)甲、乙两人走相同的路程所用的时间比是6:5,甲的速度比乙每秒慢4米,乙的速度是__________米/秒.例1.2.2一个旅游团租车出游,平均每人应付车费40元.后来又增加了8人,这样每人应付的车费是35元.总租车费是多少元?例1.2.3如图,平行四边形ABCD 的周长为75厘米.以BC 为底时高是14厘米,以CD 为底时高是16厘米.求平行四边形ABCD 的面积是__________平方厘米.题模三:分数应用题中的正反比例1.3.1一天,妈妈给了梅梅80元钱去超市买苹果,当她到超市的时候发现,由于打折促销,苹果降价15,于是梅梅多买了4斤苹果.问苹果原来的价格是每斤____________钱.例1.3.2小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买______支签字笔. 随练1.1S=Vt ,(V 与t 都大于零)如果V 一定,那么t 和S 成( ). A .正比例 B .反比例 C .不成比例 D .无法确定随练 1.2鹿宝宝和小山羊一起去买同一种青草吃,若鹿宝宝与小山羊买的青草数量之比为3:2,那他俩付的钱数之比是_________.随练 1.3康师傅加工一批零件.如果他的工作效率降低15,那么降低前后的工作时间之比是______________.随练1.4一天,小高拿着爸爸给他的钱去超市买可乐,平时每瓶可乐3.5元钱,当他到超市的时候,正巧碰到优惠活动,可乐变为每瓶3元钱,于是小高多买了1瓶可乐.那么爸爸给了小高__________元钱.随练1.5一天,梅梅拿着妈妈给她的钱去超市买苹果,平时每斤苹果5元钱,当她到超市的时候发现,由于打折促销,苹果变为每斤4元钱,于是梅梅多买了3斤苹果.那妈妈给了梅梅____________钱.随练1.6一天,梅梅拿着妈妈给她的钱去超市买苹果,由于货源紧张,苹果涨价16,于是梅梅今天比平时少买了2斤苹果.那今天买了____________斤.1416A BCDEF随练1.7一天,妈妈给了梅梅40元钱去超市买苹果,当她到超市的时候发现,由于打折促销,苹果降价15,于是梅梅多买了2斤苹果.问苹果原来的价格是每斤____________钱.作业1下面4句话中,有__________句是对的. (1)正方形的周长与边长成正比 (2)速度与时间成反比(3)圆的面积与半径的平方成正比(4)一次数学竞赛,获奖的人数与未获奖的人数成反经.作业2阿呆和阿瓜,一起去超市买可乐,可乐的价钱相同.若阿呆买了12瓶,阿瓜买了16瓶,那阿呆与阿瓜所花的钱数比为____________.作业3飞扬与文雯去商店采购糖果,飞扬买的都是奶糖,文雯买的都是水果糖,并且两人花的钱数一样多.假如奶糖与水果糖的单价比为3:2,那飞扬与文雯买的数量之比是_________.作业4康师傅加工一批零件.如果他的工作效率提高14,那么提高前后的工作时间之比是______________.作业5六一到了,商场对学生用品八折优惠,用原来买12支铅笔钱,现在可以买到_________支.作业6一个旅游团租车出游,平均每人应付车费20元.后来又增加了6人,但总租车费仍然不变,这样每人应付的车费是15元.总租车费是多少元?作业7下午,测得一长为1米的竹竿影长为0.9米.同一时间,测量一棵树,有一部分影子在地上,另一部分在墙上,已知地上的影长2.7米,墙上的影长1.2米,求树高.作业8平行四边形ABCD 的周长是102厘米,以CD 为底时,高为14厘米;以BC 为底时,高为20厘米,求平行四边形的面积.作业9张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支,那么降价前这些钱可以买签字笔________支.作业10一天,梅梅拿着妈妈给她的钱去超市买苹果,由于打折促销,苹果降价15,于是梅梅今天比平时多买了3斤苹果.那今天买了____________斤.作业11一天,妈妈给了梅梅60元钱去超市买苹果,当她到超市的时候发现,由于打折促CDBA1 5,于是梅梅多买了3斤苹果.问苹果原来的价格是每斤____________钱.销,苹果降价。
六年级上册数学《比》3类必考应用题及练习

六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。
所设未知数的计量单位名称要与已知的计量单位名称相同。
练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。
X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。
2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。
2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。
例题如下:六一玩具厂要生产2080套儿童玩具。
前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
[正比例和反比例练习题]正比例应用题练习题
![[正比例和反比例练习题]正比例应用题练习题](https://img.taocdn.com/s3/m/b3e96afdcaaedd3382c4d30a.png)
[正比例和反比例练习题]正比例应用题练习题[正比例和反比例练习题]正比例应用题练习题篇一 : 正比例应用题练习题正比例应用题练习题一、判断。
,)1、工作总量一定,工作效率和工作时间成反比例。
2、图上距离和实际距离成正比例。
3、X和Y表示两种变化的相关联的量,同时5X,7Y,0,X和Y不成比例。
4、分数的大小一定,它的分子和分母成正比例。
