(完整版)正比例反比例应用题练习题和集1

合集下载

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)一.解答题(共30小题)1.小明家的客厅长6m,宽4m,现在准备铺地砖,每块地砖的面积和所需要的地砖数量如表所示,600 1200 2400每块地砖的面积/cm2所需地砖的数量/块400 200 100所需地砖的数量与每块地砖的面积是否成反比例关系?为什么?2.根据x×y=40,填下表.y 20 40.5x 10 52.53.同学们做早操,每行站的人数与站的行数关系如表:8 12 16 24 48每行站的人数站的行数60 40 30 20 10(1)写出几组对应的行数和每行站的人数的乘积,并比较它们的大小.(2)这个乘积表示什么意义?用关系式表示它与以上两种量之间的关系.4.下列各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来.工作时间/时 1 2碾米质量/t 0.6 1.2杆高/m 5 9影长/m 2.5 4.55.一种铅笔每支售价0.5元,把下表填写完整.数量/支0 1 2 3 4 5 6 …总价/元0 0.5 …(1)把铅笔的数量与总价所对应的点在图中描出来,并连线.(2)买7支铅笔需要多少钱?(3)小丽买铅笔花的钱是小明的4倍,小丽买的铅笔支数是小明的几倍?6.工地要运一批水泥,每天运的吨数和运的天数如下表.每天运的吨数/吨60 30 20 15 10运的天数/天 1 2 3 4 6(1)表中相关联的两种量是和.(2)每天运的吨数增加,运的天数就会;每天运的吨数减少,运的天数就会.(3)表中表示的几种量的关系是一定,与成反比例.7.如图所示的图象表示斑马和长颈鹿的奔跑情况.(1)斑马的奔跑路程与奔跑时间是否成正比例关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑了多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?8.电脑兴趣小组的同学练习打同一份稿件,下表记录了每人打字所用的时间.欢欢笑笑乐乐跳跳打字所用的时间/分30 40 50 60平均每分钟打字数/80字(1)表中和是两种相关联的量,随着的变化而变化.(2)笑笑打完稿件共用了40分钟,他平均每分钟打个字;跳跳打完稿件共用了60分钟,他平均每分钟打个字,一共打了个字.(3)在本题中,一定,所以和成比例.9.捷悔希望小学操场上直立着4根不同长度的木桩,上午9时整,小霞同学测量出这些木桩的高度及其影子的长度如表木桩高度(米) 1.2 1.8 2.1 2.5影子长度(米)0.72 1.08 1.20 1.5木桩高度与影长的比(1)补充上表.(2)根据上表数据写两个比例.(3)小霞身高150厘米,这时她的影长是多少?10.(1)判断下列说法是否正确(对的画“√”,错的画“×”)①甲、乙两车是同时出发的.②甲和乙行驶的路程相同.③甲车比乙车速度快.(2)从图中可以看出,随着时间的增加,距离有什么变化?11.如图是A汽车行驶路程与耗油量的统计图:下表是B汽车行驶路程与耗油量关系表:耗油量/升3 6 9 12路程/千米20 40680如果驾驶A汽车,行驶50千米耗油多少升?12.根据题中的条件,回答下面的问题.某省打长途电话的时间与话费的对照表通话时间/分钟1 2 3 4 5 6 7 8 …话费/元0.300.60.91.21.51.82.12.4…(1).和是两种相关联的量,增加,也随着增加.(2).通话5分钟需付话费元,2.10元可通话分钟.(3).话费和通话时间这两种量中相对应的两个数的比值都是,这个比值实质表示的.(4).因为比值一定,所以表中的两种量是成的量,它们的关系叫做.13.判断下面各题中的两个量是否成正比例或反比例关系(1)全班人数一定,出勤人数与缺勤人数.(2)已知=3,y与x.(3)三角形的面积一定,它的底与高.(4)正方体的表面积与它的一个面的面积.(5)已知xy=1,y与x.(6)出油率一定,花生油的质量与花生的质量.14.购买同一种茶杯的数量和总价如表:数量/1 3 6 8 …个总价/15 45 90 120 …元用同样多的钱购买不同单价的茶杯和数量如表:单价/5 6 8 10 …元数量/24 20 15 12 …个每个表中两个量的变化各有什么规律?哪个表中的两个量成正比例关系?哪个表中的两个量成反比例关系?15.在下面成正比例关系的两个量的后面画“√”.(1)平行四边形的底一定,它的面积与高..(2)汽车行驶的速度一定,行驶的路程与时间..(3)正方形的面积和边长..(4)订阅《英语报》的份数和总钱数..(5)圆的周长和它的半径..(6)4A=12B(A、B均不为0),A和B..(7)圆的半径和它的面积..(8)李玲的体重和她的身高..16.判断下面每题中两种量是否成反比例,并说明理由.(1)比值一定,比的前项和后项.(2)被减数一定,减数和差.(3)修路的总米数一定每天修的米数和修路的天数.(4)花生的出油率一定,花生的重量和油的重量.