初一数学三角形练习题(有答案)
(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. B. C. D. 无法确定19c 914c 1018c 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( ) A. B. C. D. ()12n n -条()22n n -条()32n n -条()42n n -条5. 装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正○1○2○3○4六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有()A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周长m 满足,则这样的三角形有( )1022m A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=∠B,则∠A= ,∠B= ,这个三角形13是 。
初一数学三角形试题答案及解析

初一数学三角形试题答案及解析1.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C =70°,则∠EAD=【答案】20【解析】∵∠B=30°,∠C=70°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=80°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=40°,又∵AD⊥BC,∴∠BAD=90°﹣∠B=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°.故答案为:20.【考点】三角形内角和定理;三角形的外角性质2.腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为【答案】36°.【解析】设等腰三角形的顶角度数为x,则底角度数为2x,根据三角形内角和定理:x+2x+2x=180°,解得x的度数.试题解析:设等腰三角形的顶角度数为x,∵等腰三角形的底角是顶角的两倍,则底角度数为2x,根据三角形内角和定理:x+2x+2x=180°,解得x=36°.【考点】等腰三角形的性质.3.如图,AD是△ABC的角平分线,∠C=90°,BC=9cm,BD=5cm,则点D到AB的距离是()A.4cm B.5cm C.6cm D.9 cm【答案】A.【解析】如图,过点D作DE⊥AB于E,∵BC=9cm,BD=5cm,∴CD=BC-BD=9-5=4cm,∵AD是△ABC的角平分线,∠C=90°,∴DE=CD=4cm,即点D到AB的距离是4cm.故选A.【考点】角平分线的性质.4.在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3a m-1b2与a n b2n-2是同类项且OA=m,OB=n.(1)m= ;n= .(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.【答案】(1)3,2;(2)(5,0)或(1,0);(3)(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【解析】(1)根据同类项的概念即可求得;(2)根据已知条件即可求得B(2,0)或(-2,0),根据点B在点C的左侧,BC=OA,即可确定C的坐标;(3)根据三角形全等的性质即可确定D的坐标;试题解析:(1)∵-3a m-1b2与a n b2n-2是同类项,∴,解得.(2)∵OA=m,OB=n,∴B(2,0)或(-2,0),∵点B在点C的左侧,BC=OA,∴C(5,0)或(1,0);(3)当C(5,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(5,2)或(5,-2)或(2,2)或(2,-2);当C(1,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(1,2)或(1,-2)或(-2,2)或(-2,-2).所以D点的坐标为(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【考点】1.全等三角形的判定与性质;2.同类项;3.坐标与图形性质.5.如图,在△ABC中,∠B=400,∠C=1100.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【答案】(1)图形见解析;(2)∠DAE=35°.【解析】(1)按照三角形高线和角平分线定义进行画图即可;(2)利用角平分线把一个角平分的性质和高线得到90°的性质可得∠DAE的度数.(1)如图:(2)∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣110°=30°,又∵AE平分∠BAC,∴∠BAE=∠BAC=150°,(角平分线的定义)∴∠DAE=∠DAB﹣∠BAE=50°﹣15°=35°.【考点】三角形高线和角平分线.6.作图题:(可以不写作法)如图已知三角形ABC内一点P.(1)过P点作线段EF∥AB,分别交AC,BC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【答案】作图见解析.【解析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.(1)如图,EF即为所求.(2) 如图,PD即为所求.【考点】作图—基本作图.7.如图,AD为△ABC的中线,(1)作△ABD的中线BE;(2)作△BED的BD边上的高EF;(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?【解析】(1)找到边AD的中点E,连接BE,线段BE是△ABD的中线;(2)△BED是钝角三角形,所以BD边上的高在BD的延长线上;(3)先根据三角形的中线把三角形分成面积相等的两个小三角形,结合题意可求得△BED 的面积,再直接求点E 到BC 边的距离即可.试题解析:(1)如图所示,BE 是△ABD 的中线;(2)如图所示,EF 即是△BED 中BD 边上的高.(3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线,∴S △BED =S △ABC =×60=15;∵BD=10,∴EF=2S △BED ÷BD=2×15÷10=3,即点E 到BC 边的距离为3.【考点】1.三角形的角平分线、中线和高;2.三角形的面积;8. 在△ABC 中,已知∠A:∠B:∠C=2:3:4,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形【答案】C .【解析】根据题意,设∠A 、∠B 、∠C 分别为2k 、3k 、4k ,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选C .考点: 三角形内角和定理.9. 已知等腰三角形的两边长分别为4和9,则第三边为_________.【答案】9【解析】等腰三角形的两边长分别为4和9时,当4为腰时,则可知两腰和=4+4=8<9不符合三角形任意两边和大于第三边。
初一数学三角形试题答案及解析

