直流电机电枢绕组
合集下载
直流电动机第一章第2节

• 第六步:放置电刷。在展开图中,直流电机的电 刷与换向片的大小相同,电刷数与主磁极数相同, 放置电刷时应使正负电刷间的感应电动势最大, 或被电刷短路的元件感应电动势最小。当把电刷 放置在主磁极的几何中心线处,被电刷短路元件 的感应电动势为零,同时正负电刷间的电动势也 最大。电枢按图示方向转动,电刷间的电动势方 向根据右手定则可判定为A1、A2为正,B1、B2 为负。单迭绕组的完整展开图见图1.12。 • 在实际生产过程中,直流电机电刷的实际位置是 电机制造好后通过实验的方法确定的。
原理:串联电阻分压比变化。 如图1.20所示,正常时线圈电阻 较小,可变电阻R电压降大,电压表指 示值较小。若线圈出现断路故障,所 有电压均降落在线圈上,电压表指示 为电源电压值,故能判断故障在线圈。
• 因此,由上式可得换向节距为 • K 1 yk • (1-10) P • 在上式中,正负号的选择首先应满足使yK为整 数,其次考虑选择负号。选择负号时的单波绕组 称为左行绕组,左行绕组端部迭压少。单波绕组 的合成节距与换向节距相同,即第二节距y2 • y2 y1 y • (1-11)
绕组画法和节距
电枢绕组大多做成双层绕组,将线圈的一个有 效边放在槽的上层,称做上层边(画成实线);另 一个有效边放在有一定距离的另一槽的下层,称做 下层边(画成虚线),如图1.11所示。
图1.11 绕组画法和节距
1.2 直流电机的电枢绕组
电枢绕组的线圈数和换向片数、槽数之间应 有如下的关系:因为每一个线圈有两个边,而每 一换向片总是把一个线圈的尾端与紧跟的另一个 线圈的首端焊接在一起,因此,线圈数与换向片 数相等;如果电枢铁心每个槽内只安排一个上层 边和一个下层边(称为一个单元槽),这样,线 圈数又与单元槽数相等。由此可知,一台直流电 机的线圈数S与换向片数K、槽数Z之间有如下关 系 S=K=Z (1-3)
直流电机的电枢绕组简介

Z 2p
(1-5)
式中Z为电枢槽数。
1.2 直流电机的电枢绕组简介(续4)
(2)第一节距y1 第一节距y1是指一个线圈两有效边之间在电枢表面 上的跨距,以槽数表示,如图1.11所示。由于线圈边要 放入槽内,所以y1应是整数。而为了让绕组能感应出最 大的电动势,应使y1接近或等于极距,即 Z y1 (1-6) 2p 式中 ——正分数,是将y1补成整数的一个正分数。若 =0 ,则 y1=,称为整距绕组。若取正号,则 y1>,称 为长距绕组;若取负号,则y1<,称为短距绕组。为了 节省铜线及方便工艺,一般多采用短距或整距绕组。
采用整距绕组,因为是单叠右行,故 y y K 1
y2 y1 y 4 1 3 所以 (2)展开图如图1.12所示。作图步骤如下。
图1.12 单叠绕组的展开图
1.2.2 单叠绕组(续1)
先画16个槽和16个换向片,为了作图方便,令换向 片宽度等于槽与槽之间的距离并将元件、槽和换向片按 顺序编号。编号时要把元件号码、元件上层边所在槽的 号码以及与元件上层边相连接的换向片号码编得一致, 即1号元件的上层边放在1号槽内并与l号换向片相连接。 这样当1号元件的上层边放在1号槽内(上层边用实线表 示)并与1号换向片相连后,因为y1=4,则1号元件的下 层边应放在第5号槽(1+y1=5)的下层,下层边用虚线 表示,编号为5';因y=yk=1,所以1号元件的末端应连 接在2号换向片上(1+yk=2)。一般应使元件左右对称, 这样1号换向片与2号换向片的分界线正好与元件的中心 线相重合。
