直接序列扩频通信系统的仿真
直接序列扩频通信系统仿真

直接序列扩频通信系统仿真直接序列扩频通信系统仿真一、实验的背景及内容1、直接扩频通信背景扩频通信,即扩展频谱通信(Spread Spectrum Communication),它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。
解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。
扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。
扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被应用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。
2、实验的内容及意义本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统误码率性能进行了仿真及分析。
近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的应用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。
本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真应用,将所学的知识进行归纳与总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。
设计报告--005---直接序列扩频系统的SIMULINK建模与仿真

直接序列扩频系统的SIMULINK建模与仿真一.直接扩频发射机系统设数据传输率为100 bps,扩频码片速率为2000chip/s,采用m序列作为扩频序列,以BPSK为调制方式。
试建立扩频系统仿真模型并仿真观察其数据波形、扩频输出波形以及扩频调制输出的频谱。
仿真模型如图5-1所示。
Bernoulli Binary Generator用于产生数据流,其采样时间设置为0.01s,这样输出的数据速率为100bps。
PN Sequence Generator用于产生伪随机扩频序列,其采样时间设置为0.0005s,这样输出的码片速率为2000chip/s。
为了使扩频模块(乘法器)上的数据采样速率相同,需要对数据流进行升速率处理。
Unipolar yo Bipolar Converter用于完成数据和扩频序列的双极性变换。
乘法器输出就是扩频输出,其码速率等于采样速率,即每个采样点代表一个码片。
扩频输出信号以BPSK方式进行调制。
模型中采用了调制的等效低通模型来实现,调制输出信号是复信号,采样率为2000次/s。
调制也可采用通带模型来实现。
为了使频谱观察范围达到4kHz,需要被观察信号的采样率达到8000次/s,为此,以升速率模块配合采样保持模块将调制输出信号采样率提高到8000次/s。
图5-1 直接扩频发射机仿真系统模型仿真执行后,两个频谱仪将分别显示扩频前后的信号频谱,采用BPSK调制的等效低通模型时,调制前后的功率频谱相同,如图5-2所示。
可见,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
仿真输出的时域波形结果如图5-3所示,图中显示了数据流、PN序列以及扩频输出信号的波形,当数据为+1时,扩频输出就是对应的PN序列,当数据为-1时,扩频输出是PN序列的反相结果。
图5-2 直接扩频发射机扩频前后的信号频谱仿真结果分析:图5-2分别为扩频之前与扩频之后的频谱图,由图可知,数据信号的带宽约100Hz,其功率峰值约为20dB处,而扩频输出信号带宽展宽了20倍,为2kHz,而功率峰值下降到约7dB处。
直接序列扩频通信系统误码率的仿真分析

对 于二进 制 信 息序 列 的扩 频通 信 , 设 信 息 速 率 为 R, 元 间 隔 为 T = 假 码 1, 输 信 息 的有 效 带 宽 为 传
S
B ( c 尺) cB 》 .
在直 扩 系统 中 , 采用 Ma a 工 具 箱 中 的伪 随 机 序 列 函数 来 生 成 伪 随 机码 序 列 . 中 的 P tb L 此 N码 是 具 有 多个 码位 的 0 1 列 , ,序 它们 是 经 过严 格挑 选 的 , 具有 良好 的 自相关 性 , 彼此 之 间却 近似 是 相互 正 交 , 线 但 与
问题 .
直接 序 列扩 频 简称 直扩 ( SS , 目前 应 用 较 为 广 泛 的一 种 扩 频 方 式 _ .常 用 的 直 接 序 列扩 频 技 术 D S )是 】 是选用 一 个 伪 随机码 ( P 即 N码 ) 传送 信号 直 接调 制 , 于 干扰 信 号 , 于与 伪 随 机码 不 相 关 , 对 对 由 因此 , 在接 收端 被扩 展 后 , 落人 信 号通 频 带 内 的干扰 信 号 功率 大 大 降低 , 到 了抗 干扰 的 目的 . 此 , 达 故 它具 有一 般 窄 带 通 信难 以替 代 的优 良性 能 , 者把 其应 用 于大 庆 电力 系 统 的关 口变 电所 , 作 实现 了一点 多 址通 信 .