初一数学三角形试题答案及解析1.小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()A.1个B.2个C.3个D.4个【答案】C.【解析】选其中3根组成一个三角形,不同的选法有5cm,6cm,10cm;5cm,10cm,13cm;6cm,10cm,13cm;共3种.故选C.【考点】三角形三边关系.2.如图,△ABC≌△AED,∠B=40°,∠EAB=30°,∠ACB=45°,∠D= °.【答案】45°.【解析】根据全等三角形的对应角相等即可得出∠D的度数.试题解析:∵△ABC≌△AED,∠ACB=45°,∴∠ACB=∠D=45°.【考点】全等三角形的性质.3.如图,∠ACB>90°,AD^BC,BE^AC,CF^AB,垂足分别为点D、点E、点F,△ABC中BC边上的高是()A.CF ;B.BE;C.AD;D.CD;【答案】B.【解析】如图,AD、BE、CF分别是三角形ABC三条边上的高,与AC对应的高是BE.故选B.【考点】作三角形的高.4.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于 ____________ . 【答案】1800°.【解析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,把多边形的边数代入公式,就得到多边形的内角和.试题解析:多边形的边数:360°÷30°=12,正多边形的内角和:(12-2)•180°=1800°.【考点】多边形内角与外角.5.正八边形的每一个内角都等于 °.【答案】135°【解析】多边形的内角和公式=180°×(n-2)=180°×(8-2)=1080°,所以每个内角为1080°÷8=135°.本题涉及了多边形内角和,该题较为简单,主要考查学生对多边形内角和公式的应用,以及对正多边形的内角间的关系。
初中数学三角形专题训练50题含答案

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A .1对B .2对C .3对D .4对 2.两个同心圆的半径分别是 5 和 4,则长为 6 的大圆的弦一定和小圆( ) A .相交 B .相切 C .相离 D .无法确定 3.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确的是( ) A .△ABC 是直角三角形,且△A =900B .△ABC 是直角三角形,且△B =900 C .△ABC 是直角三角形,且△C =900D .△ABC 不是直角三角形 4.若菱形ABCD 的对角线8AC =,60ABC ∠=,则菱形ABCD 的面积为( ) A .16 B .C .D .5.用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余,重叠和折断),这个三角形一定是( )A .等边三角形B .等腰三角形C .直角三角形D .不等边三角形 6.下列命题:△任何实数的0次幂都等于1;△有两个角相等的等腰三角形是等边三角形;△三角形三条边垂直平分线的交点到三角形三条边的距离相等;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形.正确的个数有( )A .0个B .1个C .2个D .3个 7.菱形的两条对角线分别是12和16,则该菱形的边长是( )A .10B .8C .6D .5 8.如图,下列条件中,不能证明△ABC △△DCB 的是( )A .AB =DC ,AC =DBB .AB =DC ,△ABC =△DCB C .△ACB =△DBC ,△A =△D D .AB =DC ,△DBC =△ACB 9.如图,把ABC 纸片沿EG 折叠,当点A 落在ABC 外部的点F 处,此时测得2104∠=︒,30A ∠=︒,则1∠的度数为( )A .40︒B .44︒C .46︒D .48︒ 10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:△AF DE ⊥;△85DG =;△HD BG ∥;△ABG 与DFH 相似.其中正确的结论有( )个.A .1B .2C .3D .411.下列条件中,能判定△ABC△△DEF 的是( )A .AB=DE ,BC=EF ,△A=△EB .△A=△E ,AB=EF ,△B=△DC .△A=△D ,△B=△E ,△C=△F D .△A=△D ,△B=△E ,AC=DF 12.在Rt ABC △中,90A ∠=︒,6AB =,8AC =,点P 是ABC 所在平面内一点,则222PA PB PC ++取得最小值时,下列结论正确的是( )A .点P 是ABC 三边垂直平分线的交点B .点P 是ABC 三条内角平分线的交点 C .点P 是ABC 三条高的交点D .点P 是ABC 三条中线的交点13.下列命题中,真命题是( ) A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等14.已知直角三角形两边的长分别为6和8,则此三角形的周长为( )A .24B .14C .14+24D .14+15.如图,点A 的坐标为(﹣3,2),△A 的半径为1,P 为坐标轴上一动点,PQ 切△A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A .(0,2)B .(0,3)C .(﹣2,0)D .(﹣3,0) 16.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n + 17.如图,若 AC 、BD 、EF 两两互相平分于点O ,那么图中的全等三角形共有( )A .3对B .4对C .5对D .6对 18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249 cm 19.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE △AB ,垂足E 在线段AB上,连接EF 、CF ,则下列结论中:△△DCF =12△BCD ;△EF =CF ;△S △BEC <2S △CEF ;△△DFE =4△AEF .一定成立的有( )个.A .1B .2C .3D .420.如图,等边ABC 内部有一点D ,3DB =,4DC =,150BDC =∠︒,在AB 、AC 上分别有一动点E 、F ,且AE AF =,则DE DF +的最小值是( )A .5B .C .D .7二、填空题21.等腰三角形的两边长为2和3,则等腰三角形的周长为________.22.若3,m ,5=______. 23.如图,点P 是正方形ABCD 对角线BD 上的一点,且BP =BC ,则△DPC =______°.24.如图,在ABC 中,90C ∠=︒,70B ∠=︒,D ,E 分别是边AB 、AC 上的点,将A ∠沿DE 折叠,使点F 落在AB 的下方,当FDE 的边EF 与BC 平行时,ADE ∠的度数是_________.25.《九章算术)是我国古代数学名著,书中有下列问题:“今有户高多于广六尺,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺,门对角线距离恰好为1丈,问门高、宽各是多少?(1丈=10尺)如图,设门高AB 为x 尺,根据题意,可列方程为___________(将方程化简并写成一般形式).26.如图,ABC ∆和ABE 关于直线AB 对称,ABC ∆和ADC ∆关于直线AC 对称,CD 与AE 交于点F ,若32ABC ∠=︒,18ACB ∠=︒,则CFE ∠的度数为______.27.