(整理)抑制共模电感

(整理)抑制共模电感
(整理)抑制共模电感

共模电感

求助编辑

共模电感

共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。

目录

小知识:EMI(Electro Magnetic Interference,电磁干扰)

计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其他的电子设备正常工作,还对人体有害。

PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。

共模电感

如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。

共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。

图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也

能看到一种贴片式的共模电感(图3),其结构和功能与直立式共模电感几乎是一样的。

编辑本段共模电感工作原理

为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。

共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电

图2 图3

流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La 和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。

现在国内生产的一种小型共模电感,采用高频之杂讯抑制对策,共模扼流线圈结构,讯号不衰减,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在双平衡调音装置、多频变压器、阻抗变压器、平衡及不平衡转换变压器...等。

还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制,低差模噪声信号抑制干扰源,在高速信号中难以变形,体积小、具有平衡度佳、使用方便、高品质等优点。广泛使用在抑制电子设备EMI噪音、个人电脑及外围

设备的 USB线路、DVC、STB的IEEE1394线路、液晶显示面板、低压微分

信号...等。

编辑本段漏感和差模电感

对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中

心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起

磁通的泄漏。共模电感有两个绕组,其间有相当

共模电感

大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一

般也具有一定的差模干扰衰减能力。

在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅

安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差

模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模

电感量,以达到更好的滤波效果。

编辑本段共模电感使用材料的优劣势

磁环类型的铁芯优点:

高初始导磁率(这个是共模电感的基本要求)、高饱和磁感应强度、温

度较之铁氧体稳定(可以理解为温升小),频率特性比较灵活,因为导磁率高,很小就可以做出很大的感量,适应频率比较宽;

整体优势:

因为初始导磁率是铁氧体的5-20倍,对传导干扰的抑制作用远大于铁

氧体;

纳米晶的高饱和磁感应强度比铁氧体的好,所以在大电流下不易饱和;

温升较之UF系列的要低,我实际测试:室温下要低将近10度(个人测

试值仅作参考);

结构上的灵活令其适应性好,从加工工艺上进行改变,即可适应不同需求(见过节能灯上用的磁环电感,使用相当灵活);

分布电容会更小,因为绕线的面积更宽,体积也相对较小;

环行所用匝数少一点,分布参数小一点,效率占优(针对具体进行分析,我猜是因为线径的缘故,望补充);

整体劣势:

磁环孔径小,机器难以穿线,需要人工去绕,费时费力,加工成本高,效率低。而在成本压力日益增加的同时,这一点已尤为重要了。

耐压方面较之UF优势不大:我自己想的,因为看到很多磁环共模中间使用扎线带隔开的,这样不是很可靠,有的中间拉开一定距离,线用点胶固定,时间长了,可靠性怎么样呢?如果电感量要求比较大,线会挤在一起,安全性上有一点疑惑。

安装不便,故障率较高---来自发烧友的分享:“一般性能是一样的,同样线径磁环要比 UF10.5做的感量要高,容易实现。测试传导时相同感量有遇到UF10.5比较好,相差5个DB左右!磁环要是像年纪图片是比较便宜,但不好插件,故障比较大。要是加了底座也不便宜,比UF10.5贵”

应用:

因为成本的因素,磁环大多用在大功率的电源上,发烧友形容:“小功率的用磁环太高档了”,是有道理的。

当然因为体积小,对体积有要求的小功率电源,采用磁环的也是很OK 的选择。

综合性能比起来,优于UF系的。如果成本压力不大的项目,可以考虑用磁环的。我实际测试传到,用磁环的余量要低更多。而且感量还比UF的小。

再说说UF/UU系列的共模

材料:基本上为铁氧体,当然这铁氧体也有区别的,一般有MXO-锰锌类和NXO-镍锌类。镍锌类的主要优点是:初始磁导率低(小于1000u),但是可以工作在比较高的频率(大于100MHZ)下,保持磁导率不变。很强很伟大。

NXO比MXO电阻率高。利用铁氧体对高频杂波的类似阻尼的作用将高频杂波以热能的方式释放出来,这就解释了共模电感的温度问题。

百度上对共模电感的原理说的比我清楚:两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当线圈中

流过有共模干扰的电流时,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

整体优势:

最重要的一点:成本低(我用的这个是0.9元人民币),可以用机器绕、高效,常用UU9.8或UU10.5;

