光电测试技术4-6光调制
光学检测的综述

光学检测的综述光学检测的综述摘要随着科学技术和⼯业的发展,测量检测技术在⾃动化⽣产、质量控制、机器⼈视觉、反求⼯程、CAD/CAM以及⽣物医学⼯程等⽅⾯的应⽤⽇益重要。
传统的接触式测量技术存在测量⼒、测量时间长、需进⾏测头半径的补偿、不能测量弹性或脆性材料等局限性,因⽽不能满⾜现代⼯业发展的需要。
近年来由于光学⾮接触式测量技术克服了上述缺陷,其⾮接触、⾼效率、⾼准确度和易于实现⾃动化的特点,成为近年来测量技术研究的热点。
本⽂介绍了多种基于各种测量原理的光学检测⽅法。
关键词:光学检测;三维测量; 数字相移;1.光电检测技术光电检测技术以激光、红外、光纤等现代光电器件为基础,通过对载有被检测物体信号的光辐射(发射、反射、衍射、折射、透射等)进⾏检测,即通过光电检测器件接收光辐射并转换为电信号。
由输⼊电路、放⼤滤波等检测电路提取有⽤的信息,再经过A/D变换接⼝输⼊微型计算机运算、处理,最后显⽰或打印输出所需检测物体的⼏何量或物理量[1]。
如图1所⽰光电检测系统的组成。
图1 光电检测系统光电检测技术的特点:–⾼精度:从地球到⽉球激光测距的精度达到1⽶。
–⾼速度:光速是最快的。
–远距离、⼤量程:遥控、遥测和遥感。
–⾮接触式检测:不改变被测物体性质的条件下进⾏测量。
–寿命长:光电检测中通常⽆机械运动部分,故测量装置寿命长。
–数字化和智能化:强的信息处理、运算和控制能⼒。
光电检测的⽅法:直接作⽤法差动测量法补偿测量法脉冲测量法光电检测系统◆主动系统/被动系统(按信息光源分)–主动系统通过信息调制光源,或者光源发射的光受被测物体调制。
如图2所⽰图2 主动系统的组成框图–被动系统光信号来⾃被测物体的⾃发辐射。
如图3所⽰图3 被动系统的组成框图◆红外系统/可见光系统(按光源波长分)[2]–红外系统多⽤于军事,有⼤⽓窗⼝,需要特种探测器。
–可见光系统多⽤于民⽤◆点探测/⾯探测系统(按接受系统分)–⽤单元探测器接受⽬标的总辐射功率。
光电检测技术试题及答案

第一章1.本课程的名称为?光电检测技术(只输入汉字,不加书名号,不加任何标点)2.本课程教材的名称为?光电测试技术(只输入汉字,不加书名号,不加任何标点,不写版次)3.本课程主要讲解内容为教材中的前五章和将在第二三章之间增加的补充内容。
√4.光电检测技术是将电子学与光学融合为一体,通过电信号到光信号的转换来实现信息获取、处理与测量的技术。
√5.光电检测技术的特点是(D)。
A.高精度,高速度,具有很强的信息处理与运算能力B.非接触,远距离、大量程C.抗电磁干扰D.以上都是6.在现代工程装备中,检测环节的成本约占生产成本的百分比约为(B)A.5%~7%B.50%~70%C.10%D.90%7.光学变换和光电转换是光电测量的核心部分。
√第二章1可见光是电磁辐射波谱中人眼可以感知的部分,一般情况下,可见光的波长范围在 _380_nm 到 _780_nm 之间。
(按照本书和本节课所讲的标准)2光度学量衡量的是电磁辐射对人眼刺激大小的感觉,因此在可见光波段才有意义。
√3视觉神经对不同波长光的感光灵敏度不同,人眼对各种波长光的相对灵敏度,称为“光谱光视效能”或者“视见函数”,其最大值为1,无量纲。
√4光度学的七个基本物理量为光通量、光量、_发光强度(光强度;光强)_ 、光亮度、出射度、光照度、曝光量,其中_光照度(照度)_和曝光量是描述物体受光的参量,其余五个皆为描述光源发射光的特性参量。
5、1W的波长为1064nm的光,其光通量为(B)。
A. 1lmB. 0lmC. 683lmD. (1/683)lm6、( C )是发光强度的单位,也国际单位制(SI)的7个基本单位之一。
A. 焦耳(J)B. 流明(lm)C. 坎德拉(cd)D. 勒克斯(lx)7已知某辐射源发出的辐射功率为1W,该波长对应的光谱光视效率为0.5,则该辐射源辐射的光通量为(B)。