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.28.如图,在△ABC 中,AB =AC ,△A =40°,CD ∥AB ,则△BCD 的度数是______.29.如图△ABC 中,△A =96°,延长BC 到D ,△ABC 的平分线与△ACD 的平分线交于点A 1,△A 1BC 的平分线与△A 1CD 的平分线交于点A 2,以此类推,△A 4BC 的平分线与△A 4CD 的平分线交于点A 5,则△A 5的大小是___30.ABC 中,AB 15=,BC 12=,AC 9=,圆O 是ABC 的内切圆,则图中阴影部分的面积为________.(结果不取近似值)31.如图所示,一水库迎水坡AB 的坡度1:2i =,则求坡角α的正弦值sin α______.32.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.33.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.△O 的半径长为_________.△P 是CD 上的动点,则PA PB +的最小值是_________.34.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.35.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是____.36.在等边ABC 中,点D 在BC 边上,若4AB =,AD =BD 的长为______.37.如图,已知△MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=2,则△A 5B 5A 6的边长为________.38.已知点G是面积为227cm的ABC的重心,那么AGC的面积等于____39.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.40.如图,平行四边形ABCD中,点P为边AD上一个动点,连接BP,将线段PB绕点B逆时针旋转60°得到BQ,连接AQ,若△ABC=60°,AB=2,BC=6,则线段AQ 的取值范围是______.三、解答题41.如图,已知ACB DBC AC BD,,求证:A D∠=∠=∠=∠.∠交AC于点D,E为AB中点,过点A作42.已知:如图ABC中,BD平分ABCAF BD,交DE延长线于点F.∥(1)求证:AF BD=(2)当ABC满足什么条件时,四边形AFBD是矩形?请证明你的结论.43.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,△B=90°,连接AC.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?44.尺规作图=.(保留作图痕迹,不如图,ABC中,2B C∠=∠,在AC边上找一点P,使PB PC写作法)45.如图,在直角△ABC中,△ACB=90°,CD是高,△1=35°,求△2、△B与△A的度数.46.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点.(1)求证:△AED△△CFB;(2)试判断四边形EBFD 的形状,并说明理由.47.如图,在△ABC 中,△ABC =△ACB ,E 为BC 边上一点,以E 为顶点作△AEF ,△AEF 的一边交AC 于点F ,使△AEF =△B .(1)如果△ABC =40°,则△BAC = ;(2)判断△BAE 与△CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求△AEF 与△BAE 的数量关系.48.如图,在平面直角坐标系内有一正方形OABC ,点C 坐标为(0,4),点D 为AB 的中点,直线142y x =-+经过点C ,D 并交x 轴于点E ,BCD △沿着CD 折叠,顶点B 恰好落在OA 边上方F 处,连接BE ,点P 为直线CD 上的一动点,点Q 是线段BE 的中点.连接BP ,PQ .(1)求点F 的坐标;(2)求出点P 运动过程中,PO PA +的最小值;(3)是否存在点P ,使其在运动过程中满足EQP EBC △∽△,若存在,求出点P 坐标;若不存在,请说明理由.49.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE=.(2)试探索线段AD,BF,DF之间满足的等量关系,并证明你的结论.(3)若15CD=,求BF.ACD=︒∠,1(注:在直角三角形中,30°所对的直角边等于斜边的一半)50.如图1,在ABC中,△A=90°,AB=AC+1,点D,E分别在边AB,AC 上,且AD=AE=1,连接DE.现将ADE绕点A顺时针方向旋转,旋转角为α(0°<α<180°),如图2,连接CE,BD,CD.(1)当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求BCD的面积的最大值,并写出此时旋转角α的度数.参考答案:1.D【分析】由条件可证△AOD △△BOC ,可得△A =△B ,则可证明△ACE △△BDE ,可得AE =BE ,则可证明△AOE △△BOE ,可得△COE =△DOE ,可证△COE △△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OA OBAOD BOC OD OC=⎧⎪∠=∠⎨⎪=⎩ △△AOD △△BOC (SAS ),△△A =△B ,△OC =OD ,OA =OB ,△AC =BD ,在△ACE 和△BDE 中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩△△ACE △△BDE (AAS ),△AE =BE ,在△AOE 和△BOE 中OA OBA BAE BE=⎧⎪∠=∠⎨⎪=⎩△△AOE △△BOE (SAS ),△△COE =△DOE ,在△COE 和△DOE 中OE OECOE DOEOD OC=⎧⎪∠=∠⎨⎪=⎩△△COE △△DOE (SAS ),故全等的三角形有4对,故选:D .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.2.B【分析】连接OB,作OC AB⊥,根据垂径定理求出132BC AB==,根据勾股定理求出OC,即可得到判断.【详解】解:连接OB,作OC AB⊥,△6AB=,△132BC AB==,在Rt OBC中,4OC=,△点C在小圆上,△OC AB⊥,△长为6的大圆的弦和小圆相切,故选:B.【点睛】此题考查了垂径定理,勾股定理,直线与圆的位置关系,正确理解垂径定理是解题的关键.3.B【详解】22281517+=, △△ABC是直角三角形,△AC是斜边,△△B=900,故B正确;故选B.4.C【分析】过A作AE△BC于E,由菱形性质和△ABC=60°,可得△ABC是等边三角形,解Rt△ABE求得AE即可解答;【详解】解:由题意作图如下,过A作AE△BC于E,由菱形的性质可得:AB=BC,△△ABC=60°,△△ABC是等边三角形,△AB=BC=AC=8,Rt△ABE中,AE=AB sin△B=△菱形ABCD面积=BC•AE=故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,三角函数等知识;掌握菱形的性质是解题关键.5.B【分析】根据题意可知三角形的周长为10,再根据三角形的三边关系找到符合条件的三边,看符合哪类三角形即可.