智慧农业物联网平台建设项目建议书
农业物联网项目书

农业物联网建设项目方案书第一章系统概述§1.1物联网平台的总体思路应用互联网、云计算、大数据、物联网、移动互联技术、传感器技术、通信技术等同现代农业跨界相合打造的综合性服务平台。
发挥农业信息化示范引领作用,推动农业标准化精准化管理,为放心食品建设提供技术支撑,为农民提供实时便捷准确的农业服务,促进农业信息互联互通信息共享。
通过建立物联网大的数据共享中心(农业智能云服务平台);数据可视化分析决策中心;各基地物联网子基础数据采集和监控点;区、乡镇、村三级农业的综合应用中心,实现本区的农业提档升级、在农业生产、加工、管理、监管和销售实现全链条无缝的处理,真正实现生态农业和互联网+农业的落地。
根据应用情况分为下列子平台,各子平台会有交叉和共享又各自独立,实现物联网平台的有效管理和应用。
1、大数据展示平台农业大数据可视化平台是面向农业产业投资者、决策者、经营者及农业科研人员的专业信息终端。
借助公司在“互联网+农业”领域长期积累,数据资源涵盖国内所应用物联网设备区域种植产区现状、智能农业设备状态等,对农业生产数据有深入的刻画和描述,提供数据检索、查询等丰富功能。
此平台可以通过多种维度的图案展示各数据直接的关联和对比,为相应决策者提供直接结论。
建立“用数据说话、用数据决策、用数据管理、用数据创新”的管理机制,实现基于数据的科学决策。
2、园区物联网平台建立一个科技水平高、综合生产能力强、农产品质量好,具有较强均衡的供货能力的“互联网+”绿色有机农产品基地,通过建立12块拼接屏支持的大屏幕展示中心,可以保存精准农业、监管、科技服务的数据,并提供对市级平台的互联互通。
3、精准农业生产物联网平台通过物联网传感器可以对大地、棚室等进行指导、管理和维护。
对大田对种植基地土壤成分、光照强度、作物、历年农事活动、历年生产管理、历年销售情况、种植流程等信息进行数字化管理,对病虫害、营养不良、环境突变等异常情况进行及时处理。
智慧农业 项目策划书3篇

智慧农业项目策划书3篇篇一《智慧农业项目策划书》一、项目背景随着科技的不断发展,农业领域也迎来了新的变革机遇。
传统农业面临着资源浪费、效率低下、信息不对称等诸多问题。
智慧农业利用现代信息技术,如物联网、大数据、等,能够实现农业生产的精准化、智能化和高效化。
本项目旨在打造一个具有创新性和示范性的智慧农业体系,推动农业产业的升级和可持续发展。
二、项目目标1. 建立智能化的农业生产管理系统,实现对农作物生长环境和生产过程的实时监测与精准调控。
2. 提高农业生产效率和农产品质量,降低生产成本和资源浪费。
3. 搭建农产品溯源体系,保障农产品的安全与品质。
4. 促进农业与互联网的深度融合,拓展农产品销售渠道。
5. 培养一批具备智慧农业技术应用能力的专业人才。
三、项目内容1. 农业物联网建设部署传感器网络,实时采集土壤湿度、温度、养分含量,空气温湿度、光照强度等环境参数。
安装智能灌溉、施肥、病虫害监测等设备,实现自动化控制。
2. 大数据分析平台建立农业大数据中心,收集和整合各类农业数据。
通过数据分析挖掘,为农业生产决策提供科学依据。
3. 智能化生产管理系统开发农业生产管理软件,实现种植计划制定、农事安排、库存管理等功能。
利用移动终端,方便农民随时随地进行生产管理操作。
4. 农产品溯源系统为农产品赋予唯一的身份标识,记录生产、加工、运输等环节的信息。
消费者可通过扫码查询农产品的来源和质量信息。
5. 电商平台建设搭建农产品电商平台,拓展农产品销售渠道。
开展线上营销活动,提高农产品的知名度和销售量。
四、项目实施步骤1. 第一阶段:项目调研与规划进行市场调研,了解智慧农业的发展现状和需求。
制定项目总体方案和实施计划。
2. 第二阶段:基础设施建设完成农业物联网设备的安装与调试。
建立大数据中心和智能化生产管理系统。
3. 第三阶段:系统集成与优化将各子系统进行集成,确保数据的互联互通。
对系统进行优化和完善,提高系统的稳定性和可靠性。
智慧农业物联网平台建设方案