直接序列扩频通信系统研究及仿真

(c o l fntu n ce c n y a ctsigo ek ylb rt r Not iesyo ia Tay a S h o s me t in ea dd n mi et fh e o ao y, rhUnv ri f n , iu n oi r s n t a t Ch
( )多址通信系统指的是许多 用户组 成的一个 3 通信 网 ,网中任何 两个用户都可 以通信 ,而且许 多
对用 户同时通信 时互不不扰 。应用直扩系统就很容
的功率 谱密度很低 ,单位时间 内的 能量就很 小 ,同 时它 的频带很宽 。因此 ,它具有很强 的抗截获性 。
简称扩频通信 ,是一种信息处理传输 技术 ,它将待 传输的信息数据经扩频序列调 制 ,实现频 带扩展后
再传输 ,由于采用 了伪随机编 码作为 扩频调制的基 本信号 ,使它具有很多独特 的优 点 : 干扰 能力强 , 抗
c omm u c to nd m itr a tc lc niai nsa l a tci a om m unc to ,be a s t a y d a a e :sr g a i ntree e ood iy iai ns c u e ofi m n a v ntg s ton nt—i e fr nc ,g s
中 图分 类 号 : T 1 .2 文 献 标 识 码 :A N9 44
R e e r h nd i u a i n f d r c e sa c a sm l to o i e ts que e nc
s e d s cr pr a pe t um om m uni a i n ys e c c to s t m
直接序列扩频通信系统仿真设计

直接序列扩频通信系统仿真设计直接序列扩频通信系统是一种常用于无线通信中的传输技术,可用于提高通信质量和抗干扰能力。
其基本原理是将原始信号乘以一个扩频码序列,使得信号的带宽变宽,从而提高信号的抗干扰能力。
本文将对直接序列扩频通信系统进行仿真设计,包括系统结构、信号处理和性能评估等方面。
一、系统结构设计1.发送端设计发送端主要包括原始信号处理和扩频处理两个模块。
原始信号处理模块用于将待传输的信息编码成数字信号,可以采用各种调制技术(如二进制调制);扩频处理模块将原始信号乘以扩频码序列,以实现信号的扩频。
2.接收端设计接收端主要包括解扩和信号恢复两个模块。
解扩模块对接收到的信号进行解扩,即将信号除以扩频码序列;信号恢复模块对解扩后的信号进行滤波和解调,最终得到原始信号。
二、信号处理设计信号处理是直接序列扩频通信系统中的关键环节,对其性能和抗干扰能力起着决定性作用。
下面将详细介绍信号处理的设计。
1.扩频码序列设计扩频码序列的设计非常重要,它直接影响到扩频通信系统的性能。
常用的扩频码序列有伪随机码(PN码)和正交码等,可以通过Matlab等工具进行生成和优化。
2.扩频处理设计扩频处理是将原始信号与扩频码序列进行乘积运算的过程。
可以采用数字乘法器或卷积器等方式实现,具体实现方式需要根据实际情况确定。
3.解扩和信号恢复设计解扩和信号恢复是接收端的重要环节,其中解扩模块用于将接收到的信号除以扩频码序列,信号恢复模块用于对解扩后的信号进行滤波和解调。
滤波器可以采用低通滤波器,解调方式可以根据信号特点选取。
三、性能评估设计对于直接序列扩频通信系统的性能评估,一般需要考虑以下几个方面:1.误码率评估误码率是衡量通信系统性能的重要参数。
可以通过对接收到的信号进行解码和比对的方式来评估误码率,并与理论值进行比较。
2.抗干扰性能评估扩频通信系统的抗干扰能力是其核心优势之一、可以通过仿真添加干扰信号,并比较接收到的信号与原始信号的相关性来评估抗干扰性能。
直接序列扩频通信系统仿真设计

直接序列扩频通信系统仿真设计直接序列扩频(Direct Sequence Spread Spectrum)通信系统是一种广泛应用于无线通信领域的通信技术,它通过将原始信号与伪随机噪声序列进行逐位相乘,从而将信号的带宽扩展到噪声频谱的宽度,从而实现抗干扰和保密性能的显著提高。
本文将通过仿真设计一个直接序列扩频通信系统,详细介绍其工作原理和仿真过程。
直接序列扩频通信系统由发送端和接收端组成。
在发送端,原始信号经过码片发生器生成伪随机噪声序列,并与原始信号进行逐位相乘得到扩频信号。
扩频信号经过调制器进行调制,然后经过发射机发送到接收端。