【详解】根据题意可知三角形的周长为10,又因为三角形任意两边之和大于第三边,△最大边要小于5,△三角形的三边可以为4,2,4或4,3,3.△这个三角形一定是等腰三角形.故选B.【点睛】此题考查了三角形的三边关系及等腰三角形的判定.三角形的三边关系:三角形任意两边之和大于第三边;任意两边之差小于第三边.6.B【分析】根据0指数幂的定义,等腰三角形三线合一,等边三角形的判定,线段垂直平分线性质逐个进行判断即可.【详解】解:△0的0次幂不存在,△△错误;△有一个角等于60°的等腰三角形是等边三角形,故△错误;△三角形三条边垂直平分线的交点到三角形三个顶点的距离相等,故△错误;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形,故△正确△正确的个数为:1个.故选:B .【点睛】本题考查了线段垂直平分线性质,0指数幂的定义,等腰三角形性质,等边三角形的判定的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,任何不等于0的0次幂等于1,能理解性质和法则是解此题的关键.7.A【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分别为12和16,求得OA 与OB ,再由勾股定理即可求得菱形的边长.【详解】如图,△菱形ABCD 中,A C=12,BD =16,△OA =12AC =6,OB =12BD =8,AC △BD ,△AB .即菱形的边长是10.故选:A.【点睛】此题考查了菱形的性质以及勾股定理.掌握菱形的对角线互相平分且垂直是解题的关键.8.D【详解】解:根据题意知,BC =BC .A 、由“SSS”可以判定△ABC △△DCB ,故本选项不符合题意;B 、由“SAS”可以判定△ABC △△DCB ,故本选项不符合题意;C 、由“AAS”可以判定△ABC △△DCB ,故本选项不符合题意;D 、由“SSA”不能判定△ABC △△DCB ,故本选项符合题意.故选:D .9.B【分析】设EF 与AB 交于D ,由折叠可得30F A ∠=∠=︒,根据三角形的外角性质得到21043074ADE A ∠=∠-∠=︒-︒=︒,1ADE F ∠=∠-∠,则由1ADE F ∠=∠-∠,即可求解.【详解】解:设EF 与AB 交于D ,如图,△21043074ADE A ∠=∠-∠=︒-︒=︒,又1ADE F ∠=∠-∠,1743044ADE F ∠=∠-∠=︒-︒=︒∴,故选:B .【点睛】本题考查三角形外角的性质,折叠的性质,熟练掌握三角形外角的性质与折叠的性质是解题的关键.10.B【分析】利用正方形的性质和线段中点性质,证明()SAS ADF DCE ≌,得到DAF CDE ∠=∠,即可判断△;利用勾股定理求AF =DG 的长,即可判断△;利用直角三角形的斜边中线等于斜边一半,得到DH HF =,进而得到HDF HFD ∠=∠,然后根据平行线的性质,得到HDF HFD BAG ==∠∠∠,由勾股定理求出AG =△;根据ABG DFH ∽,得到ABG DHF =∠∠,又因为AB AG ≠,得到ABG AGB ∠≠∠,进而得到AGB DHF ≠∠∠,即可判断△. 【详解】解:四边形ABCD 为正方形,90ADC BCD ,AD CD BC ==, E 、F 分别是BC 、CD 的中点,11222DF CD BC EC ∴====, 在ADF △和DCE 中,AD CD ADC BCD DF EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF DCE ∴≌,DAF CDE ∴∠=∠,90ADG CDE ADC ∠+∠=∠=︒,90ADG DAF ∴∠+∠=︒,90AGD ∴∠=︒,AF DE ∴⊥,△结论正确;4AD =,122DF CD ==,AF ∴=,1122ADF S AD DF AG DG =⋅=⋅,AD DF DG AF ⋅∴==△结论错误; H 为AF 的中点,90ADC ∠=︒,12DH HF AF ∴=== HDF HFD ∴∠=∠,AB CD ∥,HFD BAG ∠=∠∴,HDF HFD BAG ∠=∠=∠∴,AG AD ==4AB =,52AG DF ∴==AB AB DH HF ==, AB AG DH DF∴=, ABG DFH ∴∽,△结论正确;ABG DHF ∴∠=∠,4AB =,AG = AB AG ∴≠,ABG AGB ∠≠∠∴,AGB DHF ∴∠≠∠,HD ∴与BG 不平行,△结论错误,综上可知,正确的结论为:△△,故选B .【点睛】本题考查了三角形全等的证明与判定,相似三角形的性质与判定,勾股定理,直角三角形的斜边中线等知识,熟练掌握全等三角形的判定和性质,相似三角形的判定和性质是解题关键.11.D【详解】解:A .AB=DE ,BC=EF ,△A=△E ,SSA 不能确定全等;B .△A=△E ,AB=EF ,△B=△D ,AB 和EF 不是对应边,不能确定全等;C .△A=△D ,△B=△E ,△C=△F ,AAA 不能确定全等;D .△A=△D ,△B=△E ,AC=DF ,根据AAS ,能判断△ABC△△DEF .故选D .12.D【分析】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则222PA PB PC ++=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭,可得P (2,83)时,222PA PB PC ++最小,进而即可得到答案.【详解】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图,则A (0,0),B (6,0),C (0,8),设P (x ,y ),则222PA PB PC ++=()()22222268x y x y x y ++-+++-=22331216100x y x y +--+=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭, △当x =2,y =83时,即:P (2,83)时,222PA PB PC ++最小, △由待定系数法可知:AB 边上中线所在直线表达式为:883y x =-+, AC 边上中线所在直线表达式为:243y x =-+, 又△P (2,83)满足AB 边上中线所在直线表达式和AC 边上中线所在直线表达式,△点P是ABC三条中线的交点,故选D.【点睛】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.13.D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考查了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.14.C【分析】先设Rt△ABC的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.【详解】解:设Rt△ABC的第三边长为x,△当8为直角三角形的直角边时,x为斜边,由勾股定理得,10x=,此时这个三角形的周长=6+8+10=24;△当8为直角三角形的斜边时,x为直角边,由勾股定理得,22x8627,此时这个三角形的周长=△此三角形的周长为:24.故选:C.【点睛】本题考查的是勾股定理,二次根式的化简,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.D【分析】连接AQ、P A,如图,利用切线的性质得到△AQP=90°,再根据勾股定理得到PQ=AP△x轴时,AP的长度最小,利用垂线段最短可确定P点坐标.