非线性电路课程报告-蔡氏电路的Matlab仿真研究

合集下载

非线性电路的MapleSim仿真实验

非线性电路的MapleSim仿真实验
( 4 1 0 1 2 8 )。
3 )静态工作点稳 定电路:可演示放大 电路中负反馈对 电路 的影 响,通过短路块可将反馈 电阻 R e接入 电路或短接, 观 察负 反馈对 放大 电路 的影 响; 改变 负载 阻值 ,观 察波形
幅度变 化。
在 理论教 学 的同时进 行辅助 实验演示 ,将实验 结果 通过虚 拟 示波器 传至 多媒体 计算机 投影 显示 。通 过演示 实验 ,使 得 课堂 教学能够 理论 联系 实际,理论 讲授过 程变得 直观 生 动,利用 学生 的探究 心理 ,提 高学生 的学 习兴趣 ,加深 学 生对 知识点 的理解 ,对 于提 高课堂教 学效 果的优 化增强 具 有重要的作用 。 参考文献 [ 1 ]张婧 , 朱骏 . 虚拟示 波器在物 理实验教学中的应用 [ J ] .
1 蔡 氏电路简介
2 O世纪 8 O 年代 ,非线性电路中陆续发现各种分岔和混
: I : 基 金 项 目:湖 南农 业大 学 东方科 技学 院教 改项 目 ( D B 2 0 1 1 0 5 3 )。 作 者 :赵 凡 ,硕 士 ,湖南 农业 大 学 东方 科技 学 院理 工 学部 实验 师 ,研 究 方 向为 理论 物理 学 ;汤 剑锋 ,湖 南 农业 大 学 东方 科技 学 院
文 章编 号 :1 6 7 卜4 8 9 X ( 2 0 1 4 ) 0 4 一 O 1 1 4 — 0 3
随着计算机科学 的发展 , 人们意识到计算机仿真技术 是
非线性科学包括 3个主要部分:孤立波 、混沌 、分 形。 传 统实验 教学方法 的有益 补充 。以往 文献探 讨 了 M a t l a b 、 讨M a p l e S i m仿 真软件在 实验 教学 中运 用的文献 。M a p l e S i m 是一个 多领域 物理 的仿真建 模软件 ,具有 图形化 的仿真 环 境,用户可通过简单和直观 的方式完成各种系统 的建模 、分 析和 仿真 。M a p l e S i m基于 M a p l e数学 引擎 ,使用 M a p l e中 的高 级符号计 算功 能生成物 理系 统的数 学模型 ,能有效 地 管理 和简化 复杂系 统 的数 学模 型,实现 系统 的高保 真、高 速仿 真,相 比于其他 仿真 软件有其 独特 的特 点。本文 以蔡 氏电路为例 ,说 明 M a p l e S i m在混沌 电路实验教学 中的应用 。

基于蔡氏电路的MATLAB仿真

基于蔡氏电路的MATLAB仿真
【关键词】: 蔡氏电路:双涡卷混沌吸引子
1、引 言 作为一种普遍存在的非线性现象, 混沌的发现对科学的发
展 具 有 深 远 的 影 响[1 ,2 ].混 沌 行 为 是 确 定 性 因 素 导 致 的 类 似 随 机 运动的行为,即:一个可由确定性方程描述的 非 线 性 系 统,其 长 期 行为表现为明显的随机性和不可预测性, 我们就认为该系统存 在 混 沌 现 象.混 沌 具 有 三 个 特 点[1-3 ]:随 机 性;遍 历 性;规 律 性.混 沌 有 一 个 很 重 要 的 性 质:系 统 行 为 对 初 始 条 件 非 常 敏 感.近 年 来 许 多学者通过非线性电路对混沌行为进行了广泛地研究, 其中最 典型的是蔡氏电路[4-7],它是能产生混沌行为的最 小 、最 简 单 的 三 阶自治电路. 2、蔡 氏 电 路 模 型