单波绕组特点
而单波绕组由于连接方法与单叠绕组不同, 故特点也不同,主要有: ( 1 )同极性下各元件串联起来组成一个支路, 支路对数a=1,与磁极对数p无关。 (2)电刷在换向器表面上的位置对准主磁极 中心线,支路电动势最大(即正、负电刷间电动 势最大)。 (3)电刷杆数也应等于主极数。 (4)电枢电动势等于支路感应电动势。 (5)电枢电流等于两条支路电流之和。
(1-5)
式中Z为电枢槽数。
1.2 直流电机的电枢绕组简介(续4)
(2)第一节距y1 第一节距y1是指一个线圈两有效边之间在电枢表面 上的跨距,以槽数表示,如图1.11所示。由于线圈边要 放入槽内,所以y1应是整数。而为了让绕组能感应出最 大的电动势,应使y1接近或等于极距,即 Z y1 (1-6) 2p 式中 ——正分数,是将y1补成整数的一个正分数。若 =0 ,则 y1=,称为整距绕组。若取正号,则 y1>,称 为长距绕组;若取负号,则y1<,称为短距绕组。为了 节省铜线及方便工艺,一般多采用短距或整距绕组。
采用整距绕组,因为是单叠右行,故 y y K 1
y2 y1 y 4 1 3 所以 (2)展开图如图1.12所示。作图步骤如下。
图1.12 单叠绕组的展开图
1.2.2 单叠绕组(续1)
先画16个槽和16个换向片,为了作图方便,令换向 片宽度等于槽与槽之间的距离并将元件、槽和换向片按 顺序编号。编号时要把元件号码、元件上层边所在槽的 号码以及与元件上层边相连接的换向片号码编得一致, 即1号元件的上层边放在1号槽内并与l号换向片相连接。 这样当1号元件的上层边放在1号槽内(上层边用实线表 示)并与1号换向片相连后,因为y1=4,则1号元件的下 层边应放在第5号槽(1+y1=5)的下层,下层边用虚线 表示,编号为5';因y=yk=1,所以1号元件的末端应连 接在2号换向片上(1+yk=2)。一般应使元件左右对称, 这样1号换向片与2号换向片的分界线正好与元件的中心 线相重合。
单波绕组特点
而单波绕组由于连接方法与单叠绕组不同, 故特点也不同,主要有: ( 1 )同极性下各元件串联起来组成一个支路, 支路对数a=1,与磁极对数p无关。 (2)电刷在换向器表面上的位置对准主磁极 中心线,支路电动势最大(即正、负电刷间电动 势最大)。 (3)电刷杆数也应等于主极数。 (4)电枢电动势等于支路感应电动势。 (5)电枢电流等于两条支路电流之和。
第四章直流电机电枢绕组

1) 同一主磁极下的元件串联成一条支路,主磁极数与支路 数相同。 2)电刷数等于主磁极数,电刷位置应使感应电动势最大,电 刷间电动势等于并联支路电动势。 3)电枢电流等于各支路电流之和。
一、节距计算
y1
Z 2p
y= =1yk
y2 y1 y
二、绕组展开图
Z为电枢槽数 P为电机的极对数
三、元件连接顺序及并联支路图
空载时气隙磁磁通密度的分布图形
返回
如果不计铁磁材料中的磁压降,则在气隙中各处所消耗的磁通势均
为励磁磁通势。
在极靴下,气隙小,气隙中沿电枢表面上各点磁密较大;在极靴范
围外,气隙增加很多,磁密显著减小,至两极间的几何中性线处磁密为
零。
为一平顶波
直流电机空载磁场的磁密分布
直流电机的空载磁化特性
0
考虑到电机的运行性能 和经济性,直流电机额定运 行的磁通额定值的大小取在 磁化曲线开始弯曲的地方图 中的a点(称为膝部)。
磁电流作用下建立的,这一点与他励发电机不同。并励发电机建立 电压的过程称为自励过程,满足建压的条件称为自励条件。