【详解】解:连接AQ、P A,如图,△PQ切△A于点Q,△AQ△PQ,△△AQP=90°,△PQ当AP的长度最小时,PQ的长度最小,△AP△x轴时,AP的长度最小,△AP△x轴时,PQ的长度最小,△A(﹣3,2),△此时P点坐标为(﹣3,0).故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理,垂线段最短.16.C【分析】根据条件可得图1中△ABD△△ACD有1对三角形全等;图2中可证出△ABD△△ACD,△BDE△△CDE,△ABE△△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.【详解】解:△AD是△BAC的平分线,△△BAD=△CAD.在△ABD与△ACD中,AB=AC,△BAD=△CAD,AD=AD,△△ABD△△ACD.△图1中有1对三角形全等;同理图2中,△ABE△△ACE,△BE=EC,△△ABD△△ACD.△BD=CD,又DE=DE,△△BDE△△CDE,△图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.17.D【分析】根据AC、BD、EF两两互相平分于点O,则有OE=OF,OA=OC,OB=OD;图中的对顶角有△AOB与△DOC,△AOE与△COF,△BOF与△DOE,△AOD与△BOC;根据两边和它们的夹角对应相等的两三角形全等(SAS)可得△AOB△△DOC;△AOE△△COF;再利用前面所证全等三角形,易证四边形ABCD是平行四边形,故△BOF△△DOE;△AOD△△BOC.【详解】解:△AC、BD、EF两两互相平分于点O△OE=OF,OA=OC,OB=OD;△△AOB=△DOC,△AOE=△COF,△BOF=△DOE,△AOD=△BOC;△△AOB△△DOC(SAS)△AOE△△COF(SAS)△OA=OC,OB=OD;△四边形ABCD是平行四边形,△ AD△BC,AD=BC△△EDO=△FBO,△AOD△△BOC△△BOF△△DOE故图中所有的全等三角形有6对,分别是△AOB△△DOC;△AOE△△COF;△BOF△△DOE;△AOD△△BOC;△ABD△△CDB;△ABC△△CDA.故选:D【点睛】本题考查了全等三角形的判定;找寻全等三角形时要从最明显的开始,由易到难,不重不漏.18.D【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积,从而可解决问题.【详解】解:△所有的三角形都是直角三角形,所有的四边形都是正方形,△正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又△a2+b2=x2,c2+d2=y2,△正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2).故选:D.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方.19.C【分析】△先证出AF =FD =CD ,得到△DFC =△DCF ,再根据平行线性质得到△DFC =△FCB ,即可得到△DCF =△BCF ,可得△DCF =12 △BCD ,故△正确;△做辅助线延长EF ,交CD 延长线于M ,先证△AEF △△DMF (ASA ),得到FE =MF 即12FE EM =,再通过在Rt ECM 中斜边上的中线等于斜边的一半得到12FC EM =,即可得到CF =EF ,故△正确;△根据EF =FM ,可得EFC CFM S S =,那么2ECM CFE S S =△△,再通过MC >BE ,得到BEC ECM S S △△<,即2BEC CEF S S △△<,故△的正确;△先证FC =FE ,设△FCE =x ,那么90DCF x ∠=︒-,再通过证△DCF =△DFC ,那么90DCF DFC x ∠=∠=︒-,则1802EFC x ∠=︒-,进一步证得9018022703EFD x x x ∠=︒-+︒-=︒-,即可证得3DFE AEF ∠=∠,故△错误.【详解】解:△△F 是AD 的中点,△AF =FD ,△在ABCD 中,AD =2AB ,△AF =FD =CD ,△△DFC =△DCF ,△//AD BC ,△△DFC =△FCB ,△△DCF =△BCF ,△△DCF =12△BCD ,故△正确;△延长EF ,交CD 延长线于M ,△四边形ABCD 是平行四边形,△//AB CD ,△△A =△MDF ,△F 为AD 中点,△AF =FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , △△AEF △△DMF (ASA ),△FE =MF ,即12FE EM =,△AEF =△M , △CE △AB ,△△AEC=90°,△△AEC =△ECD =90°, △12FC EM =△12FE EM =, △CF =EF ,故△正确;△△EF =FM ,△EFC CFM S S =,△2ECM CFE S S =△△,△MC >BE ,△BEC ECM S S △△<△2BEC CEF S S △△<故△正确;△设△FEC =x ,△CE △AB ,//AB CD ,△90ECD BEC ∠=∠=︒,△F 是EM 的中点,△FC =FE ,△△FCE =x ,△90DCF x ∠=︒-,△//AD BC△△FCB =△DFC△△DCF =△FCB ;△△DCF =△DFC△90DCF DFC x ∠=∠=︒-△1802EFC x ∠=︒-,△9018022703EFD x x x ∠=︒-+︒-=︒-,△90AEF x ∠=︒-,△△DFE =3△AEF ,故△错误.综上所述正确的是:△△△.故选:C .【点睛】此题主要考查了平行四边形的性质、全等三角形的判定与性质、直角三角形性质等知识,能准确找到边与边之间、角与角之间的关系是解答此题的关键.20.A【分析】过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,根据SAS 证明BED CFH ≅△△,得出FH DE =,则DE DF FH DF +=+,当FH DF +的最小时,DE DF +最小,当D 、F 、H 在同一条直线时,FH DF +最小,根据勾股定理算出结果即可.【详解】解:如图,过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,90HCA ACD ∴∠+∠=︒,150BDC ∠=︒,18015030DBC DCB ∴∠+∠=︒-︒=︒,()ABD ACD ABC ACB DBC DCB ∴∠+∠=∠+∠-∠+∠,△ABC 为等边三角形,60ABC ACB ∴∠=∠=︒,AB AC =,1203090ABD ACD ∴∠+∠=︒-︒=︒,HCA ABD ∴∠=∠, =AE AF ,BE CF ∴=,△在BED 和FCH 中BE CF HCA ABD CH BD =⎧⎪∠=∠⎨⎪=⎩,()SAS BED CFH ∴≅△△,FH DE ∴=,DE DF FH DF ∴+=+,∴当FH DF +的最小时,DE DF +最小,∴当D 、F 、H 在同一条直线时,FH DF +最小,在Rt DCH △中,3CH =,4DC =,5DH ∴,△DE DF +的最小值是5,故A 正确.故选:A .【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,余角的性质,解题的关键是作出辅助线,证明BED CFH ≅△△.21.7或8【分析】根据等腰三角形的性质,分两种情况:△当腰长为2时,△当腰长为3时,解答出即可.