引入人工智能算法和模型,对农 业数据进行智能分析和预测,为
农业生产提供科学决策支持。
数据采集、传输和处理模块设计
01
02
03
数据采集模块
通过传感器、智能设备等 采集农业现场的各种数据 ,如温度、湿度、光照、 土壤养分等。
数据传输模块
利用物联网通信技术将采 集到的数据实时传输到平 台服务器进行处理和分析 。
平台测试、维护与
05
升级计划
测试方法、流程和评价标准
1 2 3
测试方法
包括黑盒测试、白盒测试、性能测试、安全测试 等多种方法,确保平台功能完善、稳定可靠。
测试流程
制定详细的测试计划,明确测试目标、测试范围 、测试人员及时间节点,按照计划执行测试并及 时反馈问题。
评价标准
制定全面的评价指标,包括功能完整性、系统稳 定性、性能表现等,确保平台达到预期效果。
集成智能控制算法,实现自动 化、智能化的农业设备控制。
提供数据分析和报表生成功能 ,帮助用户更好地了解农业生
产情况。
移动端应用开发及界面设计
开发适用于Android和iOS平台 的移动端应用,方便用户随时随 地查看和管理农业物联网数据。
设计简洁、直观的用户界面,提 供良好的用户体验。
实现与上位机软件的实时数据同 步和远程控制功能,确保用户能 够及时了解和控制农业生产情况
。
第三方服务接入和集成策略
提供标准的API接口和SDK,方便第 三方服务接入和集成。
与电商平台、物流服务商等合作,实 现农产品在线销售和物流配送等功能 ,帮助用户拓展销售渠道。
集成天气预报、农业知识库等第三方 服务,为用户提供更全面的农业生产 支持。
定期对第三方服务进行评估和优化, 确保服务质量和用户体验。
智能农业与农业科技创新项目建议书

智能农业与农业科技创新项目建议书一、项目背景和目标随着人口的不断增长和生活水平的提高,对于农产品的需求也在逐年增加。
然而,传统的农业生产模式面临着人力成本高、效率低下、资源浪费等问题。
智能农业,即将先进的科技应用于农业生产中,可以有效地解决这些问题,并推动农业的可持续发展。
本项目的目标是推动农业科技创新,加速智能农业的发展,提高农产品的品质和产量,促进农民增收。
二、项目内容和计划1. 引入物联网技术物联网技术是智能农业的核心之一,通过将传感器、设备与云计算连接,实现对农田环境、作物生长等数据的实时监测和分析。
我们计划引入物联网技术,建设一个智能农业监控平台,以实现对农田的智能化管理。
这将有助于及时掌握土壤湿度、温度、光照等指标的变化情况,提高作物生长的质量和产量。
2. 推广精准农业技术精准农业技术是智能农业的重要组成部分,通过利用卫星导航、地理信息系统等技术,将农田细分为不同的管理单元,实现对每个单元的精确施肥、灌溉等操作。
我们计划推广精准农业技术,为农民提供农田管理的指导,以降低农业生产的成本,并提高农产品的质量。
3. 开展农业大数据分析研究农业大数据是智能农业的重要基础,通过对大量农业数据进行收集和分析,可以提供农业生产的决策支持。
我们计划开展农业大数据分析研究,建设一个农业数据平台,整合各类农业数据资源,并通过人工智能技术进行分析和挖掘,为农民提供农业生产的科学指导和预测。
4. 培训农民科技创新意识为了推动农业科技创新的实施,我们计划开展农民科技创新意识的培训工作。
我们将开展技术培训班、科技创新大赛等活动,鼓励农民利用智能农业技术进行创新实践,并向他们提供技术支持和经验交流的平台。
三、项目预算和资金筹措本项目的总预算为XXX万元,资金筹措计划如下:1. 政府拨款:XXX万元;2. 农业科技基金:XXX万元;3. 捐赠和赞助:XXX万元;4. 自筹资金:XXX万元。
四、项目效益和可行性分析通过引入智能农业技术,本项目有望实现以下效益:1. 提高农产品的品质和产量:通过精确的管理和科学的决策支持,可以提高农产品的质量和产量,满足消费者对高品质农产品的需求。
智慧农业物联网系统建设方案

03
自动控制:根 据监测数据, 自动控制灌溉、 施肥、通风等 设备,实现精 准作业
04
远程管理:通 过手机、电脑 等终端设备, 实现远程监控 和管理,提高 农业生产效率
