2013全国中考数学试题分类汇编 轴对称图形

合集下载

(全国100套)2013年中考数学试卷分类汇编 中心对称图形、轴对称图形

(全国100套)2013年中考数学试卷分类汇编 中心对称图形、轴对称图形

中心对称图形、轴对称图形1、(2013年潍坊市)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是().A. B. C. D.答案:A.考点:轴对称图形与中心对称图形的特征。

点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。

.2、(2013•某某)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3、(2013某某)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确;故选D .点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.4、(2013某某某某,7,3分)有五X 卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。

将卡片背面朝上洗匀,从中抽取一X ,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 ( )A. 51B.52 C. 53 D. 54 答案:B解析:既是轴对称图形,又是中心对称图形的有线段、圆,共2X ,所以,所求概率为:525、(2013达州)下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:D解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。

中考数学复习《图形的轴对称》练习题含答案

中考数学复习《图形的轴对称》练习题含答案

中考数学复习图形的轴对称一、选择题1.下列图形中,既是轴对称又是中心对称图形的是( A )A.菱形B.等边三角形C.平行四边形D.等腰梯形2.如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( A )3.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是( B )A.(-3,2) B.(2,-3) C.(1,-2) D.(-1,2)4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为( C ) A.30°B.45°C.60°D.75°,第4题图),第5题图) 5.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l 对称,D为线段BC′上一动点,则AD+CD的最小值是( A )A.4 B.3 2 C.2 3 D.2+ 3【解析】如图,作点A关于直线BC′的对称点A1,连结A1C交直线BC′于点D.由图可知当点D 在C′B的延长线上时,AD+CD最小,而点D为线段BC′上一动点,∴当点D与点B重合时AD+CD值最小,此时AD+CD=AB+CB=2+2=4.故选A.二、填空题6.如图,已知正方形的边长为4 cm ,则图中阴影部分的面积是__8_cm 2__. 【解析】阴影部分面积恰好为正方形面积的一半. 7.如图,将⊙O 沿弦AB 折叠,点C 在AmB ︵上,点D 在AB ︵上,若∠ACB =70°,则∠ADB=__110°__.,第7题图) ,第8题图)8.如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 的周长为__8__.【解析】设DH =x ,则AH =8-x ,由折叠的对称性,可知EH =DH =x ,在Rt △AEH 中,应用勾股定理,得AE 2+AH 2=EH 2,即42+(8-x )2=x 2,解得x =5.由∠QEH =90°,可证明△AHE ∽△BEF ,因此AE BF =AH BE =EH EF ,即4BF =32=5EF ,可以求得BF =83,EF =103,所以△EBF 周长为83+103+2=8. 9.如图,在边长为2的菱形ABCD 中,∠A =60°,点M 是AD 边的中点,连结MC ,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N ,则线段EC 的长为__7-1__.【解析】如图,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12,∴FM =DM ×cos30°=32,∴MC =FM 2+CF 2=7,∴EC =MC -ME =7-1. ,第9题图) ,第10题图)10.如图,∠AOB =60°,点P 是∠AOB 的平分线OC 上的动点,点M 在边OA 上,且OM =4,则点P 到点M 与到边OA 的距离之和的最小值是__23__.【解析】过M 作MN ′⊥OB 于N ′,交OC 于P ,则MN ′的长度等于PM +PN 的最小值,即MN ′的长度等于点P 到点M 与到边OA 的距离之和的最小值,∵∠ON ′M =90°,OM =4,∴MN ′=OM ·sin60°=23,∴点P 到点M 与到边OA 的距离之和的最小值为2 3.三、解答题11.如图,在菱形ABCD 中,∠ABC =45°,点P 是对角线BD 上的任一点,点P 关于直线AB ,AD ,CD ,BC 的对称点分别是点E ,F ,G ,H ,BE 与DF 相交于点M ,DG 与BH相交于点N,求证:四边形BMDN是正方形.解:∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ADB=∠BDC.∵∠ABC=45°,点P关于直线AB,AD,CD,BC的对称点分别是点E,F,G,H,∴∠MBN=∠MDN=90°,∠MBD=∠MDB=45°.∴△BDM是等腰直角三角形.∴∠BMD=90°,BM=DM.∴四边形BMDN是正方形12.在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分)如图所示,请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)解:如图所示:13.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为D,点B的对称点为点C;(2)请直接写出四边形ABCD的周长.解:(1)图略(2)四边形ABCD的周长为AB+BC+CD+DA=5+22+5+32=25+52如图,在边长为1个单位的小正方形所组成的网格中,△ABC 的顶点均在网格上.(1)sin B 的值是__35__; (2)画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应),连结AA 1,BB 1,并计算梯形AA 1B 1B 的面积.解:(2)画图略,由轴对称的性质可得AA 1=2,BB 1=8,高BC =4,S 梯形AA 1B 1B =12(AA 1+B 1B )·BC =12(2+8)×4=20。