(已知人眼在明视条件下的光功当量为680lm/W)A.680 lm B.340 lm C.1360 lm D.0 lm8辐射通量与光通量的单位是相同的。
光调制技术

光调制技术
光调制技术就是将一个携带信息的信号叠加到载波光波上的一种调制技术。
光调制能够使光波的某些参数(如振幅、频率、相位、偏振状态和持续时间)等按一定的规律发生变化。
其中实现光调制的装置称为光调制器。
光调制过程本质上就是对极化方向上的单位矢量、振幅、载波频率和相位中的一种或多种参量进行调制。
研究的主要调制方式有偏振位移调制键控(PoLSK)、幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。
光调制技术已广泛应用于光通信、测距、光学信息处理、光存储和显示等方面。
光学实验二—_电光、声光和磁光调制实验指导书

电光调制实验一 实验原理电光调制实验仪作为高等院校新一代的物理实验仪器,在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。
电光调制器的调制信号频率可达 Hz 量级,因而在激光通讯、激光显示等领域中有广泛的应用。
(一)电光调制原理某些晶体在外加电场的作用下,其折射率随外加电场的改变而发生变化的现象称为电光效应,利用这一效应可以对透过介质的光束进行幅度,相位或频率的调制,构成电光调制器。
电光效应分为两种类型:(1)一级电光(泡克尔斯—Pockels )效应,介质折射率变化正比于电场强度。
(2)二级电光(克尔—Kerr )效应,介质折射率变化与电场强度的平方成正比。
本实验仪使用铌酸锂(LiNbO 3)晶体作电光介质,组成横向调制(外加电场与光传播方向垂直)的一级电光效应。
图1 横向电光效应示意图如图1所示,入射光方向平行于晶体光轴(Z 轴方向),在平行于X 轴的外加电场(E )作用下,晶体的主轴X 轴和Y 轴绕Z 轴旋转45°,形成新的主轴X ’轴—Y ’轴(Z 轴不变),它们的感生折射率差为Δn ,并正比于所施加的电场强度E :rE n n 30=∆式中r 为与晶体结构及温度有关的参量,称为电光系数。
n 0为晶体对寻常光的折射率。
当一束线偏振光从长度为l 、厚度为d 的晶体中出射时,由于晶体折射率10910~101的差异而使光波经晶体后出射光的两振动分量会产生附加的相位差δ,它是外加电场E 的函数: U d l r n rE n nl ⎪⎭⎫ ⎝⎛==∆=3030222λπλπλπδ (1) 式中λ为入射光波的波长;同时为测量方便起见,电场强度用晶体两极面间的电压来表示,即U=Ed 。
当相差πδ=时,所加电压l d r n U U 302λπ== (2) πU 称为半波电压,它是一个可用以表征电光调制时电压对相差影响大小的重要物理量。
机械工程测试技术基础课后习题答案

机械工程测试技术基础第三版熊诗波绪论0-1 叙述我国法定计量单位的基本内容。
解答:教材P4~5,二、法定计量单位。
0-2 如何保证量值的准确和一致?解答:(参考教材P4~6,二、法定计量单位~五、量值的传递和计量器具检定)1、对计量单位做出严格的定义;2、有保存、复现和传递单位的一整套制度和设备;3、必须保存有基准计量器具,包括国家基准、副基准、工作基准等。
3、必须按检定规程对计量器具实施检定或校准,将国家级准所复现的计量单位量值经过各级计算标准传递到工作计量器具。
0-3 何谓测量误差?通常测量误差是如何分类表示的?解答:(教材P8~10,八、测量误差)0-4 请将下列诸测量结果中的绝对误差改写为相对误差。
①1.0182544V±7.8μV②(25.04894±0.00003)g③(5.482±0.026)g/cm2解答:①②③0-5 何谓测量不确定度?国际计量局于1980年提出的建议《实验不确定度的规定建议书INC-1(1980)》的要点是什么?解答:(1)测量不确定度是表征被测量值的真值在所处量值范围的一个估计,亦即由于测量误差的存在而对被测量值不能肯定的程度。