a0 = 0.8, a1 = 0.1
初始值为:[0.1,0.1,0.1],其仿真如图 3 所示. 在 2005 年,W ei Lin 等 提 出 一 种 新 型 的 蔡 氏 电 路 简 化 后 无
量 纲 的 标 准 型 [8]:
(2)
其中,
g ( x )
=
m0 x
+
1 2
(m1
- m0 )(
x +1
参考文献: 1.盛昭瀚,马军海.非线性动力系统分析引论[M ].科学出版社,2001 2.胡岗,萧井华,郑志刚.混沌控制[M ].上海科技教育出版社,2000. 3.曹建 福 ,韩 崇 昭 ,方 洋 旺.非 线 性 系 统 理 论 及 应 用[M ].西 安 交 通 大 学 出 版 社 ,2001 4.J C Sprott. C om plex B ehavior of Sim ple System [C ].InternationalC onfer- ence on com plex System s,2000. 5.M T Y assen.A daptive control and synchronization of a m odified C hua's circuit system [J].A pplied M athem atics and C om putation,2001,(11):1- 9. 6.T zuyin W u,M in - Shin C hen.C haos control of m odified C hua's circuit system [J].Physics D ,2002,(2867):1- 6. 7.A S Elw akil,M P K ennedy.C hua's circuit decom position:a system atic de- sign approach for chaotic oscillators [J].Journal of the Franklin Institute, 2000,(337):251- 265. 8.W ei Lin and Y angbo H e. C om plete synchronization of the noise- per- turbed C hua's circuits C haos 15,023705 (2005)

蔡氏电路MATLAB混沌仿真

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌仿真研究班级:姓名:学号:摘要本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。

通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。

最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。

关键词:混沌;蔡氏电路;MATLAB仿真AbstractThis paper introduces the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed.Key words:chaos phenomenon;Chua’s circuit;Simulation1、引言混沌理论的基本思想起源于20世纪初,完善于20世纪60年代后,发展壮大于20世纪80年代,被认为是继相对论、量子力学之后,人类认识世界和改造世界的最富有创造性的科学领域第三次大革命。

matlab仿真实验报告

matlab仿真实验报告

matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。

本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。

实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。

该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。

我们将通过Matlab对该电路进行仿真,以了解其放大性能。

实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。

这些参数将作为Matlab仿真的输入。

2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。

可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。

3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。

可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。

4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。

可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。

实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。

可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。

2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。

通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。

讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。

通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。

非线性电路分析-蔡氏电路仿真

非线性电路分析-蔡氏电路仿真

蔡氏电路
电路由 1 个线性电感 L、 2 个线性电容 C1、 C2,1 个线性电阻 R0,1 个非线性电阻 R 构成,为三阶自治动态电路, 即分为 LC 振荡电路、 RC 分相电路和非线性元件三部分。电阻 R0 起调节 C1、 C2 的相位差。 非线性电阻 R 为分段线性电阻, 伏安特性 iR= g( uR) ,如图 2 所示。
参考文献
[1]吴淑花, 孟玮德, 马志春. 蔡氏电路的实验与仿真研究[J]. 石 家庄学院学报, 2019(6). [2]戚慧珊, 杨明健, 刘百钊,等. 蔡氏混沌电路实验的改进设计 [J]. 大学物理实验, 2019, 32(02):69-7 [3]吕恩胜, 黄双成. 蔡氏电路的等效电路设计及其应用[J]. 电子 器件, 2014, (5):891-895.4.
基于Multisim的蔡氏电路 混沌现象仿真研究
混沌现象
自治电路:不包含随时间变化的激励信号的电路 非自治电路:包含随时间变化的激励信号的电路
混沌是一种确定系统中出现的貌似不规则的有序运动
混沌电路:由确定性运动方程所描述的确定性电路,由直流或确定 性信号所激励,其输出波形中包含一段或多端连续频谱的电路
先将 R7 调到最大(2kΩ),然后逐渐减小 R7 的值,观察 R7 在减小的过程 中各个示波器的波形变化。
单周期,R7=1960Ω
双周期,R7=1760Ω
单漩涡,R7=1680Ω
双漩涡,R7=1520Ω
极限环,R7=1320Ω
总:利用Multisim可以直观的观察电路结构,更好的分析仿真结果
根据文献[1], 图 1 中非线性电阻 R 的等效电路可由图 3 所示的电路并 联得到, 等效电路如图 5 所示,为 有源负阻非线性电阻,其作用是使 振动周期生分岔和混沌等一系列非 线性现象。