有骨架,绕制工艺应该会更好控制,可以做更高的电感量;

耐压及可靠性要好?针对磁环共模的;

好插件,好安装。四个脚嘛,孔位对了就没一点问题;基本用在小电流的电源上,因为线径不可以用很粗的,故电流不能太大;

整体劣势:

空间因素:封装位置大,maybe是因为比较强壮,不像磁环那么小巧玲珑;

发热比较严重,也是根据我实测的:90V输入满载室温下,可以到快90度;

应用:

一般用在成本控制比较严格的、抑或小功率的场合;[1]

编辑本段从看板卡整体设计看共模电感

概述

在一些主板上,我们能看到共模电感,但是在大多数主板上,我们都会发现省略了该元件,甚至有的连位置也没有预留。这样的主板,合格吗?

不可否认,共模电感对主板高速接口的共模干扰有很好的抑制作用,能有效避免EMI通过线缆形成电磁辐射影响其余外设的正常工作和我们的身体健康。但同时也需要指出,板卡的防E

共模电感

MI设计是一个相当庞大和系统化的工程,采用共模电感的设计只是其中的一个小部分。高速接口处有共模电感设计的板卡,不见得整体防EMI设计就优秀。所以,从共模滤波电路我们只能看到板卡设计的一个方面,这一点容易被大家忽略,犯下见木不见林的错误。

只有了解了板卡整体的防EMI设计,我们才可以评价板卡的优劣。那么,优秀的板卡设计在防EMI性能上一般都会做哪些工作呢?

主板Layout(布线)设计

对优秀的主板布线设计而言,时钟走线大多会采用屏蔽措施或者靠近地线以降低EMI。对多层PCB设计,在相邻的PCB走线层会采用开环原则,导线从一层到另一层,在设计上就会避免导线形成环状。如果走线构成闭环,就起到了天线的作用,会增强EMI辐射强度。

信号线的不等长同样会造成两条线路阻抗不平衡而形成共模干扰,因此,在板卡设计中都会将信号线以蛇形线方式处理使其阻抗尽可能的一致,减弱共模干扰。同时,蛇形线在布线时也会最大限度地减小弯曲的摆幅,以减小环形区域的面积,从而降低辐射强度。

在高速PCB设计中,走线的长度一般都不会是时钟信号波长1/4的整数倍,否则会产生谐振,产生严重的EMI辐射。同时走线要保证回流路径最小而且通畅。对去耦电容的设计来说,其设置要靠近电源管脚,并且电容的电源走线和地线所包围的面积要尽可能地小,这样才能减小电源的波纹和噪声,降低EMI辐射。

当然,上述只是PCB防EMI设计中的一小部分原则。主板的Layout设计是一门非常复杂而精深的学问,甚至很多DIYer都有这样的共识:Layout 设计得优秀与否,对主板的整体性能有着极为重大的影响。

主板布线的划断

如果想将主板电路间的电磁干扰完全隔离,这是绝对不可能的,因为我们没有办法将电磁干扰一个个地“包”起来,因此要采用其他办法来降低干扰的程度。主板PCB中的金属导线是传递干扰电流的罪魁祸首,它像天线一样传递和发射着电磁干扰信号,因此在合适的地方“截断”这些“天线”是有用的防EMI的方法。“天线”断了,再以一圈绝缘体将其包围,它对外界的干扰自然就会大大

共模电感

减小。如果在断开处使用滤波电容还可以更进一步降低电磁辐射泄露。这种设计能明显地增加高频工作时的稳定性和防止EMI辐射的产生,许多大的主板厂商在设计上都使用了该方法。

图注:“断开”的设计用来阻止电磁干扰借这些接口向外传送形成电磁辐射,图中电路板上的亮线清晰可见。尤其是USB接口部分采用该设计后,可在很大程度上大大改善EMI电流向外辐射的可能。

主板接口的设计

不知大家是否注意到,现在的主板都会附送一块开口的薄铁挡片,其实这也是用来防EMI的。虽然现在的机箱EMI屏蔽性能都不错,但电磁波还是会从机箱表面的开孔处泄漏出来,如PS/2接口、USB接口以及并、串口等的开口处。孔的大小决定了电磁干扰的泄露程度。开口的孔径越小,电磁干扰辐射的削弱程度越大。对方形孔而言,L就是其对角线长度。