5、在一定的距离内,车轮周长和它转动的圈数成反比例。
6、两种相关联的量,不成正比例,就成反比例。
二、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例,写在括号里。
1、装配一批电视机,每天装配台数和所需的天数。
2、正方形的边长和周长。
3、水池的容积一定,水管每小时注水量和所用时间。
4、房间面积一定,每块砖的面积和铺砖的块数。
5、在一定时间里,加工每个零件所用的时间和加工零件的个数。
6、在一定时间里,每小时加工零件的个数和加工零件的个数。
三、把下面的数量关系式补充完整:单价×,总价单产量×面积, ×时间,路程总价?,单价总产量?,单产量路程?,时间总价?,数量总产量?,面积路程?,速度工作效率×,工作总量图上距离?,比例尺工作总量?工作时间, 实际距离×,图上距离工作总量?工作效率, ?比例尺,实际距离三、用正比例的知识解答下列各题。
1、小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元,2、小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本,3、运一批煤,18次运了90吨,照这样计算,14次可以运多少吨,4、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤,5、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨,6、一种水管,40米重60千克。
[)现称得一捆水管重270千克,这捆水管共长多少米,7、一榨油厂用400千克芝麻可以榨油144千克。
正反比例应用题- 题目

正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)一.选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设χ天可以完成.正确列式是()A.400X=350×8 B.C.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.B.C.12x=124×33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.B.C.D.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用10cm2的方砖铺,需要()块.A.280 B.187 C.390 D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.5 0.7 0.8 0.9 1.1 1.5竹竿长(米) 1 1.4 1.6 1.8 2.2 3A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300 B.280 C.260 D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3 B.3:2 C.2:5二.填空题(共3小题)10.在一幅比例尺是的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是_________.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)“照这样计算”就是说_________是一定的.(2)_________和_________成_________比例.(3)所求结果用ⅹ表示,写出比例式:_________.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)一.选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A.因为12=2×2×3,所以不能化成有限小数;B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45 平方米,15 平方米和30平方米.图中阴影部分的面积是()平方米.A.60 B.75 C.80 D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.A.600 B.900 C.1200 D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)A.B.7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.A.3B.4C.5D.68.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.A.9B.12 C.24 D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()A.2B.3C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分 2 4 6 8 10 12 14数量/个100 200 300 400 500 600 700张阿姨打750个字需要_________分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米._________.13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时 2 _________路程/千米_________800这列动车行驶的时间和路程成_________比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成_________比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重_________kg.15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身高1.6米,在照片上她的高是5cm.