(2)要点:见教材P11。
0-6为什么选用电表时,不但要考虑它的准确度,而且要考虑它的量程?为什么是用电表时应尽可能地在电表量程上限的三分之二以上使用?用量程为150V的0.5级电压表和量程为30V的1.5级电压表分别测量25V电压,请问哪一个测量准确度高?解答:(1)因为多数的电工仪表、热工仪表和部分无线电测量仪器是按引用误差分级的(例如,精度等级为0.2级的电表,其引用误差为0.2%),而引用误差=绝对误差/引用值其中的引用值一般是仪表的满度值(或量程),所以用电表测量的结果的绝对误差大小与量程有关。
量程越大,引起的绝对误差越大,所以在选用电表时,不但要考虑它的准确度,而且要考虑它的量程。
(2)从(1)中可知,电表测量所带来的绝对误差=精度等级×量程/100,即电表所带来的绝对误差是一定的,这样,当被测量值越大,测量结果的相对误差就越小,测量准确度就越高,所以用电表时应尽可能地在电表量程上限的三分之二以上使用。
光电测试技术复习资料

光电测试技术复习资料PPT 中简答题汇总1. 价带、导带、禁带的定义及它们之间的关系。
施主能级和受主能级的定义及符号。
答:施主能级:易释放电⼦的原⼦称为施主,施主束缚电⼦的能量状态。
受主能级:容易获取电⼦的原⼦称为受主,受主获取电⼦的能量状态。
2. 半导体对光的吸收主要表现为什么?它产⽣的条件及其定义。
半导体对光的吸收主要表现为本征吸收。
半导体吸收光⼦的能量使价带中的电⼦激发到导带,在价带中留下空⽳,产⽣等量的电⼦与空⽳,这种吸收过程叫本征吸收。
产⽣本征吸收的条件:⼊射光⼦的能量( h V 要⼤于等于材料的禁带宽度⽈3. 扩散长度的定义。
扩散系数和迁移率的爱因斯坦关系式。
多⼦和少⼦在扩散和漂移中的作⽤。
扩散长度:表⽰⾮平衡载流⼦复合前在半导体中扩散的平均深度。
扩散系数D (表⽰扩散的难易)与迁移率⼙(表⽰迁移的快慢)的爱因斯坦关系式:D=(kT/q )⼙ kT/q 为⽐例系数漂移主要是多⼦的贡献,扩散主要是少⼦的贡献。
4. 叙述 p-n 结光伏效应原理。
当 P-N 结受光照时,多⼦( P 区的空⽳, N 区的电⼦)被势垒挡住⽽不能过结,只有少⼦( P 区的电⼦和 N 区的空⽳和结区的电⼦空⽳对)在内建电场作⽤下漂移过结,这导致在 N 区有光⽣电⼦积累,在 P 区有光⽣空⽳积累,产⽣⼀个与内建电场⽅向相反的光⽣电场,其⽅向由P 区指向 N 区。
5. 热释电效应应怎样解释?热释电探测器为什么只能探测调制辐射?在某些绝缘物质中,由于温度的变化引起极化状态改变的现象称为热释电效应。
因为在恒定光辐射作⽤下探测器的输出信号电压为零,既热释电探测器对未经调制的光辐射不会有响应。
6. 简述红外变象管和象增强器的基本⼯作原理。
红外变象管:红外光通过光电导技术成象到光电导靶⾯上,形成电势分布图象,利⽤调制的电⼦流使荧光⾯发光。
象增强器:光电阴极发射的电⼦图像经电⼦透镜聚焦在微通道板上,电⼦图像倍增后在均匀电场作⽤下投射到荧光屏上。
光电检测技术与应用课后答案

光电检测技术与应⽤课后答案第2章1、简述光电效应的⼯作原理。
什么是暗电流?什么是亮电流?P11答:暗电流指的是在⽆光照时,由外电压作⽤下P-N结内流过的单向电流;光照时,光⽣载流⼦迅速增加,阻值急剧减少,在外场作⽤下,光⽣载流⼦沿⼀定⽅向运动,形成亮电流。
2、简述光⽣伏特效应的⼯作原理。
为什么光伏效应器件⽐光电导效应器件有更快的响应速度?P15答:(1)光⽣伏特效应的⼯作基础是内光电效应.当⽤适当波长的光照射PN结时,由于内建场的作⽤(不加外电场),光⽣电⼦拉向n区,光⽣空⽳拉向p区,相当于PN结上加⼀个正电压。
(2)光⽣伏效应中,与光照相联系的是少数载流⼦的⾏为,因为少数载流⼦的寿命通常很短,所以以光伏效应为基础的检测器件⽐以光电导效应为基础的检测器件有更快的响应速度。
3、简述光热效应⼯作原理。