使用了挡片之后,挡片上翘起的金属触片会和主板上的输入输出部分很好地通过机箱接地,不但衰减了EMI,而且减小了方孔的尺寸,进一步缩小L值,从而可以更有效地屏蔽电磁干扰辐射。

上述三点只是主板设计中除电路设计之外的几个主要防EMI设计,由此可见,主板的防EMI设计是一个整体的概念,如果整体的设计不合格,就会带来较大的电磁辐射,而这些也不是一个小小的共模电感所能弥补的。

编辑本段从必要性看共模电感

共模电感缺失=防EMI性能低下?这样的说法显然是颇为片面的。

诚然,由于国家现在的EMI相关规范并不健全,部分厂商为了省料就钻了这个空子,在整体防EMI性能上都大肆省料压缩成本(其中就包括共模电感的省略),这样做的直接后果就是主板防EMI性能极其低下;但是对于那些整体设计优秀,用料不缩水的主板,即使没有共模电感,其整体防EMI 性能仍能达到相关要求,这样的产品仍然是合格的。因此,单纯就是否有共模电感这一点来判断主板的优劣并不恰当.

编辑本段共模电感的测量与诊断

概述

电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定

它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。

漏感的重要性

漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通

共模电感

就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。

如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。

由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则:

式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。

共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。

共模扼流圈综述

滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。

为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。

尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。可根据公式(2)作简单计算来避免磁饱和现象的发生。

用LISN原理测量共模扼流圈饱和特性的方法

测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时间基准置为2ms/div,然后将触发信号加在A通道上,在交流电压达到峰值时会有线电流产生,此时滤波器效能的降级是意料中的事情。差模抑制网络(DMRN)的输入端连接到LISN,输出端用50的阻抗进行匹配且与示波器的B通道相连。当共模扼流圈工作在线性区时,在输入电流波动期间,B通道监测到的发射增加值不超过6—10dB。图1为此测试在示波器上显示的结果,上面的曲线为共模发射;下面的曲线为线电压。在线电压峰值期间,桥式整流器正向导通且传送充电电流。

图1 示波器上显示的由于60Hz充电电流引起的共模扼流圈的降级

图一

如果共模扼流圈达到饱和,那么在输入浪涌增加时,发射将会增加。如果共模扼流圈达到强饱和,发射强度与不加滤波器时的情况是一样的,也就是说很容易达到40dB以上。

这些实验数据可用其他方法来解释。发射最小值(线电流为0的时候)是滤波器无偏置电流时表现出来的效果。峰值发射与最小发射的比率,即降级因子,用来衡量线电流偏移量对滤波器实际效果的影响。降级因子较大表明共模扼流圈磁芯完全没有得到恰当的使用,较好的滤波器的“固有降级因子”差不多在2—4之间。它是由两种现象产生的:第一,60Hz充电电流引起的电感减小(如上所述);第二,桥式整流器的正向及反向导通。共模发射的等效电路由一个阻抗约为200pF的电压源、二极管阻抗和LISN 的共模阻抗组成,如图2所示。当桥式整流器正向偏置时,在源阻抗、25和LISN共模阻抗之间会产生分压现象。当桥整流器反向偏置时,在源阻抗、整流桥反偏电容、LISN之间产生分压现象。当二极管整流桥反向偏置电容较小时,对共模滤除有一定效果。当整流桥正向偏置时则对共模滤除没有影响。

图2 共模辐射等效电路

图2 共模辐射等效电路

由于产生了分压,固有降级因子的预期值为2左右。实际值的变化相当大,主要取决于源阻抗和二极管整流桥反向偏置电容的实际大小。在Flugan发明的一个电路中,正是应用这个原理来减小镇流器的传导发射的。

用电流原理测量共模扼流圈饱和特性的方法

如果测试人员相当谨慎,那么就可以采取类似MIL-STD-461中的测试装置来检测共模扼流圈的饱和特性。这个原理的应用如下:测试时采用两只电流探头,低频探头监测线电流,高频探头仅测量共模发射电流。线电流监视器作为触发源。不过,使用电流探头的一个隐患是差模电流衰减是管芯内绕组导线对称性的函数。如果精心合理安排绕线布局的话,30dB左右的差模电流衰减是能够得到的。即使达到这个衰减值,测得的差模分量也可能超过预期的共模分量值。可用如下两项技术来解决这一问题:第一,将一只6kHz转折频率的高阶高通滤波器与示波器串联(注意应用50的终端阻抗进行匹配)。第二,在每只10μF的电容与电源总线之间接入一根导线。为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。

共模扼流圈内存在的差模与共模磁通

为了快速且浅显地介绍共模扼流圈的作用,可考虑采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。”尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质上并非如此。

参考以下围绕麦克斯韦方程所进行的讨论

* 假设电流密度J产生磁场H,那么就可得出结论:附近的另一个电流不会抵消或阻止磁场或者是由此而产生的电场。

* 同样一个相邻的电流可以导致磁场路径的改变。

* 在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。所以由此而产生的磁场必定在环形磁芯周边上的总和为0,而在其外部则不为0!