蔡氏电路仿真报告

蔡氏电路仿真报告

非线性电路理论及应用课程作业XXXXXXXXX蔡氏对偶混沌电路仿真报告一、蔡氏对偶混沌电路分析应用一个三阶自治电路进行仿真,电路如图1所示,其中包含一个电流控制型的非线性电阻元件,其伏安特性关系如图2所示。

L 2L 2i 1CR 2u r u c+-+-i 2i-2-1120.20.1-0.1-0.2O u r /Vi 1/A图1 蔡氏对偶电路 图2 流控型非线性电阻伏安特性对于图1中所示的电路,其状态方程推导如下:2c c 21022112011d d )(d d )()(d d i t uC u i i R t iL i r i i R t i L -=+-=--= 整理上述各式得2c c 22120211121011d d 1)(d d )(1)(d d i Ct u u L i i L R t i i r L i i L R t i -=+-=--=为分析方便,对方程进行归一化处理 令20()L t R τ=,t L Rd d 20=τ 且令 120,,c x i y i z u R ===则上述各方程变为y CR L t z z y x t yx r x y L L t x 0212d d d d )]([d d -=+-=--=上述方程中,将时间τ任记为t ,则方程变为标准蔡氏方程,即为:y tzz y x t yx f y t xβα-=+-=-=d d d d )]([d d 其中21L a L =,220L b CR = 001()()0.5()(11)r x f x m x m m x x ==+-+--二、计算机仿真1、参数设置上述蔡氏对偶电路的微分方程描述的动态系统关于原点对称,对应于分段线性电流控制型电阻的特性,若将f (x )特性分为三段考虑,即为⎪⎩⎪⎨⎧-≤--≤≥-+=1)(1||1)()(1010101x m m x m x x m x m m x m x f为了进行计算机仿真计算分析,我们令 8001.0008.012===L L α,5.121104.6008.0402=⨯⨯==-CR L β 而取2.0510-=-=m ,4.0521==m取初始值为(0.025,-0.022,0.8)应用MATLAB 进行仿真。