【详解】解:根据题意,△当腰长为2时,周长=2+2+3=7;△当腰长为3时,周长=3+3+2=8,故答案为:7或8.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.22.3m ﹣18.【分析】先根据三角形三边关系确定m 的取值范围,然后利用二次根式的性质化简即可.【详解】△三角形的三边长分别为3、m 、5,△2<m <8,=|2﹣m |﹣2|m ﹣8|=m ﹣2﹣2(8﹣m )=3m ﹣18.故答案为:3m ﹣18.【点睛】本题主要考查三角形三边关系和二次根式的性质,掌握三角形三边关系和二次根式的性质是解题的关键.23.112.5【分析】根据正方形的性质,可以得到△PBC 的度数,再根据等腰三角形的性质和三角形内角和,求得△BPC 的度数,即可求得△DPC 的度数.【详解】解:△点P 是正方形ABCD 的对角线BD 上一点,△△PBC =45°,△BP =BC ,△△BPC =△BCP =180452︒-︒=67.5°, △△DPC =180°-△BPC =112.5°,故答案为:112.5.【点睛】本题考查正方形的性质、等腰三角形的性质,利用数形结合的思想解答是解答本题的关键.24.25︒或25度【分析】根据三角形内角和,得A ∠的角度,根据折叠得,A F ∠=∠,ADE EDF ∠=∠;又根据EF BC ∥,得90FEC C ∠=∠=︒,再根据三角形内角和,求出EGF ∠,最后根据三角形的外角和,即可求出ADE ∠.【详解】△ABC 中,90C ∠=︒,70B ∠=︒△18020A C B ∠=︒-∠-∠=︒△DEF 是DEA △折叠得到的△20A F ∠=∠=︒,ADE EDF ∠=∠△EF BC ∥△90FEC C ∠=∠=︒△18070EGF FEC F ∠=︒-∠-∠=︒△70EGF DGC ∠=∠=︒△70A ADG ∠+∠=︒△270A ADE ∠+∠=︒△25ADE ∠=︒.故答案为:25︒或25度.【点睛】本题考查三角形的知识,解题的关键是掌握三角形内角和、外角和定理. 25.26320x x --=【分析】先表示出BC 的长,再利用勾股定理建立方程即可.【详解】解:由题可知 1丈=10尺,门的对角线距离恰好为1丈,∴门的对角线距离恰好为10尺,△高比宽多6尺,设门高 AB 为x 尺,△()6BC x =-尺,△可列方程为:()222610x x +-=,整理得:26320x x --=故答案为:26320x x --=.【点睛】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.26.118【分析】根据轴对称的性质得出角的度数,进而利用三角形外角的性质解答即可.【详解】解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=18°,∠BAC=∠BAE,∵∠ABC=32°,∴∠BAC=180°-18°-32°=130°=∠BAE,∴∠EAC=360°﹣∠BAC﹣∠BAE=360°﹣130°﹣130°=100°,∴∠CFE=∠ACD+∠EAC=18°+100°=118°,故答案为:118°.【点睛】此题考查轴对称的性质,关键是根据轴对称的性质求出相关角的度数.27.(6)(3)(5)【分析】利用全等图形的概念可得答案.【详解】解:(1)与(6)是全等图形,(2)与(3)(5)是全等图形,故答案为:(6),(3)(5).【点睛】本题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.28.110°##110度【分析】根据等腰三角形性质,可得△B=△ACB=70°,再根据平行线的性质,即可求出△BCD的度数.【详解】解:△AB=AC,△A=40°,△△B=△ACB=12(180°-40°)=70°,△CD AB∥,△△B+△BCD=180°,△△BCD=110°.故答案为:110°【点睛】此题主要考查了等腰三角形的性质和平行线的性质,解题关键是熟练运用已知条件,进行正确的推理计算.29.3°##3度【分析】先利用外角等于不相邻的两个内角之和,以及角平分线的性质求△A1=12△A,再依此类推得,△A 2=212△A ;…△A 5=512 △A ;找出规律,从而求△A 5的值. 【详解】△BA 1C +△A 1BC =△A 1CD ,2△A 1CD =△ACD =△BAC +△ABC ,△2(△BA 1C +△A 1BC )=△BAC +△ABC ,2△BA 1C +2△A 1BC =△BAC +△ABC ,而2△A 1BC =△ABC ,△2△BA 1C =△BAC ,同理,可得2△BA 2C =△BA 1C ,2△BA 3C =△BA 2C ,2△BA 4C =△BA 3C ,2△BA 5C =△BA 4 C ,△△BA 5C =12 △BA 4C =14△BA 3C =18 △BA 2C =116 △BA 1C =132 △BAC =96°÷32=3°, 故△A 5=3°.故答案为:3°.【点睛】此题考查三角形的外角性质,解题关键在于找到规律30.549π-【分析】由15AB =,12BC =,9AC =,得到222AB BC AC =+,根据勾股定理的逆定理得到ABC 为直角三角形,于是得到ABC 的内切圆半径1291532+-==,图中阴影部分的面积等于直角三角形的面积减去圆的面积,分别利用它们的计算公式即可得到图中阴影部分的面积【详解】△ 15AB =,12BC =,9AC =,△ 222AB BC AC =+,△ ABC 为直角三角形,△ ABC 的内切圆半径1291532+-==, △ 图中阴影部分的面积2112935492ππ=⨯⨯-⋅=-. 故答案为549π-【点睛】本题考查了三角形的内切圆与内心、勾股定理的逆定理,对于不规则图形的面积要灵活转化为规则图形的求法是解题的关键31 【分析】过点A 作AC BC ⊥于C ,根据坡度与坡角的概念得1tan 2AC BC α==,设AC x =,2BC x =,根据勾股定理求出AB 的长,再根据锐角三角函数的概念即可求出答案.【详解】过点A 作AC BC ⊥于C ,△AB 的坡度1:2i =, △1tan 2AC BC α==, 设AC x =,2BC x =,△AC BC ⊥,△AB ,△sinAC AB α==【点睛】本题考查了坡度坡角的知识与解直角三角形的知识,熟练掌握坡度坡角的概念与勾股定理的应用是解本题的关键.32.12米【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= =7.5(米). 故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.33. 2 【分析】△连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;△先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:△连接,OA OB ,△30,ADB ∠=︒△60AOB ∠=︒,△OA OB =,△AOB 是等边三角形,△弦AB 长为2,△2OA OB ==,即O 的半径长为2,故答案为:2△△15ADC ∠=︒,△230AOC ADC ︒∠=∠=,△90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,△60BAO ∠=︒,△2OA OE ==,△30OAE AEB ︒∠=∠=,△90BAE BAO OAE ∠=∠+∠=︒,△AE ==即PA PB+的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键.34.6【分析】利用勾股定理求解出另一条直角边,即可求解.【详解】解:△直角三角形斜边长是5,一直角边的长是3,△.×3×4=6.该直角三角形的面积S=12故答案为6.【点睛】本题考查了了勾股定理,解题的关键是掌握利用勾股定理求直角边.35.36°【分析】如图所示,△ABF中,根据内角和外角的关系,△2=△A+△B;△EDG中,△1=△D+△E;根据三角形内角和等于180°,得到△1+△2+△C=180度.于是△A+△B+△C+△D+△E=180°,由于五个角的度数是相同,即可求得每一个角的度数.【详解】△△2=△A+△B;△1=△D+△E,△1+△2+△C=180°,△△A+△B+△C+△D+△E=180°,△五个角的度数是相同,则每一个角的度数都是180°÷5=36°,故答案为36°【点睛】本题考查三角形的外角性质及三角形内角和定理,结合三角形内角和外角的关系,将所有角转化到一个三角形内,体现了数形结合思想和转化思想在解决数学问题时的魅力.36.1或3。