1、自励条件
曲线1为空载特性曲线,曲线2为励磁回路总电阻R f 特性曲线, 也称场阻线 U f I f R f 。
增大R f ,场阻线变为曲线3时,R f 称为临界 电阻Rcr 。如图所示。
N pN Ea 2a e 60a n Cen
Ce为电动势常数。上式表明直流电机的感应电动势与电机结构、 气隙磁通和电机转速有关。当电机制造好以后,与电机结构有关的常数
Ce不在变化,因此电枢电动势仅与气隙磁通和转速有关,改变转速 和磁通均可改变电枢电动势的大小。
三,直流电机的电磁转矩 定义:根据电磁力定律,当电枢绕组中有电枢电流
一、节距计算
y1
Z 2p
y= =1yk
y2 y1 y
二、绕组展开图
Z为电枢槽数 P为电机的极对数
三、元件连接顺序及并联支路图
空载时气隙磁磁通密度的分布图形
返回
如果不计铁磁材料中的磁压降,则在气隙中各处所消耗的磁通势均
为励磁磁通势。
在极靴下,气隙小,气隙中沿电枢表面上各点磁密较大;在极靴范
围外,气隙增加很多,磁密显著减小,至两极间的几何中性线处磁密为
零。
为一平顶波
直流电机空载磁场的磁密分布
直流电机的空载磁化特性
0
考虑到电机的运行性能 和经济性,直流电机额定运 行的磁通额定值的大小取在 磁化曲线开始弯曲的地方图 中的a点(称为膝部)。
磁电流作用下建立的,这一点与他励发电机不同。并励发电机建立 电压的过程称为自励过程,满足建压的条件称为自励条件。
1、自励条件
曲线1为空载特性曲线,曲线2为励磁回路总电阻R f 特性曲线, 也称场阻线 U f I f R f 。
增大R f ,场阻线变为曲线3时,R f 称为临界 电阻Rcr 。如图所示。
N pN Ea 2a e 60a n Cen
Ce为电动势常数。上式表明直流电机的感应电动势与电机结构、 气隙磁通和电机转速有关。当电机制造好以后,与电机结构有关的常数
Ce不在变化,因此电枢电动势仅与气隙磁通和转速有关,改变转速 和磁通均可改变电枢电动势的大小。
三,直流电机的电磁转矩 定义:根据电磁力定律,当电枢绕组中有电枢电流
直流电机的电枢绕组.ppt

y1
Ze 2p
整数
同一个元件两个元件边之间的距离
其中,p为直流电机的极对数。要求一个元件 的两个元件边跨距为一个极距,这样元件中的 感应电势最大。同时y1必须是整数,所以用一 个分数ε 进行调整。取“-”时为短距,取 “+”时为长距。
合成节距y和换向器节距yK
两个相联元件对应元件边之间的跨距为 合成节距y。
一个元件首、尾端所联两个换向片之间 的跨距为yK,以换向片数表示。
对于单叠绕组
y yK 1
第二节距y2
联至同一换向片的两个元件边之间的距 离,也就是两个相联元件中前一元件的 下层边与后一元件的上层边之间的距离。 对于单叠绕组
y2 y1 y
2.单叠绕组展开图
根据给定的极数2p、虚槽数Ze、 元件数S和换向片数K计算元件 的节距,然后画图。
单波绕组是把所有N极下的元 件串联起来组成一条支路, 把所有S极下的元件串联起来 组成另一条支路,所以单波 绕组的支路对数与极对数无 关,恒为1。
a=1
3.4直流电机的电枢绕组
电枢绕组的作用 感应电动势:绕组在磁场中旋转,
绕组导体切割磁场,感应电动势。 产生电磁转矩:绕组中通电流,带
电导体在磁场中将受到电磁力的作 用,电磁力乘电枢半径为电磁转矩。
电磁功率
绕组中有感应电动势,同时有电流,两 者相乘就是电磁功率。
电磁功率的存在使机电能量转换成为可 能。
电磁功率的存在必须同时满足两个条件: (1)感应电动势(2)电流
