基于通信的列车控制系统CBTCppt课件

合集下载

城轨列控系统简述PPT课件

城轨列控系统简述PPT课件
实现ats和其他cbtc子系统间信息的双向传输10系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网车载atpato精确定位计算速度曲线并监督执行11系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网进路锁闭开放信号后备控制12系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网进路控制时刻表列车识别追踪和调整13系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网ats本地控制14系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网dcs通信网络系统间的有线通信和车地无线通信15系统架构和组成系统架构和组成cbtc系统结构图信标microlokii联锁控制器信号机tags信标轨旁无线接入ap车载无线接入ap道岔mr车载控制器ccatslcw现地控制工作站zc区域控制器frontamdsu数据存储单元控制中心ats接入交换机接入交换机ip以太网列车定位校准向cc传递信号机显示信息16系统架构和组成系统架构和组成atsats子系统子系统ats子系统采用的是集中后备的结构networkswitches网络交换机networkswitches网络交换机x2

基于通信的列车控制系统(CBTC)

基于通信的列车控制系统(CBTC)

基于通信的列车控制系统(CBTC)摘要:基于通信的列车控制系统CBTC是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。

本文介绍了该系统的结构、特点及功能。

关键词:基于通信列车控制城市轨道交通中,基于通信的列车控制系统CBTC(Communication Based Train Contrl)是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。

典型的基于通信的列车控制系统(CBTC)的结构框图如图所示。

由图可见,整个CBTC系统包括CBTC地面设备(含联锁)和CBTC车载设备,地面和车载设备通过“数据通信网络”连接起来,构成系统的核心。

CBTC设备和ATS设备共同构成了基于通信的移动闭塞ATC系统。

列车控制系统(CBTC)的结构框图一、系统结构西门子的CBTC系统由VICOS、SICAS、TRAINGUARD MT三个子系统组成。

它们分为中央层、轨旁层、通信层、车载层四个层级,分级实现ATC功能。

中央层分为中央级和车站级。

在中央级,实现集中的线路运行控制;在车站级,为车站控制和后备模式的功能,提供给车站操作员工作站(LOW)和列车进路计算机(TRC)。

轨旁层沿着线路分布,由SICAS计算机联锁、TRAINGUARD MT系统、信号机、计轴器和应答器等组成,共同执行所有的联锁和轨旁ATP功能。

通信层在轨旁和车载设备之间提供连续式或点式通信。

车载层完成TRAINGUARD MT的车载ATP和ATO功能。

二、系统功能系统的功能包括ATS功能、联锁功能、ATP/ATO功能、列车检测功能、试车线功能、培训和模拟功能。

1.ATS功能ATS除了自动进路排列(ARS)功能、自动列车调整(ATR)功能、列车监督和追踪(TMT)、时刻表(TIT)、控制中心人机接口(HMI)和报告、报警与文档等主要功能外,还改进和增加了以下功能:在CTC通信级使用双向通信通道;在ATS后备模式下车站级可以输入车次号;适应移动闭塞的控制要求;TRC(列车进路计算机)取代RTU的自动进路排列功能;提供独立的冗余局域网段;在ATS显示列车状态信息;与MCS(主控系统)的接口;与车辆段联锁的接口;提供操作日志(含故障信息)的归档功能;设两个控制中心;车辆段调度员ATS工作站进行出库列车自动预先通知,在规定时间无列车在车辆段转换轨时自动报警。