在接收端,接收到的信号经过解调器进行解调,然后通过相关器与伪随机噪声序列相乘得到原始信号。
首先,需要设计码片发生器。
伪随机噪声序列在直接序列扩频通信系统中起到关键作用,它决定了信号的扩展带宽和抗干扰性能。
常用的伪随机噪声序列有伪随机码生成器(PN码)和高斯白噪声序列(AWGN)。
在仿真中,可以选择PN码作为伪随机噪声序列。
PN码的生成方式有很多,其中最常见的是使用移位寄存器和反馈电路生成的线性反馈移位寄存器(LFSR)。
其次,需要设计调制器和解调器。
在直接序列扩频通信系统中,常用的调制方式有二进制相移键控(BPSK)和四进制相移键控(QPSK)。
在仿真中,可以选择BPSK作为调制方式。
解调器与调制器相反,将接收到的扩频信号与伪随机噪声序列相乘得到原始信号。
最后,需要设计发射机和接收机。
发射机通过电路将调制后的扩频信号发射出去,接收机将接收到的信号通过电路进行放大和解调处理,从而得到原始信号。
在仿真中,可以使用MATLAB等仿真软件来实现直接序列扩频通信系统。
首先,定义参数包括信号的比特率、码片周期、发射功率等。
然后,生成随机的原始信号数据。
接下来,根据参数生成伪随机噪声序列。
将伪随机噪声序列与原始信号进行逐位相乘得到扩频信号。
通过调制器进行调制,得到调制后的信号。
在接收端,通过解调器解调接收到的信号,得到解调后的扩频信号。
直接序列扩频通信系统与MATLAB仿真

率可以重复使用 , 提高了频率利用率。 同时扩频通信的抗干扰 能
力强 , 现在 已经广泛应用于移动 电话 、 无线 电微波通信 、 无线数
据 通 信 、 踪 和 报警 等 系统 中 。 跟
21 直 扩 系 统模 型 .
扩频通信从早期用于军事保 密通信 ,到现在广泛用 于民用
通 信 系 统 中 , 成 为现 代 通 信 主要 发展 的方 向 , 因 为它 具 有 窄 并 是
带 通 信 系统 无 法 比拟 的 优 良性 能 。
1抗干扰性强 , ) 误码率较低。 接收机必须采用相关检测才能 对P N码相 同的扩频信号进 行解 扩 ,同频 信号或其他干扰经解 扩后 , 带宽被展宽, 具有良好 的抑制能力。 因此误码率也 比较低 ,
由式 1 可得 到 以下 结 论 :在 信 道 容 量 C不 变 的 条 件 下 , 可
用不同带宽 w 和信噪比 S / 合来传输 。 N组 即可以通过增加信号 带宽 , 实现在比较低的信噪比下传送信息。 这样使得有用信号的 功率接近噪声的功率甚至淹没在噪声之下 ,从而具有很好的隐 蔽 I 扩频通信就是用扩展频谱来 换取信噪 比要求的降低 , 生。 这正
1 扩 频通信 的理 论基础
信 息论 中关 于 信 息容 量 的仙 农 ( hn o ) S an n 公式 为
c _『 f o z1 g (+ s ( 式
1 )
利用 MA A B对 扩频通信 中最 常用的直接 序列扩 频系统进行 TL
了仿 真 。
2 直接 序 列扩频 系统
O 引 言
扩频通信( 即扩 展 频 谱 通 信 )一 般 是 指 用 比信 号 带 宽 宽 得 ,
直接序列扩频和解扩通信matlab代码

序列扩频和解扩通信是数字通信中的重要技术之一,通过扩频技术可以实现信息的加密传输和抗干扰能力的提高。
Matlab是一种强大的科学计算软件,它提供了丰富的工具和函数,非常适合用来实现序列扩频和解扩通信系统的模拟和仿真。
本文将通过实际的代码示例,介绍如何使用Matlab实现直接序列扩频和解扩通信系统。
一、直接序列扩频通信系统在直接序列扩频通信系统中,发送端的数据序列经过扩频码序列的点对点乘积,实现信号的扩频。
接收端利用相同的扩频码序列对接收到的信号进行点对点乘积,实现信号的解扩。
以下是Matlab代码示例:1. 生成随机的发送数据序列```matlabN = 1000; 数据序列长度data = randi([0,1],1,N); 生成随机的0/1序列```2. 生成随机的扩频码序列```matlabchip_seq = 2 * randi([0,1],1,N) - 1; 生成随机的±1序列作为扩频码```3. 进行数据序列和扩频码序列的点对点乘积```matlabspread_data = data .* chip_seq; 数据序列点对点乘以扩频码序列```4. 绘制发送端的信号波形```matlabt = 0 : 1/N : 1-1/N; 时间序列subplot(3,1,1);plot(t,data);title('原始数据序列');subplot(3,1,2);plot(t,chip_seq);title('扩频码序列');subplot(3,1,3);plot(t,spread_data);title('扩频后的信号波形');```二、直接序列解扩通信系统在直接序列解扩通信系统中,接收端利用与发送端相同的扩频码序列对接收到的信号进行解扩。