在能量转换过程中电枢绕组起着重要的 作用,电枢绕组是直流电机的核心部分。
电枢绕组的基本单元
绕组元件,简称为元件。
直流电机的电枢绕组

2绕.绕组组放放置置
安3.放安磁放极磁、极电电刷刷
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N
S
N
S
15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14
+
A 1
B1
A+ 2
-
B 2
A+
B-
二、单叠绕组
4、并联支路符号图
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N
S
N
S
15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14
+
-
B
A+
A
1
2
1
-
B 2
A+
B-
二、单叠绕组
4、并联支路符号图
单叠绕组的特点
(1) 并联支路对数等于磁极对数,即 a=p。
(2) 电刷组数等于磁极数。
三、单波绕组
单波绕组:顺序相连的两元件处在相邻极对下相近位置。 1、单波绕组的节距
y1
(1) 第一节距 (2) 合成节距 (3) 第二节距
y1 y1 = = Z 2 p
y 2
y=yk
=Z1=K1 pp
y2 =yy1
2、单波绕组构成实例
直流电机:2p =4
步骤:
Z=S=K=15
① 计算节距
y1
= Z =153=3
2p 4 4
y=yk
=Z1=151=7 pp
y2=yy1=7 3=4
通过换向片,6个元件依次串联构成一个闭合回路
直流电机电枢绕组

y1 = τ 为整距元件 y1 > τ 为长距元件 y1 < τ 为短距元件
有关电枢绕组名词、术语
第二节距y2 通过同一个换向片串联的两个元件中第一个元 件的下层边到第二个元件的上层边的距离,用 所跨虚槽数表示。叠绕组y2 <0, 波绕组y2 >0
合成节距y: 紧接着串联的两个元件的对 应边之间在电枢表面所跨的 距离,称为合成节距,用虚 槽数表示。
单叠绕组:先串联所有上元件边在同一极下的元 件, 形成一条支路。 每增加一对主极就增加一对 支路。 2a=2p
叠绕组并联的支路数多, 每条支路中串联元件数 少,适应于较大电流、较低电压的电机
单波绕组:把全部上元件边在相同极性下的元件 相连,形成一条支路。 整个绕组只有一对支路, 极数的增减与支路数无关。 2a=2
Ia = 2aia
作业
右行单叠绕组, Zu = S = K = 20
绘制绕组展开图和电路图。
二、单波绕组
波绕组:首末端所接的两换 向片相隔很远, 两个元件相 串联后形似波浪。
为了使串联起来的元件所产生的电势同向相加, 元件边应 处于相同磁极极性下, 即合成节距 y ≈ 2τ , y ≠ 2τ
为了使绕组从某一换向片出发, 沿电枢铁心一周后回到原 来出发点相邻的一片上, 则可由此再绕下去
有关电枢绕组名词、术语
主极轴线:主磁极中心线
几何中心线:磁极之间的平分线 主极轴线
N
S
12
S B1
N
主极轴线
N
几何中性线
A1
B2
S
A2
τ 极距:铁心表面一个极所占的距离,用
表示。τ
=
πD
2p
在直流电机中,常在每个槽的上、下层各放置若干个 元件边。为了确切地说明每个元件边所处的具体位 置,引入了“虚槽”的概念。 设槽内每层有u个元件边,则每个实际槽包含u个“虚 槽”,每个虚槽的上、下层各有一个元件边。若用Z代