热电检测器件有哪些特点?P15、P17第3章2、对于同⼀种型号的光敏电阻来讲,在不同光照度和不同环境温度下,其光电导灵敏度与时间常数是否相同?为什么?如果照度相同⽽温度不同时情况⼜会如何?3、为什么结型光电器件在正向偏置时,没有明显的光电效应?它必须在哪种偏置状态?为什么?答:因为p-n结在外加正向偏压时,即使没有光照,电流也随着电压指数级在增加,所以有光照时,光电效应不明显。
p-n结必须在反向偏压的状态下,有明显的光电效应产⽣,这是因为p-n结在反偏电压下产⽣的电流要饱和,所以光照增加时,得到的光⽣电流就会明显增加。
5、光电导器件响应时间(频率特性)受哪些因素限制?光伏器件与光电导器件⼯作频率哪个⾼?实际使⽤时如何改善其⼯作频率响应?6、硅光电池的开路电压为什么随着温度的升⾼⽽下降?影响光电倍增管⼯作的环境因素有哪些?如何减少这些因素的影响?答:温度升⾼时,半导体的导电性将发⽣⼀定的变化,即少数载流⼦浓度随着温度的升⾼⽽指数式增⼤,相对来说多数载流⼦所占据的⽐例即越来越⼩,这就使得多数载流⼦往对⽅扩散的作⽤减弱,从⽽起阻挡作⽤的p-n结势垒⾼度也就降低。
《光电材料与器件》课程教学大纲

《光电材料与器件》课程教学大纲一、课程名称(中英文)中文名称:光电材料与器件英文名称:Optoelectronics Materials and Devices二、课程代码及性质专业选修课程三、学时与学分总学时:32学分:2四、先修课程无五、授课对象材料及材料加工类专业本科生六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)【注:教学目的要突出各项“能力”,且与表1中的某项指标点相对应】本课程是功能材料专业的选修课之一,其教学目的包括:1、掌握激光的产生机制,光纤的传导机制以及熟悉光调制的基本原理。
2、理解光电技术在信息传输,光探测以及光伏等领域的应用原理。
3、能够关注和了解光电材料与技术在日常生活中的应用。
掌握文献检索、资料查询、现代网络搜索工具的使用方法。
能够应用现代工具撰写报告、设计文稿、陈述发言、清晰表达或回应指令。
七、教学重点与难点:课程重点:(1)光电材料的工作原理和应用。
本课程重点介绍针对半导体材料的电学性能和其在激光领域的应用。
(2)在了解半导体材料相关物理理论知识的基础上,重点学习基于半导体的光电器件的种类、应用和影响性能的因素等。
(3)重点学习的章节内容包括:第2章“激光”(6学时)、第3章“波导”(6学时)、第5章“光探测器”(4学时)。
课程难点:(1)通过本课程的学习,充分理解基于半导体材料的激光基本原理,激光器的基本构造以及应用范围。
(2)通过对光电材料及其光电器件的学习,了解影响光电材料与器件性能的因素和改进策略,从而具备设计和改进光电器件响应性能的能力。
八、教学方法与手段:教学方法:(1)课程邀请相关科研工作者做前沿报告,调动学生学习积极性。
(2)课堂讲授和相关多媒体小视频相结合,提高学生听课积极性,视频与课程内容相关,加深记忆和理解概念;(3)通过期末专题报告的形式,让学生讲解生活中与课程相关的知识或技术,台下的学生听众提问,而台上的学生为自己的观点进行辩护,从而产生互动,加深记忆和理解,更主要是能激发学生的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、声光体调制器
1.声光体调制器的组成
声光体调制器是由声光介质、电—声换能器、吸声(或反射) 装置及驱动电源等所组成,如图1.3—11所示。
(1)声光介质,声光介质是声光互作用的 场所。当一束光通过变化的超声场时, 由于光和超声场的互作用,其出射光就 具有随时间而变化的各级衍射光,利用 衍射光的强度随超声波强度的变化而变 化的性质,就可以制成光强度调制器。
液晶是一种有机化合物,一般由棒状柱形对称的分子构成, 具有很强的电偶极矩和容易极化的化学团。对这种物质施加外场 (电、热、磁等),液晶分子的排列方向和液晶分子的流动位置就 会发生变化,即改变液晶的物理状态。如对液晶施加电场,它的 光学性质就发生变化,这就是液晶的电光效应。