欢欢在照片上高4cm,欢欢的身高是_________米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为_________cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高_________米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要_________块.20.(•江苏)生活中我们一般用摄氏度(℃)来描述温度,但也有一些国家用华氏度(℉)来描述.水的冰点是0℃,沸点是lO0℃,用华氏度描述水的冰点是32℉,沸点是212℉,那么我们人体正常体温36℃,用华氏度描述是_________℉.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工,实际多少天可以完工?(用比例解)26.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?。
精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析

精选练习六年级下册正比例、反比例应用题专项训练含答案解析1.XXX的身高为1.5米,她的影长为2.4米。
如果在同一时间同一地点测得一棵树的影子长为4米,那么这棵树有多高?2.一间房子原计划用边长为5分米的方砖铺地,需要2000块。
如果改用边长为4分米的方砖,需要多少块?(使用比例解法)3.使用相同的方砖铺地,铺18平方米需要618块砖。
那么铺24平方米需要多少块砖?(使用比例知识解答)4.测量小组要测量一棵树的高度,先量得树的影子长为12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长为1.2米。
这棵树的高度是多少米?5.XXX计划每天加工240个零件,20天完成。
实际每天多加工60个,那么需要多少天才能完成任务?(使用比例知识解答)6.XXX收割小麦。
前6天收割了114公顷,剩下152公顷。
1)按照前几天的工作效率,剩下的还需要多少天才能完成?(使用比例解法)2)前几天收割的比后几天收割的少百分之几?3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.XXX的身高为1.6米,他的影长为2.4米。
如果在同一时间同一地点测得一棵树的影长为6米,那么这棵树有多高?8.市政工程队原计划每天铺0.6千米,24天完成。
实际每天铺0.8千米,那么实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用边长为3分米的方砖,需要960块。
后来实际选用了边长为4分米的方砖铺地,那么实际需要多少块4分米的方砖?10.甲乙两地相距XXX,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)时间(小时):2 3 4 …路程(千米):100 150 200 …11.工程队修一条公路,原计划每天修4.5千米,20天完成。
实际每天修6千米,那么实际需要几天才能完成?(使用比例解法)12.一辆汽车3小时行了135千米,那么行驶315千米需要多少小时?(使用比例解法)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地。
正比例与反比例关系的应用题分析

正比例与反比例关系的应用题分析数学是一门实用性极强的学科,其中正比例与反比例关系是我们在生活中经常遇到的数学问题。
正比例关系是指两个变量之间的比值始终保持不变,而反比例关系是指两个变量之间的乘积始终保持不变。
在解决实际问题时,我们常常需要运用正比例与反比例关系进行分析和计算。
本文将通过几个具体的应用题,来说明正比例与反比例关系的应用方法。
首先,我们来看一个正比例关系的应用题。
假设小明每天骑自行车上学,他的骑行速度与到达学校的时间成正比。
如果他以每小时15公里的速度骑行,那么骑行10公里需要多长时间?解决这个问题的方法是建立一个骑行速度与时间的正比例关系,并利用比例关系进行计算。
设小明骑行10公里所需的时间为t,根据题意可得比例关系式15/1 = 10/t。
通过交叉相乘得到15t = 10,进一步计算可得t = 2/3。
因此,小明骑行10公里需要2/3小时。
接下来,我们来看一个反比例关系的应用题。
假设某项工作由5个工人共同完成,如果工人数量减少到3个,那么完成这项工作需要多长时间?解决这个问题的方法是建立一个工人数量与完成时间的反比例关系,并利用比例关系进行计算。
设完成这项工作所需的时间为t,根据题意可得比例关系式5t = 3,进一步计算可得t = 3/5。
因此,当工人数量减少到3个时,完成这项工作需要3/5的时间。
除了以上的简单应用题,正比例与反比例关系在实际生活中还有许多复杂的应用。
例如,我们可以利用正比例关系来解决购买商品的折扣问题。
假设某商品原价为100元,现在打8折,那么打折后的价格是多少?解决这个问题的方法是建立一个原价与折后价格的正比例关系,并利用比例关系进行计算。