农业生产决策支持
实时监测:通过传感器实时监测农田环境,如土壤湿 度、温度、光照等
数据分析:利用大数据和人工智能技术,对监测数据 进行分析,为农业生产提供科学依据
产成本。
提高农产品质 量:通过物联 网技术,实现 农业生产的精 细化管理,提 高农产品质量。
04
促进农业绿色 发展:通过物 联网技术,实 现农业生产的 精细化管理, 促进农业绿色
发展。
建设方案的适用范围
04
适用于各种农业 生产技术水平
03
适用于各种农业 生产环节
02
适用于各种类型 的农业生产环境
01
通过大数据分析,为农业生产提供科学决策支持, 提高农业生产效率和农产品质量。
智慧农业物联网系统可以应用于农业生产的各个 环节,包括种植、养殖、加工、物流等。
建设方案的目的和意义
01
提高农业生产 效率:通过物 联网技术,实 现农业生产的 自动化、智能 化,提高农业
生产效率。
02
03
降低生产成本: 通过物联网技 术,实现农业 生产的精细化 管理,降低生
技术难题:物联网 技术尚未成熟,存
在安全隐患
成本问题:建设成 本高,投资回报周
期长
推广难度:农民对 物联网技术认知不
足,推广难度大
政策支持:政策支 持力度不够,制约
行业发展
未来发展趋势
技术进步:物联网、大数据、人工智 能等技术在农业领域的应用将更加广 泛和深入
产业融合:农业与其他产业的融合将 更加紧密,如农业与旅游业、健康产 业等
智能农业与农业物联网项目建议书

智能农业与农业物联网项目建议书尊敬的决策者:我谨以本建议书的形式,诚挚地向您推荐智能农业与农业物联网项目。
作为一种新兴技术,智能农业结合了农业科技和信息技术,旨在实现农业生产的智能化、数字化和可持续发展。
在当前农业发展的背景下,智能农业与农业物联网项目具备重要的发展前景和巨大的市场潜力。
一、项目背景和意义智能农业是解决传统农业面临的资源缺乏、劳动力短缺、环境污染等问题的有效途径。
利用物联网技术,实现农业生产全链条的监控和管理,提高农作物的产量和质量,优化农业资源利用效率,降低农药、化肥等资源的使用量,保护农业生态环境。
期望通过该项目的实施,实现农业生产效益的最大化和农民收入的提升。
二、项目目标本项目旨在建设智能农业与农业物联网平台,实现以下目标:1. 实时监测和追踪农作物的生长情况、病虫害情况以及环境因素,为农民提供精准的决策支持;2. 利用大数据分析和人工智能技术,优化农业生产流程,提高农作物的产量和质量;3. 推广智能农业技术和经验,提高农民的科技水平和生产能力;4. 建立农产品质量追溯系统,保障农产品的安全和有机认证。
三、项目实施方案为了实现以上目标,我们提出以下实施方案:1. 建设农业物联网平台建立物联网感知网络,采集农作物生长环境的数据,包括土壤湿度、温度、光照等信息。
利用物联网技术实现农机、设施等智能农业设备的联网,实现对农业生产全流程的监控和控制。
2. 数据分析和决策支持通过数据采集和分析,利用大数据技术和人工智能算法,对农业生产过程进行预测和优化。
结合气象、土壤等外部环境数据,为农民提供准确的生产决策和管理建议。
3. 农民培训和支持开展智能农业技术培训,提高农民对智能农业技术的了解和运用能力。
建立农业技术示范基地,帮助农民实施智能农业技术并共享经验。
4. 建立质量追溯系统利用物联网技术和区块链技术,建立农产品质量追溯系统,实现对农产品生产、加工、运输等全过程的可追溯和验证。
保障农产品质量和安全,提高消费者的信任度。
智慧农业项目策划书3篇

智慧农业项目策划书3篇篇一《智慧农业项目策划书》一、项目概述智慧农业是一种集互联网、物联网、等技术于一体的现代农业模式,旨在提高农业生产效率、降低成本、保障农产品质量安全。
本项目拟通过建设智慧农业示范园区,实现农业生产的智能化、自动化和可视化管理。
二、项目目标1. 提高农业生产效率,降低劳动力成本。
2. 实现农业生产的精准化管理,提高农产品质量。
3. 建立农产品质量追溯体系,保障消费者权益。
4. 促进农业产业升级,推动农业可持续发展。