a. Kerr 效应(1875年) ----- 各向同性透明介质在电场下成为单轴双折射材料,光轴 平行于电场,平行于电场的光振动的折射率为 n ||,垂直于 电场的光振动的折射率为 n⊥
起
起
偏
偏
器
器
恒定磁场
线偏振光从左面进入晶体,横向的直流磁场 使YIG晶体在此方向上引起磁化饱和,而总的 磁化强度矢量(由恒定磁场和线圈磁场所引起) 可以改变方向,它对晶体轴的倾斜角度正比于 线圈中的调制电流。 因为法拉弟旋转依赖于磁化强度的轴向分量, 所以线圈电源控制了 角,检偏器按照马吕定 律把这一偏振调制转换为振幅调制。也就是说, 要传递的信息作为调制电压加在线圈上,则出 射的激光束以振幅变化的形式携带着信息。
平行于声波面入射(即垂直于声 场传播方向),声光互作用长度 L较短时,产生拉曼—纳斯衍射。 由于声速比光速小很多,故声 光介质可视为一个静止的平面 相位光栅。而且声波长λs比光波 长λ大得多,当光波平行通过介 质时,几乎不通过声波面,因 此只受到相位调制,即通过光 学稠密(折射率大)部分的
光波波阵面将推迟,而通过 光学疏松(折射串小)部分的 光波波阵面将超前,于是通 过声光介质的平面波波阵面 出现凸凹现象,变成一个折 皱曲面,如图1.3-3所示。由 出射波阵面上各子波源发出 的次波将发生相干作用,形 成与入射方向对称分布的多 级衍射光,这就是拉曼—纳 斯衍射。
提高效率必须每单位长度的材料对光的吸收
要尽量小,而偏振面旋转的角度要尽量大,
为此,人们研制了许多奇特的铁磁材料,如
R.C.LeCraw 利用人工生长的钇铁石榴石 (YIG)磁性晶体,它的费尔德数可以达到
9.0 (对 1.3m 波长, 25 85 C温度范
围)。
利用法拉第效应测磁场 实验装置图
调制电压
光隔离器
单向闸门
P1
电极
P2
45º
光隔离 器
为了避免各界面的反射光对激光光源产生 干扰,可利用法拉第效应制成光隔离器,只允 许光从一个方向通过而不能从反方向通过
2.布拉格(Bragg)衍射 (1)各向同性介质中的正常布拉格衍射。
当声波频率较高,声光作用长度L较大,
而且光束与声波波面间以一定的角度斜入射
时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的 性质。当入射光与声波面间夹角满足一定条件时,介质内各级衍 射光会相互干涉,各高级次衍射光将互相抵消,只出现0级和+l级 (或-1级)(视入射光的方向而定)衍射光,即产生布拉格衍射(类似 于闪耀光栅),如图1. 3-5所示。因此,若能合理选择参数,超声 场足够强,可使入射光能量几乎全部转移到+1级(或-1级)衍射极 值上。因而光束能量可以得到充分利用,因此,利用布拉格衍射 效应制成的声光器件可以获得较高的效率。
二、声光相互作用的两种类型
按照声波频率的高低以及声波和光波作用长度的不 同,声光互作用可以分为拉曼—纳斯(Raman—Nath)衍 射和布拉格(Bragg)衍射两种类型。
当超声波频 率较低,光波平 行于声波面入射 (即垂直于声场传 播方向),声光互 作用长度L较短时, 产生拉曼—纳斯 衍射。
1拉曼-纳斯衍射 当超声波频率较低,光波
材料,光轴平行于电场,平行于电场的光振动的折 射率为 n || ,垂直于电场的光振动的折射率为 n⊥
液晶空间光调制器 (了解) 有些物质不是直接由固态变为液态,而是经过一个过渡相态,
这时,它一方面具有液体的流动性质,同时又有晶体的特性(如光 学、力学、热学的各向异性),这种过渡相态称之为“液晶”。
例如:玻璃或塑料
拉伸或压缩
各向异性
通常情况下,拉伸
成为正单轴材料;
压缩
成为负单轴材料;
干涉色的分布
受力分布
工程应用 应力分析 ------ 光弹力学
2. 电感应---电光效应(Electro-optical effect)
在一些各向同性材料上加上电场