三阶蔡氏电路matlab仿真代码

三阶蔡氏电路matlab仿真代码

一、背景介绍三阶蔡氏电路是一种经典的电路结构,在信号处理、滤波等领域有着重要的应用。

利用MATLAB对三阶蔡氏电路进行仿真分析,可以帮助工程师和研究人员更好地理解电路的特性和行为,对于电路设计和优化具有重要意义。

二、三阶蔡氏电路的基本原理三阶蔡氏电路由三个积分器和两个比例放大器组成,是一种具有强大信号处理能力的电路结构。

它可以用于实现各种滤波器,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

在电子电路和通信系统中有广泛的应用。

三、MATLAB仿真环境的搭建1. 安装MATLAB软件,并确保其正常运行。

2. 新建一个MATLAB脚本文件,用于编写三阶蔡氏电路的仿真代码。

3. 导入必要的工具箱和函数库,确保能够进行电路仿真分析所需的基本操作和函数调用。

四、三阶蔡氏电路的参数设置1. 根据具体的电路结构和设计要求,设置电路的参数,包括电阻值、电容值、放大倍数等。

2. 考虑电路中可能存在的噪声以及非线性元件的影响,进行适当的参数修正和补偿。

五、三阶蔡氏电路的MATLAB仿真代码实现1. 编写三阶蔡氏电路的节点方程,建立电路的数学模型。

2. 利用MATLAB的数值计算工具,如ode45函数等,对电路进行仿真计算。

3. 对仿真结果进行分析和后处理,得到电路的频率响应、相位特性等重要信息。

六、仿真结果与分析1. 利用MATLAB绘制三阶蔡氏电路的幅频特性曲线和相频特性曲线,观察电路的频率响应特性。

2. 对比不同参数设置下的仿真结果,分析电路性能随参数变化的规律和特点。

3. 考虑电路可能存在的非线性特性,对其进行深入分析和讨论,为实际应用提供参考依据。

七、结论与展望通过MATLAB对三阶蔡氏电路的仿真分析,我们深入了解了电路的特性和行为。

这对于电路的设计和优化具有重要意义。

在未来的研究中,可以进一步探究电路在实际应用中的性能表现,以及对其进行更加精细的仿真和分析。

也可以考虑将仿真结果与实际测试数据进行对比,验证仿真模型的准确性和可靠性。

蔡氏电路数值仿真图像与实测图像的对比研究

蔡氏电路数值仿真图像与实测图像的对比研究

关 键 词: 蔡氏电路ꎻ混沌ꎻMATLABꎻ数值仿真ꎻ实测图像ꎻ结果对比
中图分类号: O 4 ̄34源自文献标志码: ADOI:10.14139 / j.cnki.cn22 ̄1228.2018.04.014
混沌现象是一种广泛存在且长期表现出不可 预测的非线性行为ꎮ 混沌具有三个特点:规律性、 遍历性、随机性[1ꎬ2] ꎮ 随着计算科学和社会科学 的发展ꎬ混沌的不可预测性与规律性使其成为了 物理、数学等众多学科领域的一个热点研究课题ꎮ 近年来ꎬ非线性电路是许多学者研究混沌的重要 途径之一ꎬ其中一个最典型的非线性电路就是三 阶自治蔡氏电路( Chua’ s circuit) [3] ꎮ
在此基础上ꎬ蔡少棠教授提出了一个将物理 模型与数学模型相结合的典型混沌系统—蔡氏电 路ꎮ 它是一个三阶自治电路ꎬ包含两个电容 C1、 C2ꎬ一个电感 Lꎬ一个线性电阻 R 及一个非线性电 阻元件 RN( 也称作蔡氏二极管) [3] ꎮ 蔡氏电路物 理模型如图 1 所示:
在蔡氏电路模型中ꎬ非线性电阻元件 RN 可
MATLAB 平台下描述蔡氏电路的混沌图像ꎮ 为了更好的与实测图像进行对比分析ꎬ我们
设置数值仿真的初始参数与真实实验电路中的参 数保持一致即:电容 C1 值为 0.022 μF、电容 C2 值 为 0.1 μF、电感 L 为 10 mHꎬ电阻 R 的变化范围设 置在 0 ~ 3 KΩꎮ
图 3 实际电路图
下图 4 所示的就是在电容 C1 值为 0.022 μF、 电容 C2 值为 0.1 μF、电感 L 为 10 mH 的条件下ꎬ 电阻 R 阻值从 3 KΩ 减小至 0 KΩ 的过程中所得 到的混沌图像:
实测结果分析: 如上图 4 所示ꎬ非周期变化的混沌行为中存 在一倍周期ꎬ单吸引子等混沌图像ꎻ但是很难观测 到清晰的二倍周期和双吸引子等混沌图像ꎬ这主 要由于通过调节滑动变阻器我们不能给定这些特 殊混沌图像所需的电阻 R 的精确参数值[6] ꎮ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交通大学电气工程学院
非线性电路报告蔡氏电路的Matlab仿真研究
Administrator
蔡氏电路的Matlab仿真分析
摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。

从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。

蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。

在Matlab 的平台上编制相关系统
对蔡氏电路进行了仿真研究。

关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子
引言
随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。

而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。

在这个电路中观察到了混沌
吸引子。

蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路过计算机仿真和示波器观察到。

经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。

在理论和实践不断取得进展时,
人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。

1混沌概念及其相关特征
1.1混沌和吸引子的定义
混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。

(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。

(3)在轨道线存在的相空间的某一特定的有界部分,轨道线具有遍历性和混合性。

遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。

混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。

若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。

吸引子无外乎两种状态,即单个点和稳定极限环。

系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。

奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。

奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。

它具有自相似性,同时具有分形结构。

奇异吸引子是混沌运动的主要特征之一。

奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和雅普诺夫不稳定性)有着密切关系,它具有不同属性的外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子的运动都互相排斥,对应于“不稳定”方向。