全国各地2013年中考数学试题最新分类汇编 命题和证明

全国各地2013年中考数学试题最新分类汇编 命题和证明

命题和证明(2013•某某)下列命题中,真命题是()A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直考点:命题与定理分析:根据位似图形的定义、等腰梯形的性质、正方形的判定、两直线的位置关系分别对每一项进行分析即可.解答:解:A、位似图形一定是相似图形是真命题,故本选项正确;B、等腰梯形既是轴对称图形,不是中心对称图形,原命题是假命题;C、四条边相等的四边形是菱形,原命题是假命题;D、同一平面内垂直于同一直线的两条直线互相垂直,原命题是假命题;故选A.点评:此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.(2013,永州)列说法正确的是( )A. 一组数据2,5,3,1,4,3的中位数是3B. 五边形的外角和是540度C. “菱形的对角线互相垂直”的逆命题是真命题D. 三角形的外心是这个三角形三条角平分线的交点(2013•某某)下列命题是真命题的是()A.无限小数是无理数B.相反数等于它本身的数是0和1C.对角线互相平分且相等的四边形是矩形D.等边三角形既是中心对称图形,又是轴对称图形考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、无限小数不一定是无理数,故原命题是假命题;B、相反数等于它本身的数是0,故原命题是假命题;C、对角线互相平分且相等的四边形是矩形,故原命题是真命题;D、等边三角形是轴对称图形,故原命题是假命题;故选C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.(2013•某某)下列命题中,真命题是A.对角线相等的四边形是等腰梯形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形(2013•某某)下列命题中正确的是()A.函数y=的自变量x的取值X围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等考点:命题与定理.分根据菱形、等腰梯形的性质以及外心的性质和二次根式的性质分别判断得出即可.析:解答:解:A、函数y=的自变量x的取值X 围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、根据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选:D.点评:此题主要考查了菱形、等腰梯形的性质以及外心的性质和二次根式的性质,熟练掌握相关定理和性质是解题关键.(2013•眉山)下列命题,其中真命题是A.方程x2=x的解是x=1 B.6的平方根是±3C.有两边和一个角分别对应相等的两个三角形全等D.连接任意四边形各边中点的四边形是平行四边形(2013•某某)下列命题正确的个数是()①若代数式有意义,则x的取值X围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.4考点:命题与定理.3718684分析:根据有关的定理和定义作出判断即可得到答案.解解:①若代数式有意义,则x的取值X围为x<1且x≠0,原命题错误;答:②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③若反比例函数(m为常数)的增减性需要根据m的符号讨论,原命题错误;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中只有y=x2中偶函数,原命题错误,故选C.本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.点评:(2013•某某)下列几个命题中正确的个数为 1 个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.个人年创利润/万元10 8 5 3员工人数 1 3 4考命题与定理.3718684点:分别根据中位数、众数、平均数、方差等公式以及性质分别计算分析得出即可.分析:解解:①“掷一枚均匀骰子,朝上点数为负”为不可能事件(骰子上各面点数依次为1,答:2,3,4,5,6),故此选项错误;②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92,故此选项正确;③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中甲较乙更稳定,故此选项错误;④根据某部门15名员工个人年创利润数据,第7个与第8个数据平均数是中位数,故“该部门员工个人年创利润的中位数为5万元”,故此选项错误,故正确的有1个.故答案为;1.点评:此题主要考查了命题与定理,根据已知正确分析数据得出中位数是解题关键.(2013•某某)下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是15,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是_____①④___________.(写出所有正确说法的序号)(2013•某某)命题“相等的角是对顶角”是______命题.(填“真”或“假”)【答案】:假.(2013•某某)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平行且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个考点:命题与定理.分析:根据矩形的判定以及圆周角定理、不等式的性质和二次根式的性质分别判断得出即可.解答:解:①若a>b,则c﹣a<c﹣b;原命题与逆命题都是真命题;②若a>0,则=a;逆命题:若=a,则a>0,是假命题,故此选项错误;③对角线互相平分且相等的四边形是矩形;原命题是假命题,故此选项错误;④如果两条弧相等,那么它们所对的圆心角相等,逆命题:相等的圆心角所对的弧相等,是假命题,故此选项错误,故原命题与逆命题均为真命题的个数是1个.故选:D.点评:此题主要考查了矩形、圆周角定理、二次根式、不等式的性质,熟练掌握相关性质是解题关键.(2013•某某)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;答:B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.点评:(2013•某某)下列命题中,真命题是A.对角线相等的四边形是等腰梯形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形(2013聊城)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形考点:命题与定理.分析:根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.解答:解:A.根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.点评:此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.2013•日照)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等; ③点P (1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d 其中正确的是A. ①②B.①③C.②③D.③④答案:B解析:三角形的中线分成两个三角形底边相等,高相同,故面积相等,①正确;两边和两边夹角对应相等的两个三角形才全等,故②错误;③正确;当d =1或d =7时,两圆有一个公共点,故④不正确,选B 。