基于通讯的列车控制(CBTC)PPT课件

基于通讯的列车控制(CBTC)PPT课件

精选ppt课件2021
28
• WCU_TTS
• Trainguard MT的非安全轨旁控制单元,为各 种类型的ATS提供所有列车的表示以及中央 服务和诊断系统。
精选ppt课件2021
29
• 通信设备(轨旁)
• 轨旁通信设备是非安全范畴的设备,它以 无线方式持续为车 – 地之间传输信号。
精选ppt课件2021
• 连续通信级(即CTC):ATP/ATO驾驶,通 过无线通道实现地 - 车之间的双向连续通信。
精选ppt课件2021
15
地对车的通信等级
CTC
列车连续控制
移动闭塞 无线电双向数据通信
过轨旁控制单元获得移动授权(连续通讯)
ITC
列车点式控制
IXL
联锁级控制
固定闭塞 单向数据通信 通过应答器获得移动授权
30
• 应答器
• 使用两种应答器,固定数据应答器(用于 列车定位)或可变数据应答器(用于点式 通信)。固定数据应答器是一个独立的单 元。可变数据应答器通过轨旁电子单元 (LEU)和信号机相连。
精选ppt课件2021
31
• LEU
• 轨旁电子单元是信号机和可变数据应答器 之间的接口。它评估信号机的显示并为可 变数据应答器产生报文。
• 在固定划分的闭塞分区中,每一个分区均
有最大速度限制。ATP 地面设备以一定间隔
精选ppt课件2021
3
• 传统的固定闭塞制式下,系统无法知道列 车在分区内的具体位置,因此列车制动的 起点和终点总在某一分区的边界。为充分 保证安全,必须在两列车间增加一个防护 区段,这使得列车间的安全间隔较大,影 响了线路的使用效率。
• 一组车载无线传输单位,每辆列车分别于 首尾安装一个而成对出现。这些传输单位 通过串行线连接至Trainguard MT的车载控制 单元。

西门子CBTC信号系统PPT演示文稿

西门子CBTC信号系统PPT演示文稿
Printer LOW
TRC
S&D
13
列车自动监督子系统
➢列车监视和追踪 ➢列车自动调整 ➢时刻表系统 ➢控制中心HMI ➢车站操作员工作站LOW ➢事件列表 — 报警和消息列表
14
无线传输系统(Radio)
此无线通信系统(名为RailCom Wireless)使 TRAINGUARD®MT列车控制系统可以在轨旁、 中央和车载设备之间进行通信,该通信使用标准 网际协议(IP)寻址机制。 此系统使用基于RailCom Wireless宽带通信平台派 生出的无线局域网(WLAN)技术。此系统同时 也是在西门子车地通信综合管理概念(ITTCom) 的基础上形成的。 ITTCom提供多程序并行应用的无缝集成,包括安 全相关的应用程序(列车自动保护等),自动化 应用程序(列车自动运行,列车自动监督等), 以及维护应用程序(远程诊断等)
西门子CBTC信号系统
基于无线传输的移动闭塞列车控制系统
1
移动闭塞列车控制系统
计算机联锁子系统 (IL) 列车自动防护子系统 (ATP) 列车自动驾驶子系统 (ATO) 列车自动监督子系统 (ATS) 无线传输系统(Radio)
2
中央
轨旁 通信 车载
系统结构
列车自动监督
TR A IN G U A R D M T
RPS Server
Rear Projection System
FEP
PIIS, DTI, etc.
Line Printer
Color Laser Color Laser
Printer
Printer
SICLOCK
Master Clock
TCP/IP
TRAINGUARD MT SICAS ECC

列车运行控制系统PPT课件

列车运行控制系统PPT课件

第一章 基本概念与术语(3)
n 准移动闭塞 (Distance-To-Go):线路被划分为固定位置、某一长度的闭塞 分区,一个分区只能被一列车占用,闭塞分区的长度按最长列车、满负载、 最高速、最不利制动率等最不利条件设计,列车间隔为若干闭塞分区,而与 列车在分区内的实际位置无关,列车位置的分辨率也为一个闭塞分区(一般 为几十米—几百米),制动的起点可以延伸,但终点总是某一分区的边界, 对列车的控制一般采用一次抛物线制动曲线的方式,要求运行间隔越短,闭 塞分区(设备)数也越多。
点式列控系统
连续式列控系统-轨道电路方式
连续式列控系统-轨道电缆方式
连续式列控系统-无线方式
点连续式列控系统-轨道电路+点式应答器
第三章 列控系统基本工作原理
n 概述
n 基本功能 n 间隔控制 n 速度控制
n 基本原理:地面信息——传输通道——车载设备 n 根据传输通道不同分为
n 点式列车运行自动控制系统 n 连续式列车运行自动控制系统
n 组成
n 地面应答器
n 轨旁电子单元(LEU)
n 车载设备
速度传感器
中央处理单元 天线 应答器
LEU
车载设备 地面设备
信号机或联锁设备
第三章 列控系统基本工作原理
v v = v(s) s
ETCS
联锁
现场单元控制 轨道占用 TD-SP-
MA
轨旁电子单元
欧洲应答器
占用轨道区段的末端
欧洲 应答器
第三章 列控系统基本工作原理
讲授内容ห้องสมุดไป่ตู้
n 基本概念与术语 n 概述 n 列车运行自动控制系统基本工作原理 n 地—车信息传输技术
第一章 基本概念与术语(1)