有关电枢绕组名词、术语
第二节距y2 通过同一个换向片串联的两个元件中第一个元 件的下层边到第二个元件的上层边的距离,用 所跨虚槽数表示。叠绕组y2 <0, 波绕组y2 >0
合成节距y: 紧接着串联的两个元件的对 应边之间在电枢表面所跨的 距离,称为合成节距,用虚 槽数表示。
单叠绕组:先串联所有上元件边在同一极下的元 件, 形成一条支路。 每增加一对主极就增加一对 支路。 2a=2p
叠绕组并联的支路数多, 每条支路中串联元件数 少,适应于较大电流、较低电压的电机
单波绕组:把全部上元件边在相同极性下的元件 相连,形成一条支路。 整个绕组只有一对支路, 极数的增减与支路数无关。 2a=2
Ia = 2aia
作业
右行单叠绕组, Zu = S = K = 20
绘制绕组展开图和电路图。
二、单波绕组
波绕组:首末端所接的两换 向片相隔很远, 两个元件相 串联后形似波浪。
为了使串联起来的元件所产生的电势同向相加, 元件边应 处于相同磁极极性下, 即合成节距 y ≈ 2τ , y ≠ 2τ
为了使绕组从某一换向片出发, 沿电枢铁心一周后回到原 来出发点相邻的一片上, 则可由此再绕下去
有关电枢绕组名词、术语
主极轴线:主磁极中心线
几何中心线:磁极之间的平分线 主极轴线
N
S
12
S B1
N
主极轴线
N
几何中性线
A1
B2
S
A2
τ 极距:铁心表面一个极所占的距离,用
表示。τ
=
πD
2p
在直流电机中,常在每个槽的上、下层各放置若干个 元件边。为了确切地说明每个元件边所处的具体位 置,引入了“虚槽”的概念。 设槽内每层有u个元件边,则每个实际槽包含u个“虚 槽”,每个虚槽的上、下层各有一个元件边。若用Z代
2[1].2直流电机绕组详解
![2[1].2直流电机绕组详解](https://img.taocdn.com/s3/m/73d98f3daaea998fcc220e21.png)
y
1 2 2 2
2.2.2 单叠绕组 • 电枢绕组中任何两个串联元件都是后一个叠在 前一个上面的称为叠绕组,整个绕组成折叠式 前进,若y=yK=±1则称之为单叠。 • 现举例说明单叠绕组的连接方法与特点。
例:已知电机极数2p=4,且Z=S=K=16。 试绕制一单叠右行整距绕组。 解: (1)节距计算。
(4) 绕组并联支路
可知,经B到A,有四条支路与负载并联。当电枢旋转时, 虽然各元件的位置随之移动,构成各支路的元件循环替换, 但任意瞬间,每个主极下的串联元件总是构成一条电动势方 向相同的支路,总的并联支路数不变,即恒等于主极数。这 也是单叠绕组的基本特点。设a为并联支路对数,对单叠绕组, 并联支路数和主极数的关系就是 2a=2p 或 a=p 这就是说,要增加并联支路数(使电枢通过较大电流), 就要求增加主极数。若希望主极数不变,但又要求增加并联 支路数,实际的做法就是把多个单叠绕组嵌放在同一个电枢 上,再借助电刷并联方法构成复叠绕组。若相串联的两元件 对应边相距m个虚槽(即y=m),则称该复叠绕组为m叠绕组(要 求电刷宽度大于m个换向片宽度),其并联支路数增加为2mp。
• S=K=Zi
电枢绕组在槽内的放置
2、节距
• 极距 τ ----每个主磁极在电枢表面占据 的距离或相邻两主极间的距离,用所跨 弧长或该弧长所对应的槽数来表示)。设 电机的极对数为p,电枢外径为Da,则
τ = π Da /2p