2013年全国各地中考数学试卷分类汇编:图形的展开和叠折

2013年全国各地中考数学试卷分类汇编:图形的展开和叠折

图形的展开与叠折一、选择题 1.(2013湖北黄冈,7,3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .πB .4πC .π或4πD .2π或4π 【答案】C . 【解析】由图示侧面展开图——矩形联想圆柱形状可得图1和图2两种圆柱.设圆柱的底面圆半径为r ,在图1中有2πr =4π,r =2,所以底面圆的面积为4π;在图2中有2πr =2π,r =1,所以底面圆的面积为π.综上可知圆柱底面圆的面积为π或4π.【方法指导】本题考查空间观念,分类讨论的数学思想方法.解答时,一要理解圆柱和其侧面展开图之间的数量关系.2.注意分两种情况讨论求解.由于本题是选择题型,因了C 、D 这样的两解答案,可以引导学生发现图1和图2两种情况,无形中降低了解题难度.这也启示我们在遇到这种命题结构的选择题时,要严谨、细致的多思量,再下笔.【易错警示】易漏掉一种情况而错选A 或B .如果本题以填空题的面貌呈现,学生较易联想到图1情形而错解为4π. 2.(2013重庆,7,4分)如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( ) A .6cm B .4cm C .2cm D .1cm【答案】C 【解析】由折叠可知,∠BAE =∠B 1AE ,∴∠BAE =∠B 1AE =45°,又∵∠B =45°,∴∠AEB =45°,∴BE =AB =4,∴CE =BC -BE =8-6=2.故选C .【方法指导】本题考查了折叠变换,需明确折叠变换是全等变化,同时综合考查了等腰三角形的判定以及线段的和差问题.轴对称的性质是解决此类问题的关键,轴对称的性质是:对应边和对应角相等,成轴对称的两个图形全等;正确的找出对称边和对称角是我们解题的关键.【易错警示】对折叠的全等性质不能掌握,对结果只能想当然判断.AC BDEB 1(第7题图)图1 图23.(2013四川南充,9,3分)如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.312D.错误!未找到引用源。

2013年中考数学模拟试题分类16:简单的图形变换

2013年中考数学模拟试题分类16:简单的图形变换

2013年中考数学模拟试题汇编简单的图形变换例1 如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.(2)若点N在(1)中的⊙P′上,求PN的长.考点:作图-轴对称变换;直线与圆的位置关系.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等找出点P′的位置,然后以3为半径画圆即可;再根据直线与圆的位置关系解答;(2)设直线PP′与MN相交于点A,在Rt△AP′N中,利用勾股定理求出AN的长度,在Rt△APN中,利用勾股定理列式计算即可求出PN的长度.解答:解:(1)如图所示,⊙P′即为所求作的圆,⊙P′与直线MN相交;(2)设直线PP′与MN相交于点A,在Rt△AP′N中,==在Rt△APN中,==.点评:本题考查了利用轴对称变换作图,直线与圆的位置关系,勾股定理的应用,熟练掌握网格结构,准确找出点P′的位置是解题的关键.例2 如图,梯形ABCD是直角梯形.(1)直接写出点A、B、C、D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形,使它与梯形ABCD构成一个等腰梯形.(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)考点:作图-轴对称变换;直角梯形;等腰梯形的性质;作图-平移变换.分析:(1)根据A,B,C,D,位置得出点A、B、C、D的坐标即可;(2)首先求出A,B两点关于y轴对称点,在坐标系中找出,连接各点,即可得出图象,(3)将对应点分别向上移动4个单位,即可得出图象.解答:解:(1)如图所示:根据A,B,C,D,位置得出点A、B、C、D的坐标分别为:(-2,-1),(-4,-4),(0,-4),(0,-1);(2)根据A,B两点关于y轴对称点分别为:A′(2,-1),(4,-4),在坐标系中找出,连接各点,即可得出图象,如图所示;(3)将对应点分别向上移动4个单位,即可得出图象,如图所示.点评:此题主要考查了图形的平移和作轴对称图形,根据已知得出对应点的坐标是解题关键.。