基于通信的列车运行控制系统(CBTC)简介

基于通信的列车运行控制系统(CBTC)简介

基于通信的列车运行控制系统(CBTC)简介传统轨道交通是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。

如图33所示。

图33. 不同闭塞制式的列车运行间隔示意图图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。

移动闭塞(Moving block)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。

移动闭塞系统相比现有的ATC系统主要有以下特点:1、可以缩小列车之间的行车间隔;2、车-地之间的信息交换,不再依赖于轨道电路;3、车辆控制中心掌握在线运行各次列车的精确位置和速度;4、列车与控制中心之间保持不间断地双向通信;5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路;6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。

基于通信的列车运行控制系统(Communication – Based Train Control—简称CBTC系统), 便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。

近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础,CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC 系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。

CBTC系统ppt课件

CBTC系统ppt课件

8
LOGO
4、CBTC子系统的介绍
(1) ATS子系统 在控制中心显示控制范围内列车运行状态及设备状态信 息是ATS子系统的主要功能。基于这些状态信息和运行时刻表, ATS能够实现自动排列进路,自动调整列车运行,可以通过改 变停站时间和站间运行时间来完成。ATS子系统包含时刻表工 作站、操作员工作站、其他的网络和设备等。
14
LOGO
6、国外CBTC的发展
基于无线局域网的CBTC系统,在定位精度,车地数据通信 方面有明显的优势,成为国内外城市轨道交通发展的趋势, 国外对基于WLAN的CBTC系统研究的较早,也取得了一定的成 就,形成了美国、日本、欧洲三大体系。 ①美国AATC 基于无线通信的“先进的自动化控制系统(AATC )”是美 国在1992年提出的,系统最大的特点就是列车定位采用扩频 通信方式来实现,实现的方式是沿着铁路线路按规定距离布 设很多个无线电台,这些无线电台作为车一地之间传输信息 的中转站,控制中心从无线电台接收到信号后,处理这些信 号,通过无线电在传输信号时传输的时间来计算出列车的位 置,并根据位置信息计算速度,从而“告诉”列车以多大速 度行驶,何时加速,从而控制列车运行。
15
LOGO
②日本ATACS 基于双向无线通信的先进列车管理与通信系统(ATACS )是 日立公司在1995年开发研制的。与AATC系统不一样,ATACS 系统是采用将铁路线路划分成很多个控制区,每个控制区作为 一个独立的单元,由一个地面控制器和一个无线电基站组成。 地面控制器通过与无线电基站相连,从无线电基站接收列车的 位置信息,为列车计算前方安全的运行间隔,实现列车安全的 以最小追踪间隔追踪运行。
20
LOGO
(2)LCF-300型CBTC系统