三、项目内容1. 智慧农业园区建设(1)建设智能化温室,配备环境监测系统、灌溉系统、施肥系统等,实现自动化控制。
(2)建设物联网传感器网络,实现对土壤、气象、作物生长等数据的实时监测。
(3)建设农业大数据平台,对监测数据进行分析,为农业生产提供决策支持。
2. 农产品质量追溯体系建设(1)建立农产品质量追溯标准体系,制定追溯流程和规范。
(2)在农产品生产、加工、运输等环节进行信息采集和记录,实现全程追溯。
(3)建立追溯信息查询平台,方便消费者查询农产品质量信息。
3. 农业科技创新与人才培养(1)开展农业科技创新研究,推广应用新技术、新装备。
(2)加强与高校、科研机构的合作,建立产学研合作机制。
(3)培养一批懂技术、会管理的农业专业人才,提高农业从业者素质。
四、项目实施计划1. 第一阶段:完成项目选址、规划设计等前期工作。
2. 第二阶段:建设智慧农业园区,包括智能化温室、物联网传感器网络等设施建设。
3. 第三阶段:安装农业大数据平台,开展农产品质量追溯体系建设。
4. 第四阶段:进行农业科技创新研究,培养农业专业人才。
五、项目预期效益2. 社会效益:项目的实施将推动农业产业升级,促进农业可持续发展,为农村经济发展做出贡献。
3. 生态效益:项目将减少农业面源污染,保护生态环境。
六、项目风险及应对措施1. 技术风险:项目涉及到物联网、大数据等新技术,存在技术不成熟、设备不稳定等风险。
智慧农业园区物联网平台建设方案

智慧农业园区物联网平台建设方案第1章项目概述 (4)1.1 项目背景 (4)1.2 建设目标 (4)1.3 建设内容 (4)第2章物联网技术概述 (5)2.1 物联网技术发展现状 (5)2.1.1 核心技术 (5)2.1.2 产业发展 (5)2.2 物联网技术在农业领域的应用 (5)2.2.1 农业生产智能化 (5)2.2.2 农业资源管理高效化 (6)2.2.3 农业灾害预警与防控 (6)2.2.4 农产品质量安全追溯 (6)2.3 智慧农业园区物联网平台架构 (6)2.3.1 感知层 (6)2.3.2 传输层 (6)2.3.3 平台层 (6)2.3.4 应用层 (6)第3章感知层设计 (6)3.1 传感器选型 (6)3.1.1 土壤参数传感器 (7)3.1.2 气象参数传感器 (7)3.1.3 水质参数传感器 (7)3.1.4 生物信息传感器 (7)3.2 数据采集与传输 (7)3.2.1 数据采集 (7)3.2.2 数据传输 (7)3.3 数据处理与分析 (8)3.3.1 数据处理 (8)3.3.2 数据分析 (8)第4章网络层设计 (8)4.1 网络架构 (8)4.1.1 总体架构 (8)4.1.2 感知层网络 (8)4.1.3 传输层网络 (9)4.1.4 平台层网络 (9)4.2 通信协议 (9)4.2.1 感知层通信协议 (9)4.2.2 传输层通信协议 (9)4.2.3 平台层通信协议 (9)4.3 网络安全 (9)4.3.2 安全防护措施 (10)第5章平台层设计 (10)5.1 数据处理与分析 (10)5.1.1 数据采集与预处理 (10)5.1.2 数据传输与汇聚 (10)5.1.3 数据分析与挖掘 (10)5.1.4 智能决策支持 (10)5.2 数据存储与管理 (10)5.2.1 数据存储架构 (10)5.2.2 数据备份与恢复 (11)5.2.3 数据质量管理 (11)5.3 应用服务接口 (11)5.3.1 数据查询接口 (11)5.3.2 数据展示接口 (11)5.3.3 控制指令接口 (11)5.3.4 业务协同接口 (11)5.3.5 安全认证接口 (11)第6章应用层设计 (11)6.1 农业生产管理 (11)6.1.1 作物生长监控 (11)6.1.2 病虫害防治 (11)6.1.3 水肥一体化管理 (12)6.2 农业环境监测 (12)6.2.1 土壤监测 (12)6.2.2 气象监测 (12)6.2.3 视频监控 (12)6.3 农业资源管理 (12)6.3.1 农业机械管理 (12)6.3.2 农产品追溯管理 (12)6.3.3 农业数据管理与分析 (12)第7章服务平台建设 (12)7.1 农业大数据平台 (12)7.1.1 平台架构 (12)7.1.2 数据采集与处理 (13)7.1.3 数据存储与管理 (13)7.1.4 数据服务 (13)7.2 农业物联网服务平台 (13)7.2.1 平台架构 (13)7.2.2 感知层 (13)7.2.3 网络层 (13)7.2.4 应用层 (13)7.3 农业智能化决策支持系统 (13)7.3.1 系统架构 (13)7.3.3 模型库与知识库 (14)7.3.4 决策支持模块 (14)第8章系统集成与实施 (14)8.1 系统集成 (14)8.1.1 集成原则 (14)8.1.2 集成内容 (14)8.1.3 集成技术 (14)8.2 系统部署 (15)8.2.1 部署策略 (15)8.2.2 部署步骤 (15)8.3 系统实施与验收 (15)8.3.1 实施步骤 (15)8.3.2 验收标准 (15)8.3.3 验收流程 (16)第9章项目管理与保障措施 (16)9.1 项目组织与管理 (16)9.1.1 成立项目领导小组,负责项目总体策划、决策和协调工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智慧农业物联网平台建设项目建议书目录前言-------------------------------------------------------------- 3 方案整体示意图--------------------------------------------------- 5 方案概述---------------------------------------------------------- 6 系统功能总体描述------------------------------------------------- 8网络传输平台设备配置清单--------------------------------------- 9信息精准采------------------------------------------------------11 数据可靠传------------------------------------------------------12 智能远程控制-----------------------------------------------------14“物联网”被称为继计算机、互联网之后,世界信息产业的第三次浪潮。
业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。
目前,美国、欧盟、中国等都在投入巨资深入研究探索物联网。
我国也正在高度重视物联网的研究,工业和信息化部会同有关部门,在新一代信息技术方面正在开展研究,以形成支持新一代信息技术发展的政策措施。
我国是一个农业大国,又是一个自然灾害多发的国家,农作物种植在全国范围内都非常广泛,农作物病虫害防治工作的好坏、及时与否对于农作物的产量、质量影响至关重要。
农作物出现病虫害时能够及时诊断对于农业生产具有重要的指导意义,而农业专家又相对匮乏,不能够做到在灾害发生时及时出现在现场,因此农作物无线远程监控产品在农业领域就有了用武之地。
农业信息化,智慧化是国民经济和社会信息化的重要组成部分,是农业发展的必然阶段,是新时期农业和农村发展的一项重要任务,是实现国民生计的大事。
以农业信息化带动农业现代化,对于促进国民经济和社会持续、协调发展具有重大意义。
进一步加强农业信息化建设,通过信息技术改造传统农业、装备现代农业,通过信息服务实现小农户生产与大市场的对接,已经成为农业发展的一项重要任务。
农业物联网建设主要包括环境、植物信息检测,温室、农业大棚信息检测和标准化生产监控,精准农业中的节水灌溉等应用模式,例如农作物生长情况、病虫害情况、土地灌溉情况、土壤空气变更等环境状况以及大面积的地表检测,收集温度、湿度、风力、大气、降雨量,有关土地的湿度、氮浓缩量和土壤pH值等信息的监测。