2013年中考数学知识点:轴对称——轴对称图形测试题

2013年中考数学知识点:轴对称——轴对称图形测试题

八年级数学 轴对称图形(测试内容:第一章 轴对称图形)班别 座号 姓名 成绩说明:1.可以使用计算器,但未注明精确度的计算问题不得采取近似计算,建议根据题型特点把握好使用计算器的时机.2.本试卷满分100分,在90分钟内完成.相信你一定会有出色的表现!一、填空题:本大题共10小题;每小题3分,共30分.请将答案填写在题中的横线上. 1.如果两个图形关于某一条直线对称,那么连结对称点的线段被________________垂直平分.2.如图,是一个轴对称图形,对称轴为直线l .图中A 、D 、E 关于直线l 的对称点分别是___________,图中长度相等的线段是_____________________ ________________________________________.3.到线段的两个端点的距离相等的点有_______个,一条线段的垂直平分线有_________条.4.如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是 .5.在等边三角形ABC 中,AD 是BC 上的高,则∠BAD = . 6.等边三角形的两条高线相交所成的钝角的度数是 . 7.在镜中看到的一串数字是“”,则这串数字是 . 8.如图,AB =AC ,∠1=∠2,BD =3cm ,那么BC 的长为 cm . 9.如图,等边三角形ABC 的三条中线交于点O .则图中除△ABC 还 有____________________________________________是等腰三角形. 10.如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点O ,图中全等的三角形是 .309087C二、选择题:本大题共8小题;每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内.每小题选对得3分,选错,不选或多选均得零分.11. ······························································································································ 下列是我国四大银行的商标,其中不是轴对称图形的是 ·················································· ( ).(A ) (B ) (C ) (D )12.下列图形不一定是轴对称图形的是 ······························································( ). (A )线段 (B )正方形 (C )半圆 (D )三角形 13.正五角星的对称轴有( ).(A )1条(B )2条(C )5条(D )10条14.已知△ABC 的周长为24,AB =AC ,AD ⊥BC 于D ,若△ABD 的周长为20,则AD 的长为( ). (A )6 (B )8 (C )10 (D )12 15.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于( ). (A )12 (B )12或15 (C )15 (D )15或18 16.已知等腰三角形的周长为24,腰长为x ,则x 的取值范围是( ).(A )x >12(B )x <6(C )6<x <12(D )0<x <1217.如图,等边三角形ABC 中,AD 是BC 上的高,取AC 的中点E ,连结DE ,则图中与DE 相等的线段有 ··························· ( ). (A )1条 (B )2条(C )3条(D )4条18.如图,在△ABC 中,点O 是∠ABC 的平分线与线段BC 的垂直平分线的交点,则下列结论不一定...成立的是 ····················· ( ). (A )OB =OC (B )OD =OF(C )OA =OB =OC(D )BD =DC三、解答题:本大题共4小题,共46分.解答应写出文字说明或演算步骤.19.(10分)(1)请仔细观察图形(阴影部分),指出所给虚线中哪些是图形的对称轴?ABE(2)下列图形是轴对称图形吗?如果是,分别画出它们的对称轴.20.(12分)(1)在数学课上,老师提出了一个问题:“角是轴对称图形吗?如果是,那么它的对称轴是什么?”小明同学马上举手回答:“角是轴对称图形,角平分线就是它的对称轴.”同学们,小明同学的回答有正确吗?为什么?(2)如图,在△ABC 中,∠C =90°,用刻度尺及量角器分别作出AC 、BC 边的垂直平分线,并说明它们的交点与斜边AB 的关系.21.(12分)(1)如图,已知AD 是线段BC 的垂直平分线,且BD =3cm ,△ABC 的周长为20cm ,求AC 的长.(2)如图,在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.22.(12分)已知:如图,在等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,垂足为O ,AC =8cm.求梯形ABCD 的面积.BEA八年级数学参考答案一、填空题:(每小题3分,共30分)1.对称轴;2.B、C、E,CE=DE,CF=DF,AC=BD,AF=BF;3.无数,且只有1;4.20°;5.30°;6.120°;7.309087;8.6;9.△AOB、△AOC、△BOC;10.△ABC≌△DCB、△ABD≌△DCA、△ABO≌△DCO.二、选择题:(每小题3分,共24分)三、解答题:19.解:(1)d;(2)都是轴对称图形,作图略.20.解:(1)有错误的地方,错误出现在“角平分线就是角的对称轴”因为对称轴是一条直线,而角平分线是一条射线.对称轴应该说是角平分线所在的直线;(2)作图略,AC、BC边的垂直平分线的交点恰好是斜边AB的中点.21.解:(1)7cm;(2)20°.22.解:32cm2.提示:梯形ABCD的面积=△ACD和面积+△ACB的面积=12×AC×OD+12×AC×OB=12×AC×(OD+OB)=12×AC×DB=32cm2;或将对角线AC平移到DE,交BC的延长线于E,于是得△DCE≌△BAD,所以△BDE的面积等于梯形ABCD的面积.。