第5章-ppt基于通信的列车运行控制CBTC _2302_2214_20101217131003

第5章-ppt基于通信的列车运行控制CBTC _2302_2214_20101217131003

(8) CBTC-电子路签闭塞方式 区间闭塞方式的路签闭塞在100年前就幵始应 用,中国铁路在建国初期也有大量应用。 从20世纪90年代中开始,在计算机技术、电子 网络技术及通信技术的推动下,铁路的路签闭 塞方式发展为电子路签闭塞方式,即不存在路 签实物,而是存在电子路签(软件),它在有关 计算机及网络中按一定的软件协议运行。
5.2 无线移动闭塞CBTC系统的组成与原理来自5.2.1 系统的基本组成
CBTC系统是一个连续数据传输的自动控制系统,利用高精度的列车定位 (不依赖于轨道电路)、实现双向连续、大容量的车—地数据通信, 能够 执行列车自动防护(ATP)、列车自动运行(ATO)以及列车自动监控 (ATS)功能。CBTC系统主要由移动设备(车载设备)、轨旁设备、通信 网络、调度控制中心组成。系统框图如图4-5所示。
5.2.2 系统的基本原理
调度控制中心DCC(Dispatch Control Center)控制多个车站控制中心 SCC(Station Control Center),实现相邻SCC之间的控制交接。SCC通 过管辖范围内的多个基站BS(Base Station)与覆盖范围内的车载设备 OBE(On Board Equipment)实时双向通信联系。列车在区段内运行时,通 过全球定位系统GPS(Global Positioning System)、查询-应答器或里程 计装置实现列车位置和速度的测定,OBE 利用无线通过基站BS将列车位置、 速度信息发送给SCC。SCC通过BS周期地将目标位置、速度及线路参数等信 息发送给后行列车。OBE收到信息后,根据前车运行状态〔位置、速度、 工况)线路参数(弯道、坡度等)、本车运行状态、列车参数(列车长度、 牵引重量、制动性能等),采用车上计算、地面(SCC)计算或是车上、地 面同时计算出最佳的速度-距离模式控制曲线,并根据信号故障-安全原则, 预测列车在一个信息周期末的状态能否满足列车追踪间隔的要求,从而确 定合理的驾驶策略(最佳运行控制命令),实现列车在区段内高速、平稳 的以最优间隔追踪运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西门子的CBTC 系统是基于无线通信的列车运行控制系统。它由SICAS 计算机联锁系统、RAINGUARD MT TRAINGUARD MT移动闭塞式列控系统(ATP (ATP/ATO)、VIC0S OC 系统(ATS)组成。它与前述西门子的准移动闭塞ATC 系统的区别在于采用无线通信构成移动闭塞,而前者采用数字编码轨道电路
1.2. 车站系统
车站系统按照设备集中站, 非设备集中站, 辆段具备不同的系统结构特点。
1.3. 基于CBTC的ATS子系统主要功能特点
在CBTC制式下, ATS子系统的有些功能继承了基于轨道电路制式的功能, 有些
则有了较大的变化。主要有信息显示、站场控制、列车跟踪与控制、运行计划管 理、系统仿真以及后备系统6个方面功能。
2. 计算机联锁系统(SICAS)
联锁系统采用了SIMISPc/SIMISECC计算机管理进路、道岔和轨旁信号机.以 响应来自ATS功能的命令。同时,将进路、轨道区段、道岔和信号机的状态信 息提供给ATS系统和ATP轨旁系统。 SICAS是西门子的故障-安全和高度可用的SIMIS® 原理的先进设计,同时也提 供了走向现代科技的方法;它对未来的扩展及解决方案是开放的。这个联锁 系统的现代化设计和安全数字总线通讯的采用将联锁系统的总数降到最小。
三、CBTC各子系统介绍
ATS系统 计算机锁联 列车自动防护系统 列车自动运行 无线系统
1. ATS系统
在CBTC制式下, 不同厂家ATP/ATO设备的构成有很大区别, 有的厂家为整条线 路配备1~2套地面区域控制器, 有的厂家则为每个设备集中站(有岔站) 配备1套 地面区域控制器。有的区域控制器设置在调度中心, 有的区域控制器设置在车 站, 这就造成了ATS与ATP/ATO系统进行接口时, 有多种形式。本文基于每个设
基于通信的列车 控制系统CBTC
一、概述