智能农业控制通过实时采集农业大棚内温度、湿度信号以及光照、土壤温度、土壤水分等环境参数,自动开启或者关闭指定设备。
可以根据用户需求,随时进行处理,为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据。
大棚监控及智能控制解决方案是通过光照、温度、湿度等无线传感器,对农作物温室内的温度,湿度信号以及光照、土壤温度、土壤含水量、二氧化碳浓度等环境参数进行实时采集,自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。
方案整体示意图方案概述方案概述本方案针对智能农业大棚,采用目前先进的无线传感技术,ZigBee技术,WiFi 技术,无线智能控制终端和控制软件等,分为三个组成部分:无线传感器网络,光载无线WiFi传输,智能控制系统。
无线传感器网络采用适合物联网应用的ZigBee传感器件,以达到无线,低功耗,自适应组网等要求。
光载无线WiFi传输系统采用飞瑞敖电子科技有限公司自行研发和生产的光载无线交换机,配合远端天线模块,通过模拟光纤传输WiFi信号,达到安全,可靠,远距离覆盖的目的。
智能控制系统通过采用智能控制终端(如无线智能电源插座,无线智能水泵等),配合控制中心的智能控制软件,对远端采集的各种信号进行分析和汇总,自动控制和开启相关设备,对农作物的生长环境进行精确调节,以达到智能,自控,高效,高产的目的。
通过实施本方案,智能化农业大棚将具备如下功能:1)空气温湿度监测功能:系统可根据配置的温湿度无线传感器,实时监测大棚内部空气的温度和湿度。
2)土壤湿度监测功能:配有土壤湿度无线传感器,实时监测温室内部土壤的湿度。
3)光照度监测功能:采用光敏无线传感器来实现对温室内部光照情况的检测,实时性强。
4)安防监测功能:采用无线入侵探测器,启动后当温室里面有人出现时,探测器便向主控中心发送信号,同时启动光报警。
5)视频监测功能:通过部署无线WiFi摄像头实时捕获大棚内部的画面,通过光载无线交换机传输给网关处理。
用户既可以在控制中心的显示器上看到温室内部的实时画面,又可以通过PC机远程访问的方式来观看温室内部的实时画面。
6)促进植物光合作用功能:植物光合作用需要光照和二氧化碳。
当光照度达到系统设定值时,系统会自动开启风扇加强通风,为植物提供充足的二氧化碳。
7)空气加湿功能:如果温室内空气湿度小于设定值,系统会启动加湿器,达到设定值后便停止加湿。
8)土壤加湿功能:当土壤湿度低于设定值时,系统便启动喷淋装置来喷水,直到湿度达到设定值为止。
9)环境升温功能:当温室内温度低于设定值时,系统便启动加热器来升温,直到温度达到设定值为止。
10) 局域网远程访问与控制功能:物联网通过网关加入局域网。
这样用户便可以使用PC机访问物联网数据,通过操作界面远程控制温室内的执行器件,维护系统稳定。
11) GPRS/3G网络访问功能:物联网通过无线网关接入GPRS或者3G网络。
用户便可以手机来访问物联网数据,了解大棚内部环境的各项数据指标(温度、湿度、光照度和安防信息)。
12) 控制参数设定及浏览:对所要实现自动控制的参数(温度、湿度、光照度等)进行设置,以满足自动控制的要求。
用户既可以直接操作网关界面上的按钮来完成系统平衡参数的设置,又可以通过PC机或手机远程访的方式完成参数的设置。
13) 显示实时数据曲线:实时趋势数据曲线可将系统采集到的大棚内的数据以实时变化曲线的形式显示出来,便于观察系统某时间段内整体的检测状况。
14) 显示历史数据曲线:可显示出大棚内各测量参数的日、月、年参数变化曲线,根据该曲线可合理的设置参数,可分析环境的变化对植物生长的影响。
系统功能总体描述(1)温室灾害性气候无线预警:通过密集分布的ZigBee无线温度,湿度,光照度,CO2等传感器,定期实时采集大棚内和土壤的温湿度,棚内光照度,空气中的CO2含量等数据,并将数据实施通过WIFI传输到控制中心。