2013年中考数学模拟试题分类汇编47:中心对称图形

2013年中考数学模拟试题分类汇编47:中心对称图形

2013中考数学中心对称图形模拟试题及答案
例1 下列图形中,是中心对称图形,但不是轴对称图形的是()
A.B.C.D.
考点:中心对称图形;轴对称图形.
分析:依据轴对称图形与中心对称的概念即可解答.
解答:解:B选项是轴对称也是中心对称图形,C、D选项是轴对称但不是中心对称图形,A 选项只是中心对称图形但不是轴对称图形.
故选A.
点评:对轴对称与中心对称概念的考查:
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
例2
下列图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
考点:中心对称图形;轴对称图形.
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.
解答:解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;
C、此图形是中心对称图形,也是轴对称图形,故此选项正确;
D、此图形是中心对称图形,不是轴对称图形,故此选项错误.
故选C.
点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.。

2013年全国中考数学试题分类解析汇编专题60代数几何综合(含答案)

2013年全国中考数学试题分类解析汇编专题60代数几何综合(含答案)

专题60代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<16<4。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC ==B 1,0),∴31,k k == ;③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k 10== 。

∴能使△ABC 为等腰三角形的抛物线的条数是3条。

故选B 。

3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2013•郴州)在图示的方格纸中
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
球时,必须保证∠1的度数为( )
A .30°
B .45°
C .60°
D .75°
考点:生活中的轴对称现象;平行线的性质.
分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.
解答:解:要使白球反弹后能将黑球直接撞入袋中, ∠2+∠3=90°, ∵∠3=30°, ∴∠2=60°, ∴∠1=60°. 故选C .
点评:本题是考查图形的对称、旋转、分割以及分类的数学思想. (2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是( )
(2013•潜江)如图,在△ABC 中,AB =AC ,∠A =
120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为 A .4cm
B .3cm
C .2cm
D .1cm
(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC 的周长为17cm,则BC的长为()
...
点A在第一象限且AB⊥BO,点E是线段AO的中点,点M
在线段AB上.若点B和点E关于直线OM对称,且则点M
的坐标是( ,) .(1,3)
(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.
(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B
的坐标为(3,点C 的坐标为(1
2
,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为
A B
C
D .
(2013•宿迁)在平面直角坐标系xOy 中,已知点(01)A ,
,(1,2)B ,点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 ▲ .
(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,
),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的
最小值为( )
...

,OB=2
×
AM=
×
AD=,由勾股定理得:,(
﹣=1
DC=
的最小值是
(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.
【答案】:6.
(2013•日照)下面所给的交通标志图中是轴对称图形的是
答案:A
解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。

(2013泰安)下列图形:其中所有轴对称图形的对称轴条数之和为()
A.13 B.11 C.10 D.8
考点:轴对称图形.
分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;
第二个图形是轴对称图形,有2条对称轴;
第三个图形是轴对称图形,有2条对称轴;
第四个图形是轴对称图形,有6条对称轴;
则所有轴对称图形的对称轴条数之和为11.
故选B.
点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
(2013杭州)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
考点:轴对称图形.
分析:根据轴对称的定义,结合各选项进行判断即可.
解答:解:A.不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.不是轴对称图形,故本选项错误;
D.是轴对称图形,故本选项正确;
故选D.
点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.
(2013•台州)下列四个艺术字中,不是轴对称的是()
(2013•广东)下列图形中,不是
..轴对称图形的是 C
(2013•广州)点P在线段AB的垂直平分线上,P A=7,则PB=______________ . (2013•哈尔滨)如图。

在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)请直接写出四边形ABCD的周长.



(2013•临沂)如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是(

,。

相关文档
最新文档