以下是Matlab代码示例:1. 接收到的扩频信号经过与扩频码序列的点对点乘积```matlabreceived_data = spread_data .* chip_seq; 接收到的信号点对点乘以扩频码序列```2. 进行积分处理得到解扩后的数据序列```matlabintegrated_data = sum(reshape(received_data,[],10)); 对接收数据进行10倍超采样和积分处理output_data = integrated_data > 0; 得到解扩后的数据序列```3. 绘制接收端的信号波形和解扩后的数据序列```matlabsubplot(2,1,1);plot(t,received_data);title('接收到的信号波形');subplot(2,1,2);stem(output_data);title('解扩后的数据序列');```通过以上代码示例,我们实现了直接序列扩频和解扩通信系统的Matlab仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩评定表课程设计任务书摘要直接序列扩频(DSSS—Direct Sequence Spread Spectrum)技术是当今人们所熟知的扩频技术之一。
这种技术是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端,用与发端扩展用的相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信息。
当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。
直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。
针对直接序列扩频通信广泛的应用,本文用Matlab仿真程序画出调制信号、载波、已调信号、相干解调之后信号的波形以及功率频谱密度,分析所设计系统性能,理解其原理。
用 Matlab-Simulink仿真建立基于相干解调的直接序列扩频通信系统仿真模型,详细叙述模块参数的设置。
先对直接序列扩频系统原理进行介绍,然后基于Simulink 的仿真,并对仿真结果做了详细的讲解分析,使其更加形象和具体。
关键词:直接序列扩频码分多址 MATLAB仿真 SINMULINK模块仿真I目录1 课程设计目的 (1)2 课程设计要求 (1)3 相关知识 (1)4 课程设计分析 (3)5 仿真 (7)6结果分析 (12)7 参考文献 (15)II直接序列扩频通信系统的仿真1.课程设计目的(1)培养独立开展科研的能力和编程能力。
(2)掌握用MATLAB实现信号的PM调制。
(3)掌握MATLAB软件的使用。
2.课程设计要求(1)掌握MATLAB使用方法,利用软件绘制图像。
(2)程序设计合理、能够正确运行。
3.相关知识3.1扩频通信概念及分类扩频通信是扩展频谱通信的简称。
它是指用来传输信息的射频带宽远大于信息本身带宽的一种通信方式。
主要有以下几类:1直接序列扩频简称直扩(DS)。
所传送的信息符号经伪随机序列(或称伪噪声码)编码后对载波进行调制。
伪随机序列的速率远大于要传送信息的速率,因而调制后的信号频谱宽度将远大于所传送信息的频谱宽度。
2载波频率跳变扩频简称跳频(FH)。
载荷信息的载波信号频率受伪随机序列的控制,快速地在给定的频段中跳变,此跳变的频带宽度远大于所传送信息的频谱宽度。
3跳时(TH)将时间轴分成周期性的时帧,每帧内分成许多时片。
在一帧内哪个时片发送信号1由伪码控制,由于时片宽度远小于信号持续时间从而实现信号频谱的扩展。
4脉冲调频发信端发出射频脉冲信号,在每一脉冲周期中频率按某种方式变化。
在收信端用色散滤波器解调信号,使进入滤波器的宽脉冲前后经过不同时延而同时到达输出端,这样就把每个脉冲5信号压缩为瞬时功率高、但脉宽窄得多的脉冲,因而提高了信扰比。
这种调制主要用于雷达,但在通信中也有应用。