(5)分母一定,分子和分数值.17.判断下面各题中的两种量是否成反比例关系,并说明理由(1)煤的数量一定,使用天数与每天的平均用煤量.(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数.(3)圆柱体积一定,圆柱的底面积与高.(4)在一块菜地上种的黄瓜与西红柿的面积.(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.18.如图,一个棱长为a的正方体,它的表面积与棱长是否成比例?体积与棱长是否成比例?19.x、y、z三个相关联的量,并有xy=z.(1)当z一定时,x与y成比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.20.判断下面各题中的两种量是否成正比例:(1)圆的周长和直径.(2)圆的面积和半径.(3)圆柱的底面半径一定,侧面积和高.21.根据表格填空:汽车行驶时间/时 3 5 7 9 11 13汽车行驶路程/千240 400 560 720 880 1040米(1)表中两种相关联的量是.(2)当时间扩大时,行驶的路程也随着;当时间缩小时,行驶的路程也随着.(3)在变化过程中,始终没有发生变化.(4)汽车行驶的时间和路程成关系.(5)当汽车行驶8时,路程是千米,汽车要到600千米的地方,需要时.22.下面各题中的量,哪些成正比例,哪些成反比例,哪些不成比例?(1)教室的面积一定,某班学生人数与人均占地面积比例.(2)大豆油的总质量一定,大豆的质量和出油率比例.(3)圆的半径和周长比例.(4)长方形的周长一定,长和宽比例.(5)一袋面粉用去的质量和剩下的质量比例.(6)长度一定的铁丝平均分成若干段,每段长度和截的段数.23.(2015•广东)一些长方形的长与宽的长度变化如下表.长/厘米 5 7.5 10 12.5 15 17.5 …宽/厘米 2 3 4 5 6 7 …(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)24.(2015春•利辛县校级月考)一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(1)填写下表.长度/米 1 2 3 4 5总价/元6 0(2)根据表中的数据,在如图中描出长度和总价对应的点,把这些点按顺序连起来.(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?25.(2015•龙泉驿区校级三模)右面的图象表示小军骑车的路程和时间的关系.(1)看图填表.时间/分30路程/千米24(2)小军骑车行驶的路程和时间成比例,这是因为:.(3)利用图象估计,小军20分钟大约行千米;行20千米大约需要分钟.行驶区间车次起始时刻到站时刻经历时间全程甲地到乙地K12 14:26 22:26 8时640千米26.(2015•衡水模拟)如图是某厂甲、乙两个车间各生产600个零件过程中,生产零件的个数与生产时间的关系图:(1)从图上可以看出两个车间生产零件的个数分别与它们所用的时间成比例.(2)乙车间生产天后赶上甲车间生产的个数,甲、乙两个车间完成任务时,车间所用的时间多(3)当乙完成任务时,甲还有个没做,车间工作效率高,高%.27.(2015春•台安县期中)买笔记本的数量和钱数的关系如下表:数量(本) 1 2 3 4 5 6总价(元)1.53(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?28.(2015春•海安县校级期中)根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数1 2 3 4 5 …纸的张数25 50 75 100 125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10020030004005000…剩下的张数90080070006005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900 7506045036…纸的张数10 12 15 20 25 …(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.29.(2014•佛山)小丽用自制的橡皮筋来称量物体质量.她把测量的数据制作成的统计图和统计表.(皮筋最多可称量2kg质量)物体质量与皮筋伸长长度的统计表所称质量/g 皮筋伸长长度/cm0 0100 26450……a(a<2000)(1)根据统计图补充表格.(2)填空,我们可以发现与所称物体的质量成(选填“正比”或“反比”)(3)小丽用此皮筋称一袋苹果,皮筋长43厘米,求这袋苹果的质量.30.(2014春•利川市期末)某商场全部商品打八折出售(如图).原价10元的商品,现价8元,原价50元的商品,现价元.请你在左图中描出这个点.如果用x表示商品的原价,y表示商品的现价,那么y=,现价与原价成比例.。

