完整word版,鲁教版初三数学知识点,推荐文档

合集下载

初中数学知识点大全(完整版)

初中数学知识点大全(完整版)

第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

a-b=a+(-b)1.4有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

山东初三数学知识点.doc

山东初三数学知识点.doc

山东初三数学知识点.doc
一. 代数运算
1.整式的加减乘除
2.一次方程的解法
4.变量的代换
二. 函数
1.函数的概念
2.函数的图象
3.函数的特征
4.函数的运算
5.解析式
6.函数与方程
三.几何
1.相似
2.全等
3.三角形
4.四边形
5.圆
6.解析几何
四.数学语言和思想方法
1.数学语言
2.解决问题的思想方法
五.概率论
1.随机事件
2.频率与概率
3.概率的运算
4.区间估计
六.数列
1.数列的定义
2.等差数列
4.数列的通项公式
七.平面向量
2.平面向量的加减与数乘
3.向量坐标及其计算
4.向量的模与方向角
5.两个向量的数量积
6.向量的垂直判定
八.三角函数
1.弧度制
2.定义及其性质
3.基本公式
九.立体几何
1.空间几何基本概念
2.三视图
3.点、直线、平面、多面体
4.相交线
5.截规
6.平行线
7.球
十.导数
6.高阶导数
7.应用
十一.不等式
1.实数的大小比较
2.不等式的基本性质
5.绝对值不等式
8.拐点法
十二.微积分
3.导数的作用
7.微分
8.微分中值定理
9.极值
10.函数图形及其演变
12.用微积分解决实际问题。

九年级数学知识点鲁教版

九年级数学知识点鲁教版

九年级数学知识点鲁教版数学作为一门重要学科,对于学生的综合能力的培养起到了至关重要的作用。

鲁教版作为一套备受广大师生喜爱的教材,为学生提供了全面、系统的数学知识点。

本文将围绕九年级数学知识点鲁教版展开讨论。

首先,我们来聊聊九年级数学知识点中的代数部分。

代数是数学的重要组成部分,也是九年级数学的一个重点。

在九年级代数的学习中,师生们将接触到线性方程组的解法、二次函数及其图像、函数的概念及性质等内容。

通过这些学习,学生可以了解到代数在解决实际问题中的应用,培养了学生的逻辑思维能力和问题解决能力。

在几何部分的学习中,九年级数学知识点鲁教版给予了学生全面的指导。

学生将学习到直角三角形、相似三角形的性质,理解圆与圆的位置关系,掌握判断平行线及其性质等内容。

通过几何的学习,学生可以培养空间想象力、观察能力和几何推理能力,进而解决实际生活中的几何问题。

九年级的数学还涉及到一些概率与统计的知识点。

学生将学会通过统计数据来描述和分析问题,了解概率的基本概念和计算方法。

通过这些学习,学生不仅可以培养独立思考和分析问题的能力,还能够运用概率统计方法解决实际问题。

除了以上几个方面的知识点,九年级数学知识点鲁教版还包括了实数、函数的图像与性质、平面向量等内容。

这些知识点都对学生的数学语言表达、数学逻辑思维和问题解决能力有着很好的锻炼效果。

九年级数学知识点鲁教版注重培养学生的实际应用能力。

在课堂教学中,老师会通过一些生动有趣的例子和问题,引导学生进行思考和解决实际问题。

这样的教学方式可以激发学生的学习兴趣,提高学习效果。

此外,鲁教版九年级数学还提供了大量的习题和练习册。

这些习题不仅具有难度适中、题型齐全,而且注重培养学生的实际应用能力和解决问题的能力。

学生可以通过不断练习,提高数学思维能力,巩固所学知识。

当然,鲁教版九年级数学知识点并不是唯一的选择。

学生可以根据自己的学习需要选择适合自己的教材。

重要的是,学生要保持良好的学习习惯,进行有效的学习,并善于思考和应用所学的知识。

(word完整版)初中数学公式大全(整理打印版),推荐文档

(word完整版)初中数学公式大全(整理打印版),推荐文档

初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

(完整word版)初中数学知识点归纳总结(精华版)

(完整word版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。

第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

山东初三数学知识点.docx

山东初三数学知识点.docx

山东初三数学知识点:笫一章、图形与证明1」等腰三角形的性质和判定:定理:等腰三角形的两个底角相等(简称“等边对等角”)定理:等腰三处形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)定理:如果一个三角形的两个角相等,那么这两个角所对的过也和等(简称“等角対等边”)推论:等边三角形的每个内角都等于6()。