初一几何三角形练习题及答案

初一几何三角形练习题及答案1. 求下列三角形的内角和:a) 直角三角形b) 等边三角形c) 钝角三角形解答:a) 直角三角形的内角和为180度。
其中一个角为90度(直角),剩余两个角之和为90度。
b) 等边三角形的内角和为180度。
由于等边三角形的三条边长度相等,所以三个角也必定相等,每个角为60度,三个角之和为180度。
c) 钝角三角形的内角和为180度。
钝角三角形有一个角大于90度,其它两个角的和小于90度,但三个角之和仍然等于180度。
2. 给定一个三角形,如果已知两个角的度数,如何求出第三个角的度数?解答:三角形的内角和为180度。
已知两个角的度数后,可以用180度减去这两个角的度数,得到第三个角的度数。
例如,如果一个三角形的两个角分别为40度和60度,那么第三个角的度数为180度 - 40度 - 60度 = 80度。
3. 求下列三角形的周长:a) 边长分别为3 cm, 4 cm和 5 cm的三角形b) 边长分别为6 cm, 8 cm和 10 cm的三角形解答:a) 边长分别为3 cm, 4 cm和 5 cm的三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。
b) 边长分别为6 cm, 8 cm和 10 cm的三角形的周长为6 cm + 8 cm +10 cm = 24 cm。
4. 求下列三角形的面积:a) 底边长为4 cm,高为3 cm的三角形b) 边长分别为5 cm, 7 cm和 8 cm的三角形解答:a) 底边长为4 cm,高为3 cm的三角形的面积为(4 cm * 3 cm) / 2 = 6 cm²。
b) 边长分别为5 cm, 7 cm和 8 cm的三角形的面积可以用海伦公式计算。
首先计算半周长:(5 cm + 7 cm + 8 cm) / 2 = 10 cm。
然后使用海伦公式:√(10 cm * (10 cm - 5 cm) * (10 cm - 7 cm) * (10 cm - 8 cm)) ≈ 17.32 cm²。
(完整版)初一数学三角形练习题(有答案)

初一三角形练习题1.一个三角形的三个内角中 ( )A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D 、 至少有两个锐角 2. 下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,103. 如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
图中与∠A 相等的角是( )A 、 ∠B B 、 ∠ACDC 、 ∠BCD D 、 ∠BDC4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是() A、∠A=∠B B、∠B=∠D C、∠A=∠D D、∠A+∠D=9005.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( ) A.180° B.360° C.540° D.720°4题图 5题图 7题图 10题图6.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定7.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF=________度. A .58° B .68° C .78° D .32°8.一个多边形的内角和等于它的外角和,这个多边形是 ( ) A 、三角形 B 、 四边形 C 、 五边形 D 、 六边形 9.能将三角形面积平分的是三角形的()A 、 角平分线B 、 高C 、 中线D 、外角平分线 10.如图,AB ∥CD ,∠A=700,∠B=400,则∠ACD=() A 、 550 B 、 700 C 、 400 D 、 110011.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是 12.一个多边形的内角和是外角和的3倍,它是( )边形;一个多边形的各内角都等于1200,它是( )边形。
初中数学三角形练习题(含答案)

初中数学三角形练习题(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB 平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。
人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等4、在和中,已知,直接判定的根据是()A.B.C.D.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等10、下列图形中,不具有稳定性的是()A.B.C.D.11、已知图中的两个三角形全等,则度数是()A.B.C.D.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.18、如图所示,在中,,,已知,,,则.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.20、如图,于,那么图中以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?23、在中,平分,,垂足为,过作,交于,若,求线段的长.参考答案一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边【答案】C【解析】解:,,.,,().故答案应选:角边角.2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线【答案】B【解析】解:三角形的角平分线都在三角形的内部,故答案不正确三角形的中线都在三角形的内部,故答案不正确三角形的高有的在形内,有的在形上,有的在形外,故答案正确三角形的边的垂直平分线都在三角形的内部,故答案不正确故正确答案为:三角形的高3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等【答案】D【解析】解:、分别是的中线、高,,故答案为:与的周长之差为,的面积等于的面积.4、在和中,已知,直接判定的根据是()A.B.C.D.【答案】B【解析】解:,和分别是、的对边,根据可判定两三角形全等.故正确答案是.