[正比例和反比例练习题]正比例应用题练习题

[正比例和反比例练习题]正比例应用题练习题

[正比例和反比例练习题]正比例应用题练习题[正比例和反比例练习题]正比例应用题练习题篇一 : 正比例应用题练习题正比例应用题练习题一、判断。

,)1、工作总量一定,工作效率和工作时间成反比例。

2、图上距离和实际距离成正比例。

3、X和Y表示两种变化的相关联的量,同时5X,7Y,0,X和Y不成比例。

4、分数的大小一定,它的分子和分母成正比例。

5、在一定的距离内,车轮周长和它转动的圈数成反比例。

6、两种相关联的量,不成正比例,就成反比例。

二、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例,写在括号里。

1、装配一批电视机,每天装配台数和所需的天数。

2、正方形的边长和周长。

3、水池的容积一定,水管每小时注水量和所用时间。

4、房间面积一定,每块砖的面积和铺砖的块数。

5、在一定时间里,加工每个零件所用的时间和加工零件的个数。

6、在一定时间里,每小时加工零件的个数和加工零件的个数。

三、把下面的数量关系式补充完整:单价×,总价单产量×面积, ×时间,路程总价?,单价总产量?,单产量路程?,时间总价?,数量总产量?,面积路程?,速度工作效率×,工作总量图上距离?,比例尺工作总量?工作时间, 实际距离×,图上距离工作总量?工作效率, ?比例尺,实际距离三、用正比例的知识解答下列各题。

1、小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元,2、小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本,3、运一批煤,18次运了90吨,照这样计算,14次可以运多少吨,4、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤,5、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨,6、一种水管,40米重60千克。

[)现称得一捆水管重270千克,这捆水管共长多少米,7、一榨油厂用400千克芝麻可以榨油144千克。

正比例和反比例应用题

正比例和反比例应用题

正比例和反比例应用题1、淮光化肥厂要生产一批化肥,原计划每天生产432吨,25天完成;实际每天生产540吨,只要多少天就能完成?2、某工程大队计划30天挖水渠3750米,实际每天比原计划多挖25米,实际只用多少天完成?3、某工人制造一个机器零件所用的时间由40分钟减少到24分钟,原来需要8小时完成的任务,现在可以提前几小时完成?4、有一本书,每页16行,每行36个字,共有150页,现在要改为每页18行,每行24个字。

该书应有多少页?5、一项工程,25人每天工作8小时,36天可以完成;现在增加5人,限40天完成。

每天应工作几小时?6、一间教室用边长0.4米的正方形砖铺地,需要300块,如果改用边长为0.5米的正方形砖铺地,需要多少块?7、一对互相咬合的齿轮,主动轮有40个齿,从动轮有30个齿,如果主动轮每分钟转180转,从动轮每分钟转多少转?8、电视机厂试制一批新产品,原计划每天生产40台,30天完成。

实际每天比原计划多生产25%,实际多少天完成?9、农机厂的配件车间,生产每个配件的时间,由原来的7分钟减少了4.5分钟,原来每天生产140个配件,现在每天可生产多少个?10、电扇厂计划20天生产电扇1600台,生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?11、兄妹两人同时从甲、乙两地相向而行,兄走完全程需2小时,妹走完全程需3小时,两人相遇时,兄比妹多走2.4千米,求甲乙两地之间的距离。

12、某人从甲地去乙地,每小时行7里,又从乙地回到甲地,每小时走4里,已知去时比回来时少用4.5小时,求甲乙两地距离?13、两辆汽车从甲地开往乙地,它们速度的比是10∶9,如果第一辆汽车用2小时,第二辆汽车要用多少小时?14、某工厂每天烧煤1.2吨,比原计划每天少烧0.1吨。

这样原计划烧60天的煤,现在可以烧多少天?15、一个纺织厂的织布车间,以前每人可以看2台织布机,每班用15人,现在每人多看3台织布机,每班可以少用几人?16、某化肥厂生产一批化肥,每天生产9吨,需要30天完成。