3个角都相等的三处形是等边三角形1.2直角三角形全等的判定定理:斜边和一条直角过对应相等的两个直角三角形全等(简写为“HL”)定理:角平分线上的点到这个角的两边的距离相等在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

1.3平行四边形、矩形、菱形、正方形的性质和判定定理:平行四边形的对边相等平行四边形的对角相等平行四边形的对角线互相平分定理:矩形的4个角都是直角短形的对角线相等定理:菱形的4条边都相等菱形的対角线互相垂直,并且每一条対角线平分一组对角注:菱形的面积S二底•高二丄对角线•对角线2正方形具冇矩形和菱形的所冇性质定理:一组对边平行且相等的四边形是平行四边形对角线互相平分的四边形是平行四边形两组对边分别相等的四边形是平行四边形反证法:先提出与结论札I反的假设,然示由这个“假设”岀发推导出矛盾的结果,从而证明了命题的结论一定成立。

定理:对角线相等的平行四边形是矩形有3个角是直角的四边形是矩形定理:对角线互相垂直的平行四边形是菱形4边都相等的四边形是菱形推论:有--组邻边相等的矩形是正方形有一个角是直角的菱形是正方形在证明四边形为正方形时,可以说明它既是矩形又是菱形1.4等腰梯形的性质和判定定理:在同一底上的两个角相等的梯形是等腰梯形定理:等腰梯形同一底上的两底角相等等腰梯形的对角线相等1.5中位线定理:三角形的屮位线平行于第三边,并且等于第三边的一半定理:梯形的屮位线平行于两底,并且等于两底和的一半注:梯形的面积公式:S=-(上底+下底)•高二中位线•高2注:关于屮点四边形:原四边形ABCD 屮点四边形EFGH任意平行四边形AC=BD菱形AC 丄BD矩形AC=BD、AC丄BD正方形第二章、数据的离散程度2.1极差计算公式:极差=最大值一最小值在日常生活中,极差常用来描述一纽数据的离散程度2.2方差与标准差方差计算公式:标准差:方差的算术平方根,即5 = 7?方差和标准差也是用來描述一组数据的离散程度,即方差或标准差越小,数据的波动越小,这组数据越稳定。

(完整版)初中数学知识点归纳总结(版)

(完整版)初中数学知识点归纳总结(版)

(完整版)初中数学知识点归纳总结(版) 第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。

第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

(完整word版)鲁教版初三数学知识点(汇总),推荐文档

(完整word版)鲁教版初三数学知识点(汇总),推荐文档

鲁教版初三数学知识点编辑人:鲁东大学08级经济系 李建鹏第一章 分式一、分式1.分式的概念:如果整式A 除以整式B, 可以表示成BA 的形式,且除式B 中含有字母,那么称式子BA 为分式。

其中, A 叫分式的分子,B 叫分式的分母。

注意:①判断一个代数式是否为分式,不能将它变形,不能约分后去判断,即使它约分后是整式也不能说它就是整式,约分之前是分式这个式子就是分式。

如:x 2/x 是分式,虽然约分之后等于x 是整式,但约分前是分式。

②π是常数,所以a/π不是分式而是整式。

2.有理式:整式和分式统称有理式。

(整式的分母中不含有字母)3.关于分式的几点说明:(1)分式的分母中必须含有未知数;(2)分式是两个整式相除的商式,对任意一个分式,分母都不为零;(3)分数线有除号和括号的作用,如:dc b a -+表示(a +b )÷(c -d ); (4)“分式的值为零”包含两层意思:一是分式有意义(分母≠0),二是分子的值为零,不要误解为“只要分子的值为零,分式的值就是零”。

4.一般的,对分式A /B 都有:①分式有意义 B ≠0;②分式无意义 B=0;③分式的值为0A=0且B ≠0;④分式的值大于0分子分母同号;⑤分式的值小于0分子分母异号。

5.基本性质:分式的分子和分母同乘以(或除以)同一个不为0的整式,分式值不变。

二、分式的乘除法1.分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母; 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

分式的乘方是把分式的分子、分母各自乘方,再把所得的幂相除。

2.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

注意:①当分式的分子分母都是单项式或者是几个因式乘积的形式时,直接约分; ②分式的分子和分母都是多项式时,将分子和分母分解因式再约分。

3.最简分式: 一个分式的分子和分母没有公因式时,这个分式称为最简分式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版初三数学知识点编辑人:鲁东大学08级经济系 李建鹏第一章 分式一、分式1.分式的概念:如果整式A 除以整式B, 可以表示成BA 的形式,且除式B 中含有字母,那么称式子BA 为分式。