1.2混沌的基本特征
混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统部各变量之间的强非线性耦合。

因此,其输出的随机信号在理论上是可以精确重复的。

二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。

混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。

2蔡氏电路与非线性负电阻的实现
2.1蔡氏电路的构成
蔡氏电路是一个典型的混沌电路。

蔡氏电路实验电路图如图1所示。

电路中的电感L 和电容C 1、C 2并联构成一个振荡电路。

R 是一个有源非线性负电阻元件,电感L 和电容C 2组成一损耗可以忽略的谐振回路;可变电阻R 和电容C 1串联将振荡器产生的正弦信号移相输出。

图1.蔡氏电路图
图2.有源非线性负电阻伏安特性曲线
蔡氏电路的状态方程式为:
C 1dUc 1/dt=G (Uc 2-Uc 1)-gUc 1
C 2dUc 2/dt=G(Uc 1-Uc 2)+i L
Ldi L /dt= -Uc 2
式中U C1,U C2分别为电容C 1,C 2上的电压;i l 为电感L 上的电流,G=1/R 0为电导;g 为R 的伏安特性函数。

当R 为线性电阻时,g 为常数,电路为一般振荡电路,此时把C 1和C 2两端的电压分别输入到示波器的x,y 轴,显示的图形是椭圆形;当R 为非线性负电阻时,其伏安特性如图2,此时把C 1 和C 2两端的电压分别输入到示波器的x,y 轴,调节G 的值就会观察到不同的混沌现象。

3蔡氏电路的Matlab 仿真分析
以下是蔡氏电路平衡点出的仿真。

为了进行计算机仿真分析,我们令
2
71L L α==,22100L CR β==
取2.00-=m ,4.01=m 。

设置的初值[0.1;0.1;0.1],仿真时间为[0,200]。

蔡氏电路的仿真程序如下:
function simulation_chua
clc;
clear;
[t,y]=ode45(chua,[0,200],[0.1;0.1;0.1]);
figure;
plot3(y(:,1),y(:,2),y(:,3));
xlabel('X');
ylabel('Y');
zlabel('Z');
figure;
plot(t,y(:,1),'-');
xlabel('t');
ylabel('X');
title('Chua system ');
figure;
plot(t,y(:,2),'-');
xlabel('t');
ylabel('Y');
title('Chua system ');
figure;
plot(t,y(:,3),'-');
xlabel('t');
ylabel('Z');
title('Chua system ');
figure;
plot(y(:,1),y(:,3))
figure;
plot(y(:,1),y(:,2))
figure;
plot(y(:,2),y(:,3));
xlabel('il1'),ylabel('uc'),zlabel('1')
grid
function dy=chua(t,y)
ga=-0.2; gb=0.4; bp=1;
aa=7; bb=10;
a=0.5;
ia=gb*y(1)+a*(ga-gb)*(abs(y(1)+bp)-abs(y(1)-bp)); dy=[ aa*(y(2)-ia)
y(1)-y(2)+y(3)
-bb*y(2)];
仿真结果如下图:
4混沌电路的几种应用
基于混沌电路的特性,它在许多领域中有重要的应用。

但由于目前混沌学仍处于研究阶段,故其应用并不完善,出现的一些问题还有待解决。

1.通信中的应用:使强度更大的混沌信号和真实信号同步,由于混沌信号具有信号频谱宽、类似噪声、随机不可预测等特性,当真实信号被混沌信号所掩盖时,攻击者就很难从传输信号中分离出原始真实信号。

另外要求收发两端使用相同的混沌系统以及系统参数和状态初值,使系统同步并输出相同的混沌信号,以便正确地恢复信号[5]。

2.自动控制中的应用:考察非线性混沌系统的输出信号与输入信号的自反馈耦合,或者从系统外部强迫注入某一周期信号,或者直接将系统自身的输出信号取出一部分经过一定的时间延迟后再反馈到原混沌系统中去.作为控制信号,通过调节控制因子及控制信号的大小实现稳定控制。

3.传感应用:混沌具有初值敏感性, 当其结构参数稳定时,初始值与动力轨道在一定的时间是一一对应的, 而且对于微小的初值变化, 其运动轨迹就会出现指数分离。

若初值细微变化是由混沌系统中的传感元件随被测参数变化而引起的, 则轨迹之间的巨大差异就能直接反映被测参数的大小。

这种混沌型传感器具有很高的灵敏度和分辨率, 特别适用于微应变、微应力的测量;微量变化物参数的测量。

相关文档
最新文档