(完整版)正反比例练习题

(完整版)正反比例练习题

正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。

11、分数的大小一定,它的分子和分母()比例。

12、全班人数一定,出勤人数和出勤率()比例。

13、正方体一个面的面积和它的表面积()比例。

14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。

15、圆的半径和面积()比例。

16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。

17、4X=8Y,X和Y()比例。

18、车轮的直径一定,所行的路程和车轮的转数()比例。

19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。

20、分数值一定,分子和分母()比例。

21、正方形的边长和面积()比例。

22、小麦的总重量一定,出粉率和面粉的重量()比例。

23、三角形的面积一定,底和高()比例。

24、要行一段路程,已行的和未行的路程()比例。

25、长方形的长一定,宽和周长()比例。

26、圆的半径和周长()比例。

27、总产量一定,单产量和数量()比例。

28、在同一时间里,杆高和影长()比例。

29、做一项工程,工作效率和工作时间()比例。

30、汽车从甲地到乙地,行车时间和速度()比例。

二、判断题,对的打√,错的打ⅹ。

1、速度和时间成反比例。

()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。

()4、正方形的边长和面积成正比例。

()5、出盐率一定,盐的重量和海水的重量成正比例。

()正反比例练习题(2)一、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。

()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。

正比例反比例练习试题

正比例反比例练习试题

正比例反比例练习题1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()二:选择题。

1.根据表格判断数量间的比例关系。

时间(小时) 2 3 5 7 8 ...路程(千米)100 150 250 350 400 ...时间与路程()A.成正比例.B.成反比例.3.不成比例.2.圆柱体底面积与高()A.成正比例.b.成反比例.c.不成比例圆柱体底面积300 200 150 120 100圆柱的高 2 3 4 5 6三.看图填空.1.根据规律判断比例关系,并填空。

X 2 3 5 () 10 ...y ()4.5 7.5 12 ()...X与Y成().A.正比例B.反比例.X 2 3 5 ()10 ...Y () 4 2.4 12 () ...X与Y()A.正比例.B.反比例3.选择填空.A除以B=C,当C一定时A和B();当A一定时B和C();当B一定时A和C()A.成正比例.b.成反比例。

四.判断对错.1.路程一定,速度和时间成正比例。

()2.一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

()3.花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

()4.平行四边形的面积不变,它的底与高成反比例。

()五、选择题。

1.长方形的________,它的长和面积成正比例。

A.周长一定。

B.宽一定。

C.面积一定。

2.圆柱体体积一定,______和高成反比例。

A.底面半径.B.底面积.C.表面积.六.应用题。

1.工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)2.一个晒盐场用500千克的海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)正比例和反比例”过关测试题一、对号入座1、35:()=20÷16==()%=()(填小数)2、因为X=2Y,所以X:Y=():(),X和Y成()比例。

正比例和反比例-常考题型练习

正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。

正比例和反比例应用题

正比例和反比例应用题

正比例和反比例应用题1、淮光化肥厂要生产一批化肥,原计划每天生产432吨,25天完成;实际每天生产540吨,只要多少天就能完成?2、某工程大队计划30天挖水渠3750米,实际每天比原计划多挖25米,实际只用多少天完成?3、某工人制造一个机器零件所用的时间由40分钟减少到24分钟,原来需要8小时完成的任务,现在可以提前几小时完成?4、有一本书,每页16行,每行36个字,共有150页,现在要改为每页18行,每行24个字。

该书应有多少页?5、一项工程,25人每天工作8小时,36天可以完成;现在增加5人,限40天完成。

每天应工作几小时?6、一间教室用边长米的正方形砖铺地,需要300块,如果改用边长为米的正方形砖铺地,需要多少块?7、一对互相咬合的齿轮,主动轮有40个齿,从动轮有30个齿,如果主动轮每分钟转180转,从动轮每分钟转多少转?8、电视机厂试制一批新产品,原计划每天生产40台,30天完成。

实际每天比原计划多生产25%,实际多少天完成?9、农机厂的配件车间,生产每个配件的时间,由原来的7分钟减少了分钟,原来每天生产140个配件,现在每天可生产多少个?10、电扇厂计划20天生产电扇1600台,生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?11、兄妹两人同时从甲、乙两地相向而行,兄走完全程需2小时,妹走完全程需3小时,两人相遇时,兄比妹多走千米,求甲乙两地之间的距离。