6混合扩频几种不同的扩频方式混合应用,例如:直扩和跳频的结合(DS/FH),跳频和跳时的结合(FH/TH),以及直扩、跳频与跳时的结合(DS/FH/TH)等。
3.2直接序列扩频定义直接序列扩频(DirectSequenceSpreadSpectrum)工作方式,简称直扩方式(DS方式)。
就是用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。
直接序列扩频方式是直接用伪噪声序列对载波进行调制,要传送的数据信息需要经过信道编码后,与伪噪声序列进行模2和生成复合码去调制载波。
3.3直接序列扩频的基本原理直接序列扩频(direct sequence spread spectrum)直接用具有高码片(chip)速率的扩频码序列去扩展数字信号的频谱。
简称直扩(DS)。
在接收端,用相同的扩频码序列将频谱展宽的扩频信号还原成原始信号。
图3-1 直接序列扩频通信系统的原理框图图3-1是直接序列扩频通信系统的原理框图。
欲传输的数字信号与码片速率很高的扩频码进行调制,其输出为频谱带宽被扩展的信号,这个过程称为扩频。
2扩展频谱信号再变换为射频信号发射出去。
在接收端,射频信号经过变频后输出中频信号,通常是N个发射信号和干扰及噪声的混合信号。
它与发端相同的本地扩频码进行扩频解调(解扩),使宽带信号变为窄带信号。
再经信息解调器恢复成原始数字信号。
扩展频谱的特性取决于所采用的扩频码序列的码型和码片速率。
为了获得具有近似噪声的频谱,采用伪噪声(PN)序列作为扩频系统的扩频码。
图3-2 扩频和解扩的频谱变化过程采用码片速率很高的PN码序列进行扩频调制,扩频信号的带宽可达1~100MHz。
通过扩频解扩处理能够提高抗干扰能力。
扩展频谱信号在接收端做相关解扩处理,有用信号被解扩为窄带谱信号;宽带无用信号与本地伪码不相关,因此不能解扩,仍为宽带谱;窄带干扰信号则被本地伪码扩展成为宽带谱。
用一个窄带滤波器排除带外的干扰,这样窄带内的信噪比就大大提高了。
4.课程设计分析4.1直接序列扩频的基本原理34在发送端输入信息码元m (t ),它是二进制数据,图中为0、1两个码元,其码元宽度为b T 。
加入扩频解调器,图中为模2加法器,扩频码为一个伪随机码(PN 码),记作p (t )。
伪码的波形如图 4-1 中的第(2)个波形,其码元宽度为p T ,且取b T =16p T 。
通常在DS 系统中,伪码的速率p R 远远大于信码速率m R ,即()()()c t m t p t =⊕p R m R ,也就是说,伪码的宽度p T 远远小于信码的宽度b T ,即p T b T ,这样才能展宽频谱。
模2加法器的运算规则可用下式表示()()()c t m t p t =⊕ (4—1)当m (t )与p (t )符号相同时,c (t )为0;而当m (t )与p (t )不同时,则为1。
c (t )的波形如图4-1所示中的第(3)个波形。
由图可见,当信码m (t )为0时,c (t )与p (t )相同;而当信码m (t )为1时,则c (t )为p (t )取反既是。
显然,包含信码的c (t )其码元宽度已变成了p T ,即已进行了频谱扩展。
其扩展处理增益也可用下式表示10l g b p pTG T = (4—2)在b T 一定的情况下,若伪码速率越高,即伪码宽度(码片宽度)p T 越窄,则扩频处理增益越大。
经过扩频,还要载频调制,以便信号在信道上有效的传输。
图中采用二相相移键控方式。
调相器可由环行调制器完成,即将c (t )与载频1cos A t ω相乘,输出为()1s t 。
即()()11cos s t c t A t ω= (4—3)式中,()1011c t ⎧⎪=⎨- ⎪⎩当二进制序列为码当二进制序列为码(4—4)因此,经过扩频和相位调制后的信号()1s t 为5()()1111cos cos cos A ts t Ac t t A tωωω ⎧⎪==⎨ -⎪⎩ (4—5)由上面讨论可知,经过扩频调制信号c (t )可看作只取±1的二进制波形,然后对载频进行调制,这里是采用调相(QPSK )。
所谓调制,就是指相乘过程,可采用相乘器,环行调制器(或平衡调制器),最后得到的是抑制载波双边带振幅调制信号。
这里假定平衡调制器是理想对称,码序列取+1、-1的概率相同,即调制信号无直流分量,这样平衡调制器输出的已调波中,无载波分量。