设折后价格为x元,根据题意可得比例关系式100/x = 8/10。
通过交叉相乘得到10x = 800,进一步计算可得x = 80。
因此,打8折后的价格为80元。
另外,正比例与反比例关系还可以应用于解决速度、密度、压力等物理问题。
正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例和反比例应用题1、淮光化肥厂要生产一批化肥,原计划每天生产432吨,25天完成;实际每天生产540吨,只要多少天就能完成?2、某工程大队计划30天挖水渠3750米,实际每天比原计划多挖25米,实际只用多少天完成?3、某工人制造一个机器零件所用的时间由40分钟减少到24分钟,原来需要8小时完成的任务,现在可以提前几小时完成?4、有一本书,每页16行,每行36个字,共有150页,现在要改为每页18行,每行24个字。
该书应有多少页?5、一项工程,25人每天工作8小时,36天可以完成;现在增加5人,限40天完成。
每天应工作几小时?6、一间教室用边长0.4米的正方形砖铺地,需要300块,如果改用边长为0.5米的正方形砖铺地,需要多少块?7、一对互相咬合的齿轮,主动轮有40个齿,从动轮有30个齿,如果主动轮每分钟转180转,从动轮每分钟转多少转?8、电视机厂试制一批新产品,原计划每天生产40台,30天完成。
实际每天比原计划多生产25%,实际多少天完成?9、农机厂的配件车间,生产每个配件的时间,由原来的7分钟减少了4.5分钟,原来每天生产140个配件,现在每天可生产多少个?10、电扇厂计划20天生产电扇1600台,生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?11、兄妹两人同时从甲、乙两地相向而行,兄走完全程需2小时,妹走完全程需3小时,两人相遇时,兄比妹多走2.4千米,求甲乙两地之间的距离。
12、某人从甲地去乙地,每小时行7里,又从乙地回到甲地,每小时走4里,已知去时比回来时少用4.5小时,求甲乙两地距离?13、两辆汽车从甲地开往乙地,它们速度的比是10∶9,如果第一辆汽车用2小时,第二辆汽车要用多少小时?14、某工厂每天烧煤1.2吨,比原计划每天少烧0.1吨。
这样原计划烧60天的煤,现在可以烧多少天?15、一个纺织厂的织布车间,以前每人可以看2台织布机,每班用15人,现在每人多看3台织布机,每班可以少用几人?16、某化肥厂生产一批化肥,每天生产9吨,需要30天完成。
如果要27天完成,每天应生产多少吨?17、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?18、加工一批零件,计划每天加工120个,10天完成。
实际比计划每天多加工30个,实际几天完成任务?19、从甲地到乙地,快车每小时行65千米,6小时到达,它比慢车快5千米,慢车需几小时到达?20、一个机械厂有一批煤,原计划每天烧15吨,可以烧60天,实际每天比原计划节约20%,这批煤实际烧了多少天?21、南河村抢收小麦,原计划每天收3.2公顷,15天完成任务。
实际比原计划每天多收25%,实际多少天完成?22、同学们为幼儿园小朋友做一批小玩具。
原计划每天做20件,7天完成。
结果提前2天完成了任务,平均每天做多少件?23、一艘轮船,从甲地到乙地每小时航行20千米,18小时到达。
从乙地返回甲地,每小时多航行4千米,返回需要多少小时?24、一个车间生产一批机器零件,原计划每天生产240个,25天可以完成。
如果要提前5天完成,每天要完成原计划的百分之几?25、有若干桶汽油,计划可用120天,技术革新后,每天实际用汽油10千克,结果比原计划多用了12天。
问原计划每天用多少汽油?26、一辆汽车开往某地,每小时行30千米,预定2小时到达。
行驶半小时后,因故停车15分钟,如果仍要求在预定的时间到达,以后的车速每小时必须加快多少千米?27、一个车间,原来用边长3分米的方砖来铺地,共需方砖640块,现在用边长比原来大1分米的新方砖重新铺地,需要新方砖多少块?28、一个运输队有载重量相同的汽车32辆,每天运货物256吨。
照这样计算,增加8辆这样的汽车,每天要比原来多运货物多少吨?29、有一堆煤,原计划每天烧6吨,可以烧70天,由于技术革新,每天可节省0.4吨,这堆煤可以烧几天?30、前进村计划每天积肥38吨,25天完成任务,如果每天多积肥12吨,可以提前几天完成任务?31、一个工厂加工一批机器,计划每天加工42台,8天完成任务,如果要提前1天交货,每天应增加机器多少台?生产效率提高百分之几?32、一艘轮船以每小时48千米的速度,经过3小时45分由A开往B,回来时每小时慢8千米,需要用多少小时?33、一条排水沟10个人挖,12天可以挖完,现在增加5人,几天可以挖完?34、一个机械厂原计划每天生产56台车床,9天完成任务,如果提前2天完成,每天要多生产多少台?35、甲乙两个齿轮齿数的比是5∶9,乙齿轮每分钟转40周,甲齿轮每分钟转多少周?36、一辆汽车从甲地到乙地,原来每小时行63千米,5小时到达,后来改换行车速度,4小时就到达,现在比原来每小时多行多少千米?37、在一段铁路上,工人同志用每根9米长的新铁轨代替原来每根6米长的旧铁轨,换下360根旧铁轨需多少根新铁轨?38、服装厂用一批布加工制服,用旧剪裁方法每套用布15尺可做1800套,现在用新的剪裁方法每套节省用布10%,用新方法可做多少套?39、有一项任务63人45天完成,工作15天后由于急用要提前12天完成,需要增加多少人?40、开垦一块荒地120人65天完成,如果200人可提前几天完成?41、一架飞机从甲地飞往乙地,每小时飞540千米,3小时到。