磁芯的作用就好像它在线圈绕组的间隙处裂为两半时所表现出来的效果一样。每个绕组在环形线圈一半的区域内产生磁场,意指穿过空气的磁场必定会形成自封闭回路,图3是环形磁芯和差模电流磁路的示意图。

图3 共模环形磁芯中差模磁路示意图

图3 共模环形磁芯中差模磁路示意图

漏感综述

共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。

为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB 板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。

无辐射共模扼流圈结构

为了实现有效的滤波器设计,磁通离开磁芯引起的辐射问题必须予以解决。其办法有是将差模磁通限制在磁性结构物体中(壶形铁芯),或者是为差模磁通(E形铁芯)提供一条高磁导率的路径。

壶形铁芯结构

如果共模扼流圈采用壶形铁芯结构,那么就需两个绕轴。图4示意出了壶形铁芯窗格里的两组线圈及其产生的磁通路径。同时也表明了同一结构条件下的差模磁通路径。

图4 共模壶形铁芯电感中的磁路

图4 共模壶形铁芯电感中的磁路

注意第一组,所有的磁通均在铁芯内部。正是由于这种结构,从铁芯外表面到其中心垂直隔板间的空气隙长度决定了纯磁阻的大小。使用磁导

噪声抑制的任何电子设备,USB接口线的个人电脑及周边,1394线的个人电脑, DVC ,机顶盒,液晶显示器面板,低电压差分信号传输( LVDS ),噪声抑制,高共模阻抗噪声波段和低差模阻抗信号频段。

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。它包括两个概念:EMI和EMS。EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。而辐射干扰主要通过屏蔽的手段加以滤除。 从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。 电源噪声干扰在日常生活中很常见。比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。比如电话或手机通话时有嗞嗞的杂声。又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。比如,会造成自动化仪器误动作,造成医疗仪器失控等等。 我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。 噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。 上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X电容),差模线圈来进行抑制和衰减。共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。 第 1 页

共模电感认识

共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 一、初识共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

共模电感的测量与诊断

共模电感的测量与诊断 作者: 照明工程师社区来源:照明工程师社区时间:2003-06-25 关键词: 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出: 式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。 由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则: 式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。 共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。 共模扼流圈综述 滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。 为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。 尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。可根据公式(2)作简单计算来避免磁饱和现象的发生。 用LISN原理测量共模扼流圈饱和特性的方法 测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时

共模电感

一、共模电感原理 在介绍共模电感之前先介绍扼流圈,扼流圈是一种用来减弱电路里面高频电流的低阻抗线圈。为了提高其电感扼流圈通常有一软磁材料制的核心。共模扼流圈有多个同样的线圈,电流在这些线圈里反向流,因此在扼流圈的芯里磁场抵消。共模扼流圈常被用来压抑干扰辐射,因为这样的干扰电流在不同的线圈里反向,提高系统的EMC。对于这样的电流共模扼流圈的电感非常高。共模电感的电路图如图1所示。 图1共模电感电路图示 共模信号和差模信号只是一个相对量,共模信号又称共模噪声或者称对地噪声,指两根线分别对地的噪声,对于开关电源的输入滤波器而言,是零线和火线分别对大地的电信号。虽然零线和火线都没有直接和大地相连,但是零线和火线可以分别通过电路板上的寄生电容或者杂散电容又或者寄生电感等来和大地相连。差模信号是指两根线直接的信号差值也可以称之为电视差。 假设有两个信号V1、V2 共模信号就为(V1+V2)/2 差模信号就为:对于V1 (V1-V2)/2;对于V2 -(V1-V2)/2 共模信号特点:幅度相等、相位相同的信号。 差模信号特点:幅度相等、相位相反的信号。 如图2所示为差模信号和共模信号的示意图。