其中, A 叫分式的分子,B 叫分式的分母。

注意:①判断一个代数式是否为分式,不能将它变形,不能约分后去判断,即使它约分后是整式也不能说它就是整式,约分之前是分式这个式子就是分式。

如:x 2/x 是分式,虽然约分之后等于x 是整式,但约分前是分式。

②π是常数,所以a/π不是分式而是整式。

2.有理式:整式和分式统称有理式。

(整式的分母中不含有字母)3.关于分式的几点说明:(1)分式的分母中必须含有未知数;(2)分式是两个整式相除的商式,对任意一个分式,分母都不为零;(3)分数线有除号和括号的作用,如:dc b a -+表示(a +b )÷(c -d ); (4)“分式的值为零”包含两层意思:一是分式有意义(分母≠0),二是分子的值为零,不要误解为“只要分子的值为零,分式的值就是零”。

4.一般的,对分式A /B 都有:①分式有意义 B ≠0;②分式无意义 B=0;③分式的值为0A=0且B ≠0;④分式的值大于0分子分母同号;⑤分式的值小于0分子分母异号。

5.基本性质:分式的分子和分母同乘以(或除以)同一个不为0的整式,分式值不变。

二、分式的乘除法1.分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母; 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

分式的乘方是把分式的分子、分母各自乘方,再把所得的幂相除。

2.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

注意:①当分式的分子分母都是单项式或者是几个因式乘积的形式时,直接约分; ②分式的分子和分母都是多项式时,将分子和分母分解因式再约分。

3.最简分式: 一个分式的分子和分母没有公因式时,这个分式称为最简分式。

约分时,一般要将一个分式化为最简分式。

三、分式的加减法1.通分:利用分式的基本性质 ,把异分母的分式化为同分分母的过程。

通分原则:异分母通分时, 通常取各分母的最简公分母作为它们的共同分母。

通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母,同时各分式按照分母所扩大的倍数,相应扩大各自的分子。

最简公分母的确定方法:系数取各因式系数的最小公倍数、相同字母的最高次幂及 单独字母的幂的乘积。

2.法则:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先通分,化 为同分母的分式,再按同分母分式的加减法法则进行计算。

四、分式方程1.概念:分母中含有未知数的方程叫做分式方程。

2.分式方程的解法:①去分母(方程两边同乘以最简公分母,将分式方程化为整式程若遇到互为相反数时,不要忘了改变符号);②按解整式方程的步骤求出未知数的值;③验根。

3.分式方程的增根:在方程变形时,有时会产生不适合原方程的根即代入方程后分母的值为0的根,叫做原方程的增根。

例题:m 取 时,方程323-=--x m x x 会产生增根(或说无解)。

(思路)在这里增根就是x=3,但不能直接带入方程求m,所以要先去分母再将x=3带入求m第二章 相似图形一、线段的比1.概念:在同一单位长度下,两条线段的长度的比叫这两条线段的比。

在a:b 或a b中,a 叫比例的前项,b 叫比例的后项。

2.注意:①若a:b=k,说明a 是b 的k 倍;②两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致; ③两条线段的比值是一个没有单位的正数;④除a=b 外,a:b ≠b:a , a/b 与b/a 互为倒数。

二、比例线段1.概念:四条线段a,b,c,d 中,如果 a 与b 的比等于c 与d 的比, 即a:b=c:d (或a/b=c/d), 那么这四条线段 a,b,c,d 叫做成比例线段,简称比例线段。

a 、b 、c 、d 叫比例的项,其中,a 、d 叫外项,b 、c 叫内项。

2.比例中项:当a:b=b:c 时,称b 为a 与c 的比例中项。

(b 2=ac )3.性质:①内项之积等于外项之积 若 a/b=c/d 则 ad=bc②合比性质 若 a/b=c/d 则 (a+b)/b=(c+d)/d③分比性质 若 a/b=c/d 则 (a-b)/b=(c-d)/d④等比性质 若 a/b=c/d=…=m/n(b+d+…+n≠0),则 (a+c+…+m)/(b+d+…+n)=a/b ⑤合分比性质 若 a/b=c/d 则 (a+b)/(a-b)=(c+d)/(c-d)⑥更比性质 若 a/b=c/d 则 c/a=d/b(当然也就有a/c=b/d)⑦反比性质 若 a/b=c/d 则 b/a=d/c三、形状相同的图形例如:两个半径不相等的圆;所有的等边三角形;所有的正方形;所有的正六边形。