12、某人从甲地去乙地,每小时行7里,又从乙地回到甲地,每小时走4里,已知去时比回来时少用小时,求甲乙两地距离?13、两辆汽车从甲地开往乙地,它们速度的比是10∶9,如果第一辆汽车用2小时,第二辆汽车要用多少小时?14、某工厂每天烧煤吨,比原计划每天少烧吨。

这样原计划烧60天的煤,现在可以烧多少天?15、一个纺织厂的织布车间,以前每人可以看2台织布机,每班用15人,现在每人多看3台织布机,每班可以少用几人?16、某化肥厂生产一批化肥,每天生产9吨,需要30天完成。

六年级数学下第四单元正反比例、比例尺应用题

六年级数学下第四单元正反比例、比例尺应用题

精心整理六年级数学下第四单元正反比例、比例尺应用题1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果3辆同样4周约56、7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?8、小明读一本书,每天读12页,8天可以读完。

如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?11小时到12、吨,1390141516例尺。

(5分)17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。

如果每本页数减少20%,这批纸可以装订多少本?20、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?2122、40 2316 24比是2525、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。

甲乙两地相距多少千米?26、英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1:4000的平面图上,长和宽各应画多少厘米?(6分)27、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)28、同学们做操,每行站20人,正好站18行。

如果每行站24人,可以站多少行?(用比例方法解)294小30、千米,31用324033超产34、小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?35.甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?参考答案1.正比例20:320=42:X2.3.60:4.X=245.正比例3:7.5=X:19.5 X=7.86.正比例240:3=X:5 X=4007.正比例8.X=69.10.正比例225:3=X:5 X=375 11.反比例20+4=24(千米)20×12=24XX=1012.正比例13.14.X=3015.正比例3:1.2=X:4.8X=1216.4cm:5mm=40mm:5mm=8:117.26×1300000=33800000cm=338km18.19.20.四月份有30天5600:8=x:30X=210021.反比例90x=105×30X=3535-30=5(天)22.正比例23.甲:100÷5×2=40km/h乙:100÷5×3=60km/h25.20cm:10km=20:1000000=1:5000026.120m=12000cm80m=8000cm长:12000÷4000=3cm 宽:8000÷4000=2cm 27.反比例150x=20x828.29.30.X=3031.正比例100t=100000kg 500:15=100000:x精心整理X=300032.反比例40x=50x60X=7533.34.X=34x20000000=80000000=800km (800+500)÷200=6.5h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例与反比例练习一一.复习1.什么是正比例?用字母怎样表示?也就是怎样才成正比例?正比例,指两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。

2.什么是反比例,用字母怎样表示?也就是怎样才成反比例?两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:(一定)二.练习1.判断下面每题中的三个量成什么比例?(1)速度、路程和时间(2)工作总量、工作效率和工作时间(3)单价、总价和数量(4)平行四边形的面积、底和高(5)出示“练一练”第5题2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价=单价(一定),正比例(2)每捆练习本的本数相同,练习本的总本数与捆数=每捆练习本的本数(一定),正比例(3)总路程一定,已行的路程与未行的路程(是和关系,不是积或比值关系)(4)分数值一定,分数的分子与分母=比值(一定),正比例(5)长方形的长一定,它的面积和宽不成比例(6)长方体的体积一定,底面积和高底面积×高=体积(一定),反比例(7)一本书的总页数一定,看的天数与平均每天看的页数看的天数×平均每天看的页数=一本书的总页数(一定)反比例(8)圆的周长和直径=∏(一定)正比例(9)订阅《扬子晚报》,订的份数与总价=单价(一定)正比例(10)图上距离一定,实际距离与比例尺实际距离×比例尺=图上距离(一定),反比例(11)小麦的出粉率一定,小麦的质量与面粉的质量不成比例(12)六(1)班同学做操,每排站的人数与排数每排人数×排数=总人数(一定)(六(1)班人数一定)正比例与反比例练习题二一.判断题:1.圆的面积和圆的半径成正比例。