或(弧长)τ 来自 Z / 2p (槽数)• 第一节距y1----每个元件的两个元件边在电枢表面 的跨距,用槽数表示。如下页图所示,设上元件 边在第1槽,下元件边在第5槽,则y1=5-1=4。为 使元件中的感应电动势最大,y1所跨的距离应接 近一个极距τ。由于y1必须要为整数,否则无法嵌 放,因此有
1 2 2 2
2.2.2 单叠绕组 • 电枢绕组中任何两个串联元件都是后一个叠在 前一个上面的称为叠绕组,整个绕组成折叠式 前进,若y=yK=±1则称之为单叠。 • 现举例说明单叠绕组的连接方法与特点。
例:已知电机极数2p=4,且Z=S=K=16。 试绕制一单叠右行整距绕组。 解: (1)节距计算。
(4) 绕组并联支路
可知,经B到A,有四条支路与负载并联。当电枢旋转时, 虽然各元件的位置随之移动,构成各支路的元件循环替换, 但任意瞬间,每个主极下的串联元件总是构成一条电动势方 向相同的支路,总的并联支路数不变,即恒等于主极数。这 也是单叠绕组的基本特点。设a为并联支路对数,对单叠绕组, 并联支路数和主极数的关系就是 2a=2p 或 a=p 这就是说,要增加并联支路数(使电枢通过较大电流), 就要求增加主极数。若希望主极数不变,但又要求增加并联 支路数,实际的做法就是把多个单叠绕组嵌放在同一个电枢 上,再借助电刷并联方法构成复叠绕组。若相串联的两元件 对应边相距m个虚槽(即y=m),则称该复叠绕组为m叠绕组(要 求电刷宽度大于m个换向片宽度),其并联支路数增加为2mp。
• S=K=Zi
电枢绕组在槽内的放置
2、节距
• 极距 τ ----每个主磁极在电枢表面占据 的距离或相邻两主极间的距离,用所跨 弧长或该弧长所对应的槽数来表示)。设 电机的极对数为p,电枢外径为Da,则
τ = π Da /2p
或(弧长)τ 来自 Z / 2p (槽数)• 第一节距y1----每个元件的两个元件边在电枢表面 的跨距,用槽数表示。如下页图所示,设上元件 边在第1槽,下元件边在第5槽,则y1=5-1=4。为 使元件中的感应电动势最大,y1所跨的距离应接 近一个极距τ。由于y1必须要为整数,否则无法嵌 放,因此有
直流电机的电枢绕组相关知识讲解

N
S
N
S
14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14
B1
A2
B2
3、单波绕组的元件联结次序
+y
1
上层元件边
8
15 7 14 6
13 5 12 4 11 3 10 2
9
1 闭合
+y2
+y1
下层元件边
5 12 4 11 3 10 2 9 1 +y
4、单波绕组的并联支路图
y的yk 距为一离相个。串元y 连件 的的y1 两首 元 尾y1 件 端对 在应 换边 向
器上的距离。
y2
123 yk
电枢绕组的联结方法
绕组联结方法主要表述绕组联结规律的 节距、绕组展开图、元件联结图、并联支路图。
单波绕组、单叠绕组、复波绕组、复叠绕 组、混合绕组等。
第二节 单叠绕组
讲述单叠绕组联结规律的节距、绕组展开图、 元件联结图、并联支路图。为什么叫单叠绕组?
3、电枢绕组的一般知识
几个基本概念
① 元件数S,换向片数K,槽数 Q,虚槽 Qμ
单匝元件
双匝元件
元件边
SK
元件边
QS
Q S K
② 第一节距 y1
y1 指一个元件两个边的距离。 y1 y1 Q / 2 p
③ 第二节距 y2
y
12
y2 为元件下层边与其相联结
的元件上层边之间的距离。
N
S
④ 合成节距y和换向片节距yk
n
Cen
[V]
Ce
pz 60a
第五节 直流电机电枢绕组的电磁转矩
提问:电磁力?