回来时每小时飞480千米,比去时要多用几小时?42、解放军某部在一次演习中计划每小时行12里,2.5小时到达,结果提前0.5小时到达,求每小时实际行多少里?43、解放军某部在一次行军中,行程1350里,用了27天,回来时速度加快了20%,求提前几天到达营地?44、甲乙两人各走一段路,速度比是3∶4,所用的时间比是4∶5,路程比是多少?45、甲地到乙地是斜坡路,一辆卡车上坡速度是30千米,下坡速度是45千米,往返一次共需4.5小时,甲乙两地相距多少千米?46、用100千克海水可以晒出3千克盐,照这样计算,45吨海水可以晒多少吨盐?47、2000吨的油菜籽可榨出菜油900吨,照这样计算。
(1)500千克油菜籽可榨油多少千克?(2)要榨出菜油500千克需油籽多少千克?48、一间房子要用方砖铺地,用边长是2分米的方砖,需要432块。
如果用边长是3分米的方砖,需多少块砖?49、师徒两人合做了84个零件,师傅5分钟做一个,徒弟9分钟做一个,要求在相同的时间完成,每人应该分配到多少个零件?50、走同一段路,小玲要12分,小丽要18分,已知小玲和小丽两家相距600米,这天两人同时从家出发向对方家走去,相遇时两人各走多少米?51、某一时刻测得一烟囱在阳光下的影长为16.2米,同样测得一长4米的竹杆影长为1.8米,求烟囱的高度。
52、收割一块田的水稻,2.5小时收割了这块地的5/8,照这样计算,还要多少小时才能收割完这块地?53、某工厂计划生产一批零件,12个人工作6小时,完成了计划的60%,照这样计算,其余的由20个工作来做,还要工作几小时?54、用弹簧秤称物体,称2千克的物体,弹簧长12.5厘米,称6千克的物体,弹簧长13.5厘米,求称5千克的物体时,弹簧全长多少厘米?55、快车从甲站开往乙站,需要8小时,慢车从乙站开往甲站需要10小时,两车同时从两站相向而行,相遇时慢车行了240千米,求两站的距离。
56、客车和货车同时从甲、乙两地的中点反向行驶,3小时后客车到达甲地,货车离乙地还有22千米,已知货车与客车的速度比是5:6,甲、乙两地相距多少千米?57、客、货两车同时从甲、乙两地相对开出,客车每小时行50千米,货车每小时行全程的1/16,相遇时客车和货车所行路程的比是5:6,甲、乙两地相距多少千米?58、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙距A地30千米,当乙车到达A地时,甲车超过B地40千米,问A、B两地相距多少千米?59、一对互相咬合的齿轮,主动轮100个齿,每分钟转90转。
要使从动轮每分钟转300转,从动轮应有多少个齿?60、甲城和乙城相距368千米,一摩托车从甲城到乙城,每小时的速度比原计划减少1/5,结果推迟2小时到达,求原计划每小时行多少千米?61、一车汽车从A地到B地,如果每小时行54千米,比原定时间提前1小时到达,如果每小时行45千米,比原定时间推迟1小时到达,那么A地到B地相距多少千米?62、甲乙两车从相距180千米的A地去B地,甲车比乙车晚3/2小时出发,结果两车同时到达,甲乙两车速度的比是4:3,甲车每小时行多少千米?63、东风机械厂加工一批零件,30人工作,每天工作8小时,20天可以完成,后来实际工作人数减少5人,并且提前4天完成任务,问每天工作几小时?64、一项工程,甲乙两队合做8天完成,已知单独做时甲完成1/4与乙完成1/3所用的时间相等,求单独做时,甲、乙各需多少天?65、一项工程,甲乙两队合做10天完成,已知单独做时,甲1/2小时与乙1/3小时的工作量相等,求单独做时,甲、乙各需多少天?66、判断。
<1>某班男生有8人,女生有10人,男生与女生人数之比是0.8。
()<2>甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。
()<3>在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。
()<4>两个圆的周长比是2∶3,面积之比是4∶9。
()67、选择题<1>固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间()A.成正比例B.成反比例C. 不成比例67、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。
68、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。
若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?69、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。
现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?70、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?71、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?72、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?73、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?74、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?75、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?76、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。