()2.圆的面积和圆的半径的平方成正比例。

()3.圆的面积和圆的周长的平方成正比例。

()4.正方形的面积和边长成正比例。

()5.正方形的周长和边长成正比例。

()6.长方形的面积一定时,长和宽成反比例。

()7.长方形的周长一定时,长和宽成反比例。

()8.三角形的面积一定时,底和高成反比例。

()9.梯形的面积一定时,上底和下底的和与高成反比例。

()10.圆的周长和圆的半径成正比例。

()二.选择题A.成正比例B.成反比例C.不成比例(2)圆柱体底面积与高( )。

(3) 年龄与身高( )三.看图表填空3.选择填空。

a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。

A. 成正比例 B. 成反比例四.判断对错(1)路程一定,速度和时间成正比例。

()(2)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

()(3)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

()(4)平行四边形的面积不变,它的底与高成反比例。

()五.选择题(1)长方形的_________________,它的长和面积成正比例。

A.周长一定B.宽一定C.面积一定(2)圆柱体体积一定,________________和高成反比例。

A.底面半径B.底面积C.表面积六.应用题(1)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)(2)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)正比例和反比例习题三一、判断。

1.一个因数不变,积与另一个因数成正比例。

()2.长方形的长一定,宽和面积成正比例。

()3.大米的总量一定,吃掉的和剩下的成反比例。

()4.圆的半径和周长成正比例。

()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例。

()7.铺地面积一定,方砖面积和所需块数成反比例。

()8.除数一定,被除数和商成正比例。

()二、选择。

1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量。

()A.成正比例 B.成反比例 C.不成比例2.和一定,加数和另一个加数.()A.成正比例 B.成反比例 C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是()A.汽车每次运货吨数一定,运货次数和运货总吨数。

B.汽车运货次数一定,每次运货的吨数和运货总吨数。

C.汽车运货总吨数一定,每次运货的吨数和运货的次数。

三、填空。

1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是()。

2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是()。

3.一房间铺地面积和用砖数如下表,根据要求填空。

(1)表中()和()是相关联的量,()随着()的变化而变化。

(2)表中第三组这两种量相对应的两个数的比是(),比值是();第五组这两种量相对应的两个数的比是(),比值是()。

(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数()。

4.练习本总价和练习本本数的比值是()。

当()一定时,()和()成()比例。

四.判断下面每题中的两种量是不是成比例,成什么比例,并说明理由。

1.平行四边形的高一定,它的底和面积。

2.被除数一定,商和除数。

3.小明的年龄和他的体重.4.天数一定,生产零件的总个数和每天生产零件的个数。

五.思考。

三种量的关系是:()×()=()1.如果()一定,那么()和()成()比例;2.如果()一定,那么()和()成()比例;3.如果()一定,那么()和()成()比例。

正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。

行数就少了。

生活中还有哪些成正比例的量?如: A.长方形的宽一定,面积和长成正比例。

B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。

C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

D.地砖的面积一定,教室地板面积和地砖块数成正比例。

2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。

根据计算,你发现了什么?相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三、两个量的比值一定。

相对应的点一定在这条直线上。

(作图)练习一、观下图表,回答问题:时间(时) 1 2 3 4 5 6 7米数22 44 66 88 11 132 154()和()是两种相关联的量,()随着()的变化而变化的,()一定,时间和米数是()的量。

作图:二、判断下面各题中的两种量是不是成正比例关系,并说理。

1、白糖单价一定,白糖数量和总价;2、稻谷的出米率一定,碾成大米重量和稻谷重量;3、一个人的身长和体重;4、长方形的长一定,宽和面积;5、长方形的面积一定,长和宽。

三、练习:1、请举出成正比例关系的量。

⑴、圆周长与圆半径;⑵、圆面积与圆半径;⑶、正方形的周长与边长。

2、说一说成正比例关系的量的变化特征。

正比例和反比例的意义二、成反比例的量成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母表示。

如果用字母X 和Y 表示两种相关联的量,用K 表示它们的乘积(一定),反比例关系的式子可以表示为X•Y=K(一定)2.生活中还有哪些成反比例的量?举例(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

反比例关系也可以用图像来表示。

表示两个量的点不在同一条直线上,点所连接起来是一条曲线。

图像特征不要求掌握。

4.小结。

说一说成反比例关系的量的变化特征。

例1、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。

这分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。

(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。

所以它们是两种相关联的量。

(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 × 12 = 240,30 × 8 = 240,40 × 6 = 240……而这个积就是这批零件的总个数。

通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间 = 零件的总个数(一定)。

所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。

点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。

相关文档
最新文档