f
b lia
b
l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电枢绕组的常用术语 • 实槽:电机电枢上实际开出的槽叫实槽。实槽数 用Z表示。
• 虚槽:即单元槽(每层元件边的数量等于虚槽数), 每个虚槽的上、下层各有一个元件边。虚槽数用Zi 表示。设槽内每层有μ 个虚槽,若实槽数为Z,虚 槽数为Zi,则Zi= μ Z。
电枢绕组的常用术语
a)元件 b)绕组元件在槽内的放置 c)实槽与虚槽 b)1—上层边; 2—下层边; 3—9(后)端接部分; 4—(前端接)首、末端 c)1—槽楔;2—线圈绝缘;3—导线;4—层间绝缘;5 —槽绝缘;6 —槽底绝缘
两个直接串联的后一个元件的端部是紧叠在前一个元件的端部上,所以称为“迭” 绕组。因为同一元件的换向器节距为1,所以称为“单迭”绕组。 用槽数表示的y和用换向片表示的yk在数值上是相等的
电枢绕组的常用术语
绕组主要分类: 大的分类为环形和鼓形;环形绕组只曾在原始电机用过;现 代直流电机均用鼓形绕组,它又分为叠绕组、波绕组和蛙形绕 组。鼓形绕组比环形绕组制造容易,又节省导线,运行较可靠, 经济性好,故现在均用鼓形绕组。
(2)第二节距Y2:连至同一换向片上的两个元件中第一个元件 的下层边与第二个元件的上层边间的距离。 (3)合成节距Y:连接同一换向片上的两个元件对应边之间的 距离。
单叠绕组
单波绕组
y y1 y2 y y1 y2
(4)换向器节距YK:同一元件首末端连接的换向片之间的距离。
单迭和单波绕组及其节距
• 小结
– 直流电机电枢绕组是无头无尾的闭合绕组; – 直流电机电枢绕组至少有2条并联支路。 – 单叠绕组 a = p 即并联支路对数恒等于电机 极对数 – 单波绕组 a = 1 即并联支路对数恒等于1
• 电刷放置的一般原则是确保空载时通过 正、负电刷引出的电动势最大,或者说, 被电刷短路的元件中的电动势为零。
单叠绕组
解:1.计算绕组数据: Qμ Z 16 y1 4 2p 2 2 因为是单叠,所以 Y=Yk=1 2.画绕组展开图: 假想把电枢从某一槽的中间沿轴向切开展示成平面, 所得绕组连接图称为绕组展开图。 (1)先画16根等长、等距的实线,代表各槽上层元件边, 再画16根等长等距的虚线,代表各槽下层元件边。
单叠绕组 (2)根据Y1,画出第一个元件的上下层边(1~ 5槽),令上层边所在的槽号为元件号。 (3)接上换向片,1、2片之间对准元件中心线, 之后等分换向器,定出换向片号; (4)画出第二个元件,上层边在第2槽,与第一 个元件的下层边联接;下层边在第6槽与3号换向 联接。按此规律,一直把16个元件全部联起来。 (5)放磁极:磁极应均匀分布在圆周上,N极磁 力线垂直向里(进入纸面),S极向外(从纸面 穿出);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
N
S
N
S
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A1
B1
A2
B2
A+
Ia B-
单叠绕组
取一瞬间(如图F1-16瞬间),将此瞬间不与电刷接触的换向片 省去不画,可以得到图1-15的并联支路图。可以看出单叠绕组的连 接规律是将同一磁极下的各个元件串联起来组成一条支路。所以, 单叠绕组的并联支路对数a总等于极对数p,即a=p。
– 对于端接对称的元件,电刷放置在主极轴 线下的换向片上。
2)当元件的几何形状左右对称,电刷在换向器表面上的位置对 准主磁极中心线时,支路电动势最大; 3)电刷数等于磁极数(全额电刷)。 4)电枢电动势等于支路感应电动势; 5)电枢电流等于两条支路电流之和。 单叠绕组与单波绕组的主要区别在于并联支路对数的多少。 单叠绕组可以通过增加极对数来增加并联支路对数。适用于低 电压大电流的电机;单波绕组的并联支路对数a=1,但每条支路 串联的元件数较多,适用于小电流较高电压的电机。
第一节矩y1:同一元件的两个有效边在电枢表面所跨的距离,通 常用槽数来表示 合成节矩y:直接相连的两个元件的对应边在电枢表面的距离,通 常用槽数来表示
选择的原则:应使每个元件的感应电动势和电磁转矩尽可能地大,所以应接近或等于 换向器矩yk:每个元件的首末端所连接的两个换向片在换向器表面上的 一个极距。等于极距,称为整矩绕组;小于极距,称为短距绕组;大于极距,称为长 距离,通常用所跨的换向片数来表示 距绕组 。短距绕组端部接线短,省铜且利于换向,常用。 哪种节距的元件产生的感应电动势最大,为什么?