()1s t 通过发射机中推动级、功放和输出电路加至天线发射出去。
通常载波频率较高,或者说载波周期c T 较小,它远小于伪码的周期p T ,即 满足c T p T 。
但图4-1中(4)示出的载波波形c T =宽度为p T ,这是为了便于看 清楚一些,否则要在一个p T 期间内画几十个甚至几百个正弦波。
对于QPSK 来 说,主要是看清楚已调波与调制信号之间的相位关系。
图4-1中的第(5)个图 为已调波()1s t 的波形。
这里,当c (t )为一码时,已调波与载波取反相;而 当c (t )为0码时,取同相。
已调波与载波的相位关系如图4-1中的第(6)个6图所示。
图4-1 直扩通信系统的主要相位或波形接收端的工作原理:假设发射的信号经过信道传输,不出现差错,经过接收机前端电路(包括输入电路、高频放大器等),输出仍为()1s t 。
这里不考虑信道衰减问题,因为对QPSK 调制信号而言,重要的是相位问题,这里的假定对分析工作原理是不受影响的。
相关器完成相干解调和解扩。
接收机中的本振信号频率与载波相差为一个固定的中频。
假定收端的伪码(PN )与发端的PN 码相同。
接收端本地调相情况与发端相似,这里的调制信号是p (t ),即调相器输出信号()2s t 的相位仅取决于p (t ),当p (t )=1时,()2s t 的相位为π;当p (t )=0时,()2s t 的相位为0。
7信号()2s t 的相位如图4-1中(7)所示。
相关器的作用在这里可等效为对输入相关器的()1s t 、()2s t 相位进行模2加。
对二元制的0、π而言,同号模2加为0,异号模2加为π。
因此相关器的输出的中频相位如图4-1中的(8)所示。
然后通过中频滤波器。
滤除不相关的各种干扰,经解调恢复出原始信息。
这一过程说明了直扩系统的基本原理和它是怎样通过对信号进行扩频与解扩处理从而获得提高输出信噪比的好处的。
它体现了直扩系统的抗干扰能力。
4.2 直扩系统的性能4.2.1 直扩系统的抗干扰性直扩系统最早应用是在军事通信中作为很强抗干扰性的通信手段。
直扩系统对窄带干扰、宽带干扰等,都具有抗干扰能力,其抗干扰能力大小就是前面提出的扩频处理增益P G ,P G 越大,抗干扰能力就越强。
下面就来分析直扩系统抗宽带干扰和抗窄带干扰的原理图4-2为直扩系统抗宽带干扰的示意图。
这里的宽带干扰是泛指的与扩频信号不相关的,在CDMA 通信网中,其它用户的信号就是一种宽带干扰。
相关处理前,信号频谱是很宽的,经相关处理后,有用信息被解扩,其功率谱集中于信息带宽内,而宽带干扰通过相关器,其功率谱密度基本不变。
由于解扩后必然连接窄带滤波器,保证信号能顺利通过,对信号频带之外的各种干扰起到很大的抑制作用,从而提高了输出的信噪比。
图4-2 直扩系统抗宽带干扰的示意图对单频或窄带干扰,直扩系统有很强的抗干扰能力。
图4-2(a)为解扩前的功率谱,窄带干扰功率很大,由于干扰与本地扩频码(PN码)是不相关的。
对干扰来说,相关器起到扩展频谱的目的,功率谱密度就大大下降,其中对信号有害的干扰分量只有落入信息带宽部分,从而抑制了大部分干扰。
由于有用信号能顺利通过窄带滤波器,因此提高了输出的信噪比。
5.仿真85.1程序代码function dscdmamodem(user,snr_in_dbs)%建立模型:用户信息,snr_in_dbs为信噪比%设置初始参数user=[0 1 0 1 1 0 1] ;close all%定义步长变量%length_user=length(user);%改变用户数据中的0为-1for i=1:length_userif user(i)==0user(i)=-1;endend% 用户传输前设置fc=3; % 载频eb=2; % 每个字符的能量tb=1; % 每个信息比特所占的时间%用户输入的数据信息t=0.01:0.01:tb*length_user;basebandsig=[];for i=1:length_userfor j=0.01:0.01:tbif user(i)==1basebandsig=[basebandsig 1]; elsebasebandsig=[basebandsig -1];9endendendfigureplot(basebandsig)axis([0 100*length_user -1.5 1.5]);title('用户输入的信息')% 用户的BPSK调制过程bpskmod=[];for i=1:length_userfor