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对【答案】C【解析】解:如图,全等图形有对.6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧【答案】B【解析】解:以点为圆心,为半径作弧交于,然后以点为圆心,为半径画弧,两弧相交于,则.故正确答案是:以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.【答案】B【解析】解:由已知图形可得:与全等.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点【答案】A【解析】解:支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点.9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等【答案】A【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.10、下列图形中,不具有稳定性的是()A.B.C.D.【答案】C【解析】解:可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性.其他三个图形都是有三角形组成,一定具有稳定性.11、已知图中的两个三角形全等,则度数是()A.B.C.D.【答案】D【解析】解:两个三角形全等,.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到【答案】C【解析】解:当的底边上的高为,底边时,;底边时,.故从变化到.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.【答案】A【解析】解:,而,,点在的垂直平分线上,即点为的垂直平分线与的交点.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或【答案】B【解析】解:当为腰时,因为,所以不能组成三角形,所以为腰,所以等腰三角形的周长.二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.【答案】全等三角形的对应边【解析】解:"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明全等三角形的对应边相等.故答案为:全等三角形的对应边.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,在中,,,已知,,,则.【答案】10/3【解析】解:,,.,,,.故正确答案为:.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.【答案】16【解析】解:这两个三角形全等,两个三角形中都有,两三角形中长度为的边是一组对应边,与是一组对应边,与是一组对应边,,,.故答案是:.20、如图,于,那么图中以为高的三角形有个.【答案】6【解析】解:于,而图中有一边在直线上,且以为顶点的三角形有个,以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?【解析】解:由三角形的内角和定理,得,,,由邻补角的性质,得,,,故答案为:.23、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一三角形练习题
1.一个三角形的三个内角中 ( )
A 、至少有一个钝角
B 、至少有一个直角
C 、至多有一个锐角
D 、 至少有两个锐角 2. 下列长度的三条线段能组成三角形的是 ( )
A 、 3,4,8
B 、 5,6,11
C 、 1,2,3
D 、 5,6,10
3. 如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
图中与∠A 相等的角是( )
A 、 ∠
B B 、 ∠ACD
C 、 ∠BC
D D 、 ∠BDC
4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是() A、∠A=∠B B、∠B=∠D C、∠A=∠D D、∠A+∠D=900
5.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( ) A.180° B.360° C.540° D.720°
4题图 5题图 7题图 10题图
6.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定
7.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF=________度. A .58° B .68° C .78° D .32°
8.一个多边形的内角和等于它的外角和,这个多边形是 ( ) A 、三角形 B 、 四边形 C 、 五边形 D 、 六边形 9.能将三角形面积平分的是三角形的()
A 、 角平分线
B 、 高
C 、 中线
D 、外角平分线 10.如图,AB ∥CD ,∠A=700,∠B=400,则∠ACD=() A 、 550 B 、 700 C 、 400 D 、 1100
11.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是 12.一个多边形的内角和是外角和的3倍,它是( )边形;一个多边形的各内角都等于1200,它是( )边形。
13.已知△ABC 为等腰三角形,①当它的两个边长分别为8 cm 和3 cm 时,它的周长为_____;②如果它的周长为18 cm ,一边的长为4 cm ,则腰长为_____.
14.如果一个多边形的每一外角都是240,那么它 边形
15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y
16.如图飞机要从A 地飞往B 地,因受大风影响,一开始就偏离航线(AB)18°(即∠A=18°),飞到了C 地,已知∠ABC=10°,现在飞机要达到B 地需以_____的角飞行(即∠BCD 的度数). D
A
E
C
B
15题图 16题图 18题图 17题图 17.如图,△ABC 中,高AD 与CE 的长分别为2㎝,4㎝ 求AB 与BC 的比是多少?
18.(5分)如图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC,交AB 于E,∠A=60°,∠BDC=95°,求△BDE 各内角的度数. 19.如图,△ABC 中,∠A=36°,∠ABC=40°,BE 平分∠ABC ,∠E=18°,CE 平分 ∠ACD 吗?为什么?
第(5)题D
C B A 第(7)题
E D C
B A
D F A
E C B
F E
A E
D
C
B
A
800
y
x
4
32
1第(17)题E
D C
B A
第(6)题D
C B
A
20.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.
4
3P
2
1D
C
B
A
1-5.DBCCB 6-10BBBCB 11. 4 ① 4、6、8 ②4、6、11 ③4、8、11. ④6、8、11 12. 8,6; 13.19;7 14. 十五 15.110°130°16.28° 17 因为AD BC CE AB s ABC ⋅=⋅=∆2
1
21高AD=2㎝CE=4㎝所以
2142===CE AD BC AB 18.略 19. ∠ P=
()D C ∠⊕∠2
1。