直流电机电枢绕组
电枢绕组的常用术语
•元件(线圈):绕组线圈称为绕组元件,分单匝和 多匝。一个元件由两条元件边和端接线组成,元件边 放在槽内,能切割磁力线而产生感应电动势,叫“有 效边”,端接线放在槽外,不切割磁力线,仅作为连 接线用。每个元件的一个元件边放在某一个槽的上层, 另一个元件边则放在另一槽的下层。 •元件的首末端:每一个元件均引出两根线与换向片 相连,其中一根称为首端,另一根称为末端。每一个 元件的两个端点分别接在不同的换向片上,每个换向 片接两个不同的线圈端头。
电枢绕组的常用术语
•极距:相邻两个主磁极轴线沿电枢表面之间的距离,用 表示为(距离) D 2p 若用虚槽数表示为(槽数)
Zμ
2p
式中
D—电枢外径(m); p—磁极对数。
极距位置示意图
电枢绕组的常用术语
•绕组节距:绕组节距通常用虚槽数或换向片数表示。
(1)第一节距Y1:同一个元件的两个有效边在电枢表面跨过的 距离。
环形绕组示意图
鼓形绕组示意图
电枢绕组的常用术语
叠绕组:指串联的两个元件总是后一个元件的端接部分紧叠在 前一个元件端接部分,整个绕组成折叠式前进。 波绕组:指把相隔约为一对极距的同极性磁场下的相应元件串 联起来,象波浪式的前进。
叠绕组示意图
波绕组示意图
电枢绕组的的节距 b)单波绕组
a)单叠绕组
单叠绕组
单叠绕组:是指相邻元件(线圈)相互叠压, 元件的出线 端接到相邻的换向片上,第一个元件的下层边(虚线)连接 着第二个元件的上层边,它放在第一元件上层边相邻的第二 个槽内。合成节距与换向节距均为1,即:Y=Yk=1 下面通过例子说明单叠绕组如何连接,有何特点。 例:已知某直流电机的极对数p=2 ,虚槽数Zi,元件数S,及 换向片数为K,S=K=Zi=16,试画出单叠绕组展开图。
单叠绕组并联支路图
单叠绕组
单叠绕组的特点: 1)同一主磁极下的元件串联成一条支路,主磁极 数与并联支路数相同。 2)电刷数等于主磁极数,电刷位置应使感应电动 势最大,电刷间电动势等于并联支路电动势。 3)电刷个数等于极数。
单波绕组
单波绕组 单波绕组的特点:
1)上层边位于同一极性磁极下的所有元件串联起来组成一条支 路,并联支路对数恒等于1,与磁极对数无关;
单叠绕组
槽按轴向展开俯视图并编号
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
展开,编号;放元件;元件接到换向片;放主磁极,放电刷; 思考1:观察一下电刷的位置,这个位置是最佳的吗?为什么?(以电动机为例说明) 思考2:有多少条并联支路? 电刷应放在被其所短路的元件电动势为零的位置,使其中心线与磁极中心线重合。 电刷放在几何中性线上,并不代表电刷的实际位置,而是指被电刷短路的元件的两个有 电枢转向 效边处于几何中性线。
单叠绕组 (6)放电刷:对准在磁极轴线下,画一个换向片 宽(实际上K很多,电刷宽=2~3片宽)。并把相 同极性下的电刷并联起来。实际运行时,电刷是 静止不动的,电枢在旋转,但是被电刷所短路的 元件,永远都是处于电机的几何中性线,其感应 电动势是接近零的。为使正、负电刷间引出的电 动势最大,我们已知被电刷所短路的元件电动势 为零,在元件端接线对称的情况下,电刷的实际 位置应在磁极中性线下,所以习惯上称为“电刷 放在几何中性线位置”。