j=0.01:0.01:tbbpskmod=[bpskmod sqrt(2*eb)*user(i)*cos(2*pi*fc*j)]; endendlength(bpskmod)%用户BPSK调制后的波形图输出figureplot(bpskmod)axis([0 100*length_user -3 3]);title(' 用户经BPSK调制之后的波形 ')% 扩频%PN码发生器seed=[1 -1 1 -1]; % 设PN码初始值为1000spreadspectrum=[];pn=[];for i=1:length_userfor j=1:10 %PN码和数据比特码的比率设为10:1pn=[pn seed(4)];10if seed (4)==seed(3) temp=-1;else temp=1;endseed(4)=seed(3);seed(3)=seed(2);seed(2)=seed(1);seed(1)=temp;endspreadspectrum=[spreadspectrum user(i)*pn]; end%扩频过程pnupsampled=[];len_pn=length(pn);for i=1:len_pnfor j=0.1:0.1:tbif pn(i)==1pnupsampled=[pnupsampled 1]; elsepnupsampled=[pnupsampled -1]; endendendlength_pnupsampled=length(pnupsampled);sigtx=bpskmod.*pnupsampled;%扩频码波形输出figureplot(pnupsampled)axis([0 100*length_user -2 2])title(' PN码波形图 ')11%扩频后的波形图输出figureplot(sigtx)axis([0 100*length_user -3 3]);title(' 用PN码扩频后的波形图 ')composite_signal=sigtx;%高斯白噪声信道传输snr_in_dbs=20 %设信噪比为20composite_signal=awgn(composite_signal,snr_in_dbs);%从信道中解扩出用户的信息rx=composite_signal.*pnupsampled;figureplot(rx)title('用户解扩后的波形')% BPSK解调过程demodcar=[];for i=1:length_userfor j=0.01:0.01:tbdemodcar=[demodcar sqrt(2*eb)*cos(2*pi*fc*j)]; endendbpskdemod=rx.*demodcar;figureplot(bpskdemod)title('用户经BPSK解调之后的波形')len_dmod=length(bpskdemod);12sum=zeros(1,len_dmod/100);for i=1:len_dmod/100for j=(i-1)*100+1:i*100sum(i)=sum(i)+bpskdemod(j);endend%检波过程rxbits=[];for i=1:length_userif sum(i)>0rxbits=[rxbits 1];elserxbits=[rxbits 0];endendlength_rxbits=length(rxbits);t=0.01:0.01:tb*length_rxbits;savbandsig=[];for i=1:length_rxbitsfor j=0.01:0.01:tbif user(i)==1savbandsig=[savbandsig 1]; elsesavbandsig=[savbandsig -1]; endendend13figureplot(savbandsig)axis([0 100*length_user -2 2]);title('用户经检波之后的波形’)5.2 仿真建模图5-1直接序列扩频通信系统发射机的仿真模型6.结果分析14图6-1系统输入和输出仿真波形图图6-2 加干扰前后的系统仿真波形图15图6-3扩频前的信号频谱图图6-4扩频后的信号频谱图16仿真结果分析:从时域分析:图6-2就是直接序列扩频通信系统的加干扰前后的系统仿真波形图,其中第一条波形是输入信号波形,第二条是扩频序列波形,第三条是扩频后宽频信号波形。