一个图形各点的横坐标、纵坐标都乘以或除以同一个数,则连接所得到点的图形与原图形形状相同。

四、相似三角形1.概念:对应角相等,对应边成比例的两个三角形,叫做相似三角形(相似符号为“∽”)。

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

相似比:相似三角形对应边的比叫做相似比。

2.全等一定相似,相似不一定全等(全等△是相似△中相似比为1时的特殊情况)五、探索三角形相似的条件1.定义判定:对应角相等、对应边成比例2.判定1:两个角对应相等判定2:两边对应成比例且夹角相等判定3:三边对应成比例 Rt △相似的判定:(除上述三个外)斜边与一直角边对应成比例的两直角三角形相似。

3.三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

4.(补充)射影定理: 在Rt △ABC 中,∠ACB=900,CD 是斜边AB 上的高,则AC 2=AD ·AB BC 2=BD ·AB CD 2=AD ·BD5.(补充)三角形的重心①概念:三角形三条中线的交点叫做三角形的重心; ②三角形的重心与顶点的距离等于它与对边中点的距离的两倍。

ABC DE D E O B C六、相似三角形的性质1.相似三角形的三个对应角相等,三边对应成比例;2.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比,3.相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方。

七、测量旗杆的高度(略)八、相似多边形1.概念:对应角相等、对应边成比例的两个多边形叫做相似多边形。

2.性质:性质1:相似多边形的对应角相等,对应边成比例;性质2:相似多边形的周长之比等于相似比;面积之比等于相似比的平方。

九、位似图形1.概念:如果两图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比。

2.性质:位似图形上的任意一对对应点到位似中心的距离之比等于位似比。

3.探索:①利用位似可以把一个图形放大或缩小;②对应点连线都交于位似中心,对应线段平行或在一条直线上;③在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.。

第三章证明(一)一、定义与命题1.定义的概念:能清楚地规定某一名称或术语的句子叫做该名称或术语的定义。

2.命题的概念:一般地,判断一件事情的句子,叫做命题(命题必须是对某事作出判断)。

3.命题的特征:每个命题都是由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写成“如果……,那么……”的形式其中,“如果”引出的部分是条件,“那么”引出的部分是结论。

4.真假命题:如果条件成立,那么结论成立(正确的命题),像这样的命题叫做真命题;条件成立时,不能保证结论总是正确的,也就是说结论不成立(错误的命题),这样的命题叫做假命题。

二、证明的必要性三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理。

2.定理:通过推理得到证实的真命题叫做定理,可以作为判断其它命题真假的依据。

本教科书选用如下命题作为公理:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单说成:同位角相等,两直线平行。

②两条平行线被第三条直线所截,同位角相等。

也可以简单说成:两直线平行,同位角相等。

③两边及其夹角对应相等的两个三角形全等。

④两角及其夹边对应相等的两个三角形全等。

⑤三边对应相等的两个三角形全等。

⑥全等三角形的对应边相等,对应角相等。

此外,等式的有关性质和不等式的有关性质都可以看作公理。

例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换”。

四、平行线的判定定理五、平行线的性质定理把一个命题的条件和结论交换后,就构成了一个新的命题。

如果把原来的命题叫做原命题,那么这个新的命题就叫做原命题的逆命题。

一个命题是真命题,它的逆命题不一定是真命题。

六、三角形内角和定理三角形三个内角之和为1800 ;直角三角形的两个锐角互余。

关于辅助线:①辅助线是为了证明需要在原图上添画的线(辅助线通常画成虚线);②它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用;③添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定,平时做题时要注意总结。

第四章数据的收集与处理一、普查和抽样调查1.普查:为了一定的目的而考察对象进行的全面调查,称为普查。

其中,所要考察的对象的全体称为总体,而组成总体的每一个考察对象称为个体。

普查的优点及缺陷:可以直接获得总体情况,但总体中个体数目很多时,工作量大,无法一一考察;有时受客观条件的限制,无法对个体一一考查;有时调查具有破坏性,不允许对个体一一考查。

2.抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本,样本中的个体的数目称为样本容量。

二、数据的收集议一议: 抽样调查时应注意什么?答:抽样调查时要注意样本的代表性、广泛性和真实性:即被调查的对象不得太少,被调查对象应是随意抽取的,调查数据应是真实的。

抽样调查的可行性:1.抽样调查只考查总体的一部分,因此其优点是调查范围小,节省时间、人力、物力和财力;2.但其调查结果往往不如普查得到的结果准确。

相关文档
最新文档