图2差模信号和共模信号示意图

二、共差模噪声来源 对于开关电源而言,如果整流桥后的储能滤波大电容为理想电容,即等效 串联电阻为零(忽略所有电容寄生参数),则输入到电源的所有可能的差模噪 声源都会被该电容完全旁路或解耦,可是大容量电容的等效串联电阻并非为零。因此,输入电容的等效串联电阻是从差模噪声发生器看进去的阻抗Zdm的主 要部分。输入电容除了承受从电源线流入的工作电流外,还要提供开关管所需 的高频脉冲电流,但无论如何,电流流经电阻必然产生压降,如电容的等效串 联电阻,所以输入滤波电容两端会出现高频电压纹波,高频高压纹波就是来自 于差模电流。它基本上是一个电压源(由等效串联电阻导致的)。理论上,整 流桥导通时,该高频纹波噪声应该仅出现在整流桥输入侧。事实上,整流桥关 断时,噪声会通过整流桥二极管的寄生电容泄露。 高频电流流入机壳有许多偶然的路径。当开关电源中的主开关管的漏极高 低跳变时,电流流经开关管与散热器之间的寄生电容(散热器连接至外壳或者 散热器就是外壳)。在交流电网电流保持整流桥导通时,注入机壳的噪声遭遇 几乎相等的阻抗,因此等量流入零线和火线。因此,这是纯共模噪声。

1K107共模电感

微晶磁芯具有较高的饱和磁感应强度(1.l~1.2T),高磁导率,低矫顽力,低损耗及良好的稳定性、耐磨性、耐蚀性,同时具有较低的价格,在所有的金属软磁材料芯中具有最佳的性价比。用于制作微晶铁芯的材料被誉为”绿色材料”,广泛应用于取代硅钢,坡莫合金及铁氧体,作为各种形式的高频(20~100 kHz)开关电源中的大中小功率的主变压器、控制变压器、波电感、储能电感、电抗器、磁放大器、饱和电抗器磁芯、EMC滤波器共模电感和差模电感磁芯、IDSN微型隔离变压器磁芯,也广泛应用于各种类同精度的互感器磁芯。 1 超微晶磁芯的主要特点 VITROPERM 500F铁基超微晶磁芯具有以下特点: 1)极高的初始磁导率,μ=30 000~80 000,且磁导率随磁通密度和温度的变化非常小; 2)磁芯损耗极低,并且在一40~+120℃范围内不随温度而变化; 3)非常高的饱和磁通密度(Bs=1.2T),允许选择较低的开关频率,能降低开关电源及EMI滤波器的成本; 4)磁芯采用环氧树脂封装,机械强度高,无磁滞伸缩现象,能承受强振动; 5)可取代传统的铁氧体磁芯以减小开关电源的体积.提高可靠件. 超微晶磁芯的型号很多,所传输的功率可从50 W到11kW。几种常用磁性材料的性能比较见表1。 2 超微晶磁芯在开关电源中的应用 2.1 超微晶磁芯材料在高频变压器中的应用 目前,高频变压器一般选用铁氧体磁芯。VITROPERM 5OOF铁基超微晶磁芯与德国两门子公司生产的N67系列铁氧体磁芯的性能比较,如图1所示。图1(a)为磁导率的相对变化率与温度的关系曲线;图1(b)为磁感应强度(B)与矫顽力(H)的关系曲线;图1(c)则为损耗.温度曲线。由图l(a)可见,超微晶磁芯的磁导率随温度的变化量远远低于铁氧体磁芯,可提高开关电源的稳定性和可靠性。由图l(b)可见,超微晶磁芯的/μB乘积比铁氧体磁芯高许多倍,这意味着可大大减小高频变压器的体积及重量。由图1(c)可见,当温度发生变化时,超微晶磁芯的损耗远低于铁氧体磁芯。此外,铁氧体磁芯的居里点温度较低,在高温下容易退磁。若采用超微晶磁芯制作变压器,即可将工作时的磁感应强度变化量从O.4T提高到1.OT,使功率开关管的工作频率降低到100kHz以下。

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

共模电感资料

Q/DNXXXX-2005 前言 本规范是总规范GJB 1435-92《开关电源变压器总规范》的相关详细规范。 本规范的附录A是资料性附录。 本规范由北京德恩电子有限公司起草 本规范主要起草人: 本规范审核人: 质量: 工艺: 本规范标准化人: 本规范批准人:

Q/DNXXXX-2005 XXXXX型 共模电感器详细规范 1 范围 1.1 主题内容 本规范规定了XXXXX型共模电感器(以下简称“共模电感器”)的详细要求、质量保证规定和试验方法。 1.2 适用范围 本规范适用于XXXXX型共模电感器的生产和试验。 1.3 分类 1.3.1 型号规格 本规范规定的共模电感器型号规格为XXXXX型。 1.3.2类别 由于本规范所参照及引用的GJB 1435-92是开关电源变压器的总规范,按照总规范应规定变压器的类别,XXXXX型是共模电感器,因此未在本规范中规定类别,凡是涉及到与类别有关的试验,均按GJB 1435-92 中有关8类的规定执行。 2 引用文件 下列文件的有关条款通过引用而构成为本规范的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本规范,但提倡使用本规范的各方面探讨使用其最新版本的可能性,凡不注日期或版次的引用文件,其最新版本适用于本规范。 GJB 360A—96 电子及电气元件试验方法 GJB 1435—92 开关电源变压器总规范 GJB 4027-2000 军用电子元器件破坏性物理分析方法 3 要求 3.1 总则 共模电感器应符合本规范和GJB 1435-92总规范的规定。本规范的要求与总规范不一致时,应以本规范为准。 3.2 材料 制造共模电感器的磁芯应符合“XXXX”的有关规定,其它材料要求见附录A(补充件)。 3.3 设计和结构 3.3.1 外形尺寸结构 共模电感器的外形构见图1,引出线端的引出方向及结构应与图1相一致,外形尺寸应符合表1规定,单位为毫米。 图1

EMI对策元件之差模_共模电感器

EMI对策元件之差模/共模电感器 电感器变压器典型应用电路——开关电源电路 EMI 滤波典型电路 差模噪声、共模噪声及差模电感器、共模电感器 输入导线之间的 EMI 电压称之为差模噪声。导线对接地端的噪声称之为共模噪声,差别见下图(以开关电源的差模干扰和共模干扰为例)。 差模噪声与共模噪声的区别 共模电感器设计 开关电源产生的共模噪声频率范围从 10kHz ~ 50MHz 甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗 Zs 由

串联感抗 Xs 和串联电阻 Rs 两部分组成, Zs 、 Xs 、 Rs 三者随频率变化的典型趋势见下图。 Zs 、 Xs 、 Rs 与频率的关系曲线 从图中我们可以看出在 750kHz 以下, Xs 在 Zs 中占主要部分, 750kHz 以上 Rs 在 Zs 中占主要部分。 对于抑制共模噪声的电感器,需要在一个磁芯上绕制两组电流方向相反的导线,并使用高磁导率的磁芯,如磁导率为5k 、 7k 、 10k 、 12k 材料和非晶磁芯等。 共模电感器命名方法 外形结构:

图 1 图 2 德恩典型产品参数表

差模电感器设计 对于抑制差模噪声的电感器,要求磁芯材料在偏磁场下仍然能够保持磁导率指标。下图中,标出了流经电感器的电流 I ,电压 V 和磁芯中的磁场强度曲线,并且画出了差模滤波器和共模滤波器在开关电源中的应用线路图。在输入端,可以是交流输入(如市电),也可以是电池供电(如 48V ,用于电信设备中)。当电池供电时,磁化电流是恒定的直流电。对于高功率因数的交流电系统,磁化电流接近正弦波波形。而低功率因数的交流电系统,其磁化电流则由一系列的交变脉冲叠加组成。 适合制作差模电感器(扼流圈)的磁心材料是具有高 Bs 值的金属磁粉心磁环和开路铁氧体磁芯,但是考虑现在的 EMI 和 EMC 的要求,使用铁镍钼、铁镍 50 、铁硅铝三种闭和磁路的金属磁粉心磁环是最合适的,因为这三种磁心材料在偏磁场下具有极好的电感量保持能力。 三种金属磁粉心材料进行比较:高磁通铁镍 50 磁粉心的性能最好,因为它在高饱和磁通密度下具有保持电感量的能力,同时它还提供在高频下所需要的阻尼衰减功能,但是由于该材料本身所具有的磁滞伸缩产生的音频噪声,致使高磁通铁镍 50 磁粉心在 50Hz 或者 60Hz 下,会产生音频噪声(嗡嗡声)。当然直流磁化电流不会产生音频噪声,所以它最适合用制作电池供电(工作电流为直流)的电源系统中的输入滤波电感器。铁镍钼、铁硅铝磁粉心都具有特别低的磁滞伸缩系数,它们都不会产生音频噪声。铁镍钼磁粉心在直流偏磁场下的磁导率变化量最小,这是它的一个优点。铁硅铝磁粉心的单位体积成本最低,因此最适合制作民用差模电感器,铁镍 50 和铁镍钼磁粉心的价格远远高于铁硅铝磁粉心更适合军用和一些对体积和性能要求高的场合。