各向异性
电致双折射, 双折射大小与电场强度有关
a. Kerr 效应(1875年) 折射率变化量与外电场强度平方成比例 各向同性透明介质在电场下成为单轴双折射
这样,为了获得更大的法拉弟效应,可以将放 在磁场中的法拉弟材料做成平行六面体,使通 光面对光线方向稍偏离垂直位置,并将两面镀 层反射膜,只留入口和出口,这样,若光束在 其间反射 N 次后出射,则有效旋光厚度为 N ,
则偏振面的旋转角度将提高 Nd 倍。
高反射膜
磁致旋光效应的旋转方向仅与磁场方向有关,而与光线传播 方向的正逆无关,这是磁致旋光现象与晶体的自然旋光现象不同 之处(即当光束往返通过自然旋光物质时,因旋转角相等方向相反 而相互抵消)。 但通过磁光介质时,只要磁场方向不变,旋转角 都朝一个方向增加,此现象表明磁致旋光效应是一个不可逆的光 学过程,因而可利用来制成光学隔离器或单通光闸等器件。
液 体 中 的
效 应 装 置
Kerr盒 利用kerr效应制成的调制器 (内装电致双折射材料 有电光效应的液体有机化合物)
Kerr
b. Pockels 效应(1893年) 一些晶体(电光晶体),加上外电场后,单轴晶体成为双轴晶
体,双折射大小与电场强度得一次方成正比 Pockels 效应(线性电光效应)
C
ne no H 2
二次效应
H
磁场很强 才能观察到
一、法拉弟效应(磁致旋光效 应)
法拉弟发现, 许多物质在磁 场的作用下可 使穿过它的平 面偏振光的偏 振方向旋转 (在光的传播 方向上加上强 磁场时)
H
d
振动面旋转的角度 由经验公式给出:
rBd
式中 B 为静磁通量,d 为光所穿越的媒质
一类光学介质受到外电场作用时, 它的折射率将随着外电场变化, 介电系数和折射率都和方向有关, 在光学性质上变为各向异性。
电光效应(Induced optical effects)
各向同性物质
外界作用
各向异性物质
各向异性物质
外界作用
物质的 各向异性变化
1. 机械感应---光弹效应(Photoelasticity) 各向同性或异性材料在外力作用下可产生各向异性的变化,
r 长度, 是比例因子,称费尔德常数,一种
特定媒质的费尔德常数随频率和温度而变。
实际例子
r 对于气体, 约为 102 ,固体和液体
为 105 的量级。
如对于1厘米长的 H 2O 样品,104 高斯的磁场,T 20 C ,此时
r 0.0131 振动面将转动 211' 。
显然,法拉弟效应可用来设计光调制器,欲
Laser in
(2)电—声换能器(又称超声发生器)
(3)吸声(或反射)装置(放置在超声源的对面)。
Laser out
吸声装置
(4)驱动电源 它用以产生调制电信号施 加于电—声换能器的两端电极上,驱动 声光调制器(换能器)工作。
图 1.3-11 声光调制器结构
三、磁致双折射 科顿—穆顿效应: 某些透明液体在磁场H作用下变为各向异性 性质类似于单轴晶体 光轴平行磁场
实 验
Pockels
n kE2 ---- 一次电光效应
所需电压比Kerr效应要低,同样可做成高速开关
1.3 声光调制
Laser
Laser
in
out
吸声装置
声波是一种弹性波(纵向应力波),在介质中传播时, 它使介质产生相应的弹性形变,从而激起介质中各质点 沿声波的传播方向振动,引起介质的密度呈疏密相间的 交替变化,因此,介质的折射率也随着发生相应的周期 性变化。超声场作用的这部分如同一个光学的“相位光 栅”,该光栅间距(光栅常数)等于声波波长s。当光波 通过此介质时,就会产生光的衍射。其衍射光的强度、 频率、方向等都随着超声场的变化而变化。
光电测试技术
光调制器件
概念: 利用各种物理效应对光的 振幅,频率,相位,偏振状态和 传播方向等参量进行调制的器件, 又称为光控器件
对光的振幅进行调制也就是对光 强进行调制
性能稳定、调制度高,损耗小、相位均匀 有一定的带宽
工作基础:物质对外来作用产生的各种物理效应
电光效应 声光效应
磁光效应
电光器件