控制中心的软件中已经预设各种数据的临界范围值,一旦某个参数超出范围,系统将发出预警信号,通过声光装置进行报警,同时也可以发出控制指令,启动智能插座令各种设施如加温器,加湿器,进/排气扇,遮阳棚,喷淋器等进行工作,用以对抗西部地区常见的低温,干旱,光照度过强,昼夜温差大等气候影响。
(2)温室节水高效滴灌控制:采用土壤湿度传感器对土壤的湿度进行实时监测并将数据上传到控制中心,一旦土壤湿度低于预设值,系统将发出指令启动喷淋滴灌系统,做到精准控制;当土壤湿度回复到农作物生长的正常值之后,系统又可发出指令让喷淋滴灌系统停止工作,以最大限度地达到高效滴灌,节约用水的目的。
(3)分布式日光温室群监测:通过在每个大棚中部署光照度传感器以及CO2浓度传感器,并将数据汇集到控制中心,实现集群式的光照度和CO2环境数据采集和控制。
通过手动或者自动控制遮阳棚,进/排气扇的启动和关闭,可以有效地成片控制温室大棚内的光照度和空气,以达到农作物最为适宜的光照和CO2浓度。
(4)专家远程生产指导:通过无线传感器收集了大棚中农作物的实时生长环境参数:温度、湿度、光照强度等。
这些环境实时信息,通过网络传输到中心控制室并保存在数据库中,可以随时供专家系统软件调用分析。
同时,系统软件中还预置了专家经验数据库,给出了各种参数值的范围和理想值,以及针对各种问题的指导意见和解决问题的详细操作指导。
另外,用户可以在大棚现场通过手机拍照,将图片通过WiFi上网直接发送给专家进行诊断。
部署在现场的无线视频头也可以提供实时的大棚内农作物的生长态势照片及视频图像,通过系统传输并存储在控制中心,随时供专家调用和分析,实现远程指导。
按照一个标准的农业大棚(单体大棚)的尺寸150m*10m*6m(长*宽*高),要实现无缝的无线WIFI覆盖,飞瑞敖建议采用如下的覆盖方式,即用4个AP覆盖1个大棚,覆盖半径大约为18米,802.11b所能支持的最大速率可以达到11 Mbit/s,而802.11g在此覆盖距离下速率可以达到48 Mbit/s。
本项目按照5个标准大棚来进行配置,设备组网如下图所示。
按五个标准大棚的设备配置清单:设备清单及技术参数序系统系统设数单主要技术参数号名称备名称量位1物联网工程信息平台套件主机箱 3 台支持射频交换和信道重构支持远距离传输,即一组本地WiFi无线信号源通过模拟光纤分到远端天线,模拟光纤传输距200-3000米信号箱 3 台支持802.11b/g本地化管理,即本地可对所有wifi信号集中和统一管理实现可管、可控、可测维护性高,AP数量可更改,可扩展远端射频单元20 台带宽54M@802.11g,室内覆盖半径50米,室外覆盖半径100米支持信号分路,即可将射频信号分为多路,支持远端信号发射与接收交换机 3 台背板带宽:1.6Gbps;端口描述:8个10/100M自适应RJ45端口包转发率:10Mbps:14800pps 100Mbps:148800pps传输模式:全双工/半双工自适应网络标准:IEEE 802.3,IEEE 802.3u,IEEE 802.3x工作电压:9VDC光载无线网络管理软件1 套信息平台射频参数管理和控制,频道设置,安全密码设置,网段管理,无线网络管理,信号强度和防干扰管理,接入设置管理,射频交换管理可实现光载无线传输链路按需选择信息精准采集无线传感器网络由具备各种感知功能的ZigBee无线传感器,ZigBee中心节点,ZigBee无线网关(转WiFi)等组成,主要负责大棚内部光照、温度、湿度和土壤含水量等数据的采集和控制命令的转发。
传感器的数据上传通过Zigbee通信方式发送模块传送到Zigbee中心节点上,省去了通讯线缆的部署工作。
ZigBee中心节点再经过ZigBee网关将传感器采集到的数据上传到WiFi远端天线模块,通过光纤将数据传回中心控制室的光载无线交换机,进入本地的控制和管理局域网。
用户可以通过有线网络/无线网络访问系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。