(整理)抑制共模电感

共模电感 求助编辑 共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 目录

小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其他的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。 共模电感 如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也

共模电感小知识

一、初识共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 图1 各种CMC 小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其它的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各组件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路,如图1-1所示。

图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也能看到一种贴片式的共模电感(图3),其结构和功能与直立式共模电感几乎是一样的。 图4 贴片CMC 二、从工作原理看共模电感 为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。 图5 共模电感滤波电路 图4是包含共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。 小知识:漏感和差模电感

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。 1.抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出:

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。 2.抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

共模电感浅谈

共模电感浅谈 存储与多媒体产品线彭浩版本历史

目录 1.共模电感简介 (3) 2.共模电感用于EMI滤波器 (4) 2.1噪声测量方法 (4) 2.2滤波器电路结构分析 (4) 2.3滤波器元器件参数计算 (6) 2.4共模电感的差模电感 (7) 3.共模电感的寄生参数 (9) 3.1寄生电容C1、C2 (9) 3.2电感L LK、L C (11) 3.3等效电阻R C、R W (11) 4.磁芯材料与共模电感磁芯选型 (12) 4.1铁氧体磁芯 (12) 4.2磁粉芯与高磁通磁粉芯 (12) 4.3共模电感磁芯选型 (13) 5.共模电感的设计流程 (14) 6.共模电感安规管控 (15)

1. 共模电感简介 共模电感,也叫扼流圈,常用在开关电源中过滤共模的电磁干扰信号。共模电感是一个以铁氧体等为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,线圈的绕制方向相反,形成一个四端器件。当两线圈中流过差模电流时,产生两个相互抵消的磁场H1、H2,此时工作电流主要受线圈欧姆电阻以及可以忽略不计的工作频率下小漏感的阻尼,所以差模信号可以无衰减地通过,如图1-1所示;而当流过共模电流时,磁环中的磁通相互叠加,从而具有相当大的电感量,线圈即呈现出高阻抗,产生很强的阻尼效果,达到对共模电流的抑制作用。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 图1-1 差模信号通过共模线圈

2. 共模电感用于EMI 滤波器 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当大的间隙,这样就会产生磁通泄漏,并形成差模电感,因而共模电感对差模噪声也有抑制作用。实际应用中,共模电感常和X 电容、Y 电容组成EMI 滤波器,滤除差模噪声和共模噪声。 2.1 噪声测量方法 图2-1所示为典型的噪声测量结构图,噪声的测量主要通过LISN 来实现。L ISN 是指线路阻抗稳定网络,是传导型噪声测量的重要工具。 图2-1 噪声测量结构图 其内部结构如图2-1中虚线框内所示,高频时,电感相当于断路,电容短路,低频时相反。 LISN 的作用为隔离待测试的设备和输入电源,滤除由输入电源线引入的噪声及干扰,并且在50Ω电阻上提取噪声的相应信号值送到接收机进行分析。 共模负载阻抗为25Ω,差模负载阻抗为100Ω,测量到的噪声电压如式(2-1)(2-2)所示: dm cm L I I V ?+?=5025(2-1) dm cm N I I V ?-?=5025(2-2) V L 扫描和V N 扫描分别都要求满足限值要求。 2.2 滤波器电路结构分析 由X 电容、共模电感和Y 电容组成的滤波器如图2-2所示:

共模电感与差模电感的区别

共模电感与差模电感的区别 电源滤波器的设计通常可从共模和差模两方面来思索。共模滤波器最紧要的局部就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个明显长处在于它的电感值极高,并且体积又小,设计共模扼流圈时要思索的一个紧要Issue(问题)是它的漏感,也就是差模电感。通常,计算漏感的方法是假定它为共模电感的1%,实践上漏感为共模电感的0.5% ~4%之间。在设计最优功能的扼流圈时,这个误差的影响能够是不容无视的。漏感的紧要性 漏感是如何构成的呢?严密绕制,且绕满一周的环形线圈,即便没有磁芯,其全部磁通都集中在线圈“芯”内。但是,假如环形线圈没有绕满一周,或许绕制不严密,那么磁通就会从芯中走漏出来。这种效应与线匝间的绝对间隔和螺旋管芯体的磁导率成反比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。假如为了平安起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有十分大的间隙,自然就引发磁通“走漏”,这即是说,磁场在所关怀的各个点上并非真正为0。共模扼流圈的漏感是差模电感。现实上,与差模有关的磁通必需在某点上分开芯体,换句话说,磁通在芯体内部构成闭合回路,而不只仅只局限在环形芯体内。

假如芯体具有差模电感,那么,差模电流就会使芯体内的磁通出现偏离零点,假如偏离太大,芯体便会出现磁饱和景象,使共模电感根本与无磁芯的电感一样。后果,共模辐射的强度就好像电路中没有扼流圈一样。差模电流在共模环形线圈中引发的磁通偏离可由下式得出:式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n 为共模线圈的匝数。 由于能够经过控制B总,使之小于B饱和,从而避免芯体出现磁饱和景象,有以下规律:式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。 共模扼流圈的差模电感能够按如下办法测得:将其一引腿两端短接,接着测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。共模扼流圈综述 滤波器设计时,假定共模与差模这两局部是彼此独立的。但是,这两局部并非真正独立,由于共模扼流圈能够提供十分大的差模电感。这局部差模电感可由分立的差模电感来模仿。 为了应用差模电感,在滤波器的设计进程中,共模与差模不应一同实行,而应该依据一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection NETWORK),能够将差模成分消弭,因而就

共模电感原厂规格书

DCM4532 [1812 inch] DCM3225[1210 inch]DCM2520[1008 inch]DCM2012[0805 inch]*DCM series ?All specifications are subject to change without notice. ?Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications. Common Mode Filters For high-speed differential signal line/general signal line Type: * Dimensions Code [EIA]

(6) internal code DCM4532 DCM3225DCM2520 DCM2012DCM Series DCM2012, 2520, 3225, 4532 DCM 2012 -900-2P -T Common Mode Filters For High-speed Differential Signal Line / General Signal Line FEATURES ?Although greatly miniaturized, this wire-wound chip-type filter maintains the characteristics needed for a common mode filter. Common mode impedance is 1000? [at 100MHz], so this filter is greatly effective in supporting noise. ?Almost no affect upon even high speed signals since differential mode impedance is kept low. ?This series includes both 2-line and 3-line types. They are used for various types of circuits and noise. APPLICATIONS ?Used for radiation noise suppression for any electronic devices. ?Used to counter common mode noise affecting signals within high-speed lines. ?USB line for personal computers and peripheral equipment. ?IEEE1394 line for personal computers, DVC, STB, etc.?LVDS, panel link line for liquid crystal display panels.TEMPERATURE RANGES PACKAGING STYLE AND QUANTITIES PRODUCT IDENTIFICATION (1) Series name (2) Dimensions L ×W 2012: 2.0×1.2mm (3) Impedance[at 100MHz] 900: 90? (4) Number of line 2P: 2-line 3P: 3-line (5) Packaging style T: ?180mm reel taping TL: ?330mm reel taping RECOMMENDED SOLDERING CONDITIONS RECOMMENDED TEMPERATURE PROFILE FOR LEAD-FREE SOLDER REFLOW PROFILE FOR SOLDER HEAT RESISTANCE Conformity to RoHS Directive Operating –25 to +85°C Storage(After mount) –25 to +85°C Packaging style T ype Reel Quantity T aping ?180mm 2000 pieces/reel ?330mm 10000 pieces/reel ?180mm 2000 pieces/reel ?330mm 10000 pieces/reel ?180mm 1000 pieces/reel ?330mm 5000 pieces/reel ?180mm 500 pieces/reel ?330mm 2000 pieces/reel (1) (2)(3)(4)(5) (6)

共模电感

共模电感 工作原理 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 漏感差模 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当共模电感大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一般也具有一定的差模干扰衰减能力。 在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模电感量,以达到更好的滤波效果。 漏感综述 共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。 为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。 共模电感在制作时应满足以下要求 (1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路; (2)当线圈流过瞬时大电流时,磁芯不要出现饱和; (3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿;

相关文档
最新文档