CBTC(Communication Based Train Control)系统是一个安全的,具有 高可靠性、高稳定性的基于无线的列车自动控制系统,现较广泛的应用于城 市轨道交通运输中。它最大的特点是可以无线通信,由列车-地面间周期传 递列车位置信息和地面-列车间传递移动授权来实现功能。基于通信的列车
跳停、办理封锁Βιβλιοθήκη 操作。5.维护工作站。对中心以及车站所有ATS设备工作状态进行监视, 对所有人工以 及自动办理指令进行记录, 对重要的事件进行语音或文字告警,存储站场运行 历史记录并提供回放功能。 6.时刻表编辑工作站。主要提供离线的基本图编辑, 供调度计划人员根据各种 不同的时间段,提前制作正常工作日、周末、节假日等基本图。
7.接口通信服务器。为ATS与信号外系统的通信接口, 包括与综合监控系统、通 信系统、广告系统等接口, 向外提供列车位置、广告信息, 接收外系统时钟、 供电臂状态信息等。 8.仿真培训服务器及工作站。通过对站场信号设备以及列车运行的仿真, 对现场 CI以及ATP/ATO系统进行仿真替代, 在此基础上提供对ATS系统的测试, 对新编 制计划的仿真运行以及对调度人员的培训。
3.2. 车载子系统
4. ATO子系统
概述:ATO 为非故障一安全系统,其控制列车自动运行,主要目的是模拟最佳司机的驾驶, 实现正常情况下高质量的自动驾驶, 提高列车运行效率, 提高列车运行的舒适度, 节 省能源。 ATP 系统是城市轨道交通列车运行时必不可少的安全保障,ATO 系统则是提 高城市轨 道交通列车运行水平(准点、平稳、节能)的技术措施。 ATO 系统采用的基本 功能模块与 ATP 系统相同。和 ATP 系统一样,ATO 也载有有关 轨道布置和坡度的所有 资料, 以便能优化列车控制指令。 ATO 还装有一个双向的通信系统, 使列车能够直接 与车站内的 ATS 系统接口,保证实现最佳的运行图控制。 当列车处在自动驾驶模式下, 车载ATO 运用牵引和制动控制,实现列车自动运行。
构成准移动闭塞,它们的计算机联锁系统及ATS是基本相同的。
二、CBTC系统组成
CBTC系统由列车自动监控(ATS)系统、数据通信系统(DCS)、区域 控器(ZC)、车载控制器(VOBC)及司机显示等组成。CBTS系统也可以分为列车 自动监督ATS系统、计算机联锁系统、列车自动防护系统以及无线系统。
备集中站配置1套区域控制器的ATP/ATO系统模式, 描述CBTC制式下的ATS系统
结构。
1.1. 调度中心系统
调度中心系统由中心机房设备、调度大厅设备、计划室设备及培训室设 备组成, 主要设备及功能如下。 1.应用服务器。为双机热备系统, 是调度中心ATS的核心设备。应用服务器接收 来自地面的站场设备状态信息, 以及来自车载设备的列车位置和状态信息, 对 这些信息进行运算、缓存, 然后将处理后的信息发送到相应的客户端; 另一方 面, 应用服务器根据接收到的列车报点信息进行偏移计算和计划调整, 并将调 整指令发送到车载ATO执行。
2.数据库服务器。用来保存ATS中重要的运行数据, 包括各版本的基本运行图, 每 日的实时运行图等。为了保证数据的可靠存储, 数据库系统采用共享磁盘阵列 的双机系统。 3.运行图管理调度工作站。用来为每班选择对应的基本运行图, 下达运行计划, 记录运行时间结果, 以及对运行计划进行人工调整。 4.站场监控调度工作站。监视沿线地面信号设备, 站台设备状态, 以及列车运行 位置和状态,允许调度员进行控制模式的切换, 实施各种人工办理, 例如扣车、
控制系统(CBTC)包含两种类型 一种是基于感应环线的型CBTC, 一种是基
于无线的CBTC。 基于无线通信的CBTC 系统是指通过无线通信方式(而不是轨道电路)
,来确定列车位置和实现车-地双向实时通信。列车通过轨道上的应答器,
确定列车绝对位置,轨旁 CBTC设备,根据各列车的当前位置、运行方向、 速度等要素,向所管辖的列车发送“移动授权条件”,即向列车传送运行的 距离、最高的运行速度,从而保证列车间的安全间隔距离。
SICAS® ECC联锁系统功能的基本系统配置如下:
3. 列车自动防护系统(ATP)
3.1. 轨旁子系统 轨旁子系统主要由 区域控制器(ZC)组成。
ATP轨旁设备配置图 ZC:Zone Controller区域控制器 RI:Relay Interface继电接口 BS:Backbone Switch骨干交换机 AS:Access Switch接入交换机 ACS:Axle Counting System计轴系统
相关文档
最新文档