叶绿体色素的提取分离理化性质和叶绿素含量的测定(20210225065216)
叶绿体色素的提取与分离、理化性质及含量测定 3

叶绿体色素提取分离与理化性质及含量测定▪(一)实验目的及意义▪(二)实验原理▪(三)实验步骤▪(四)实验报告实验目的和意义▪绿色植物的光合作用是在叶绿体中的叶绿体色素中进行的,了解叶绿体色素的组成、性质及测定对于理解光合作用的本质很有帮助。
▪因此,测定叶绿素含量便成为研究光合作用与氮代谢必不可少的手段,在作物育种、科学施肥、看叶诊断中有着广泛的应用叶绿体在细胞中运动视频叶绿体在细胞中的分布与结构类囊体膜的结构及功能实验原理植物叶绿体色素是吸收太阳光能,进行光合作用的重要物质。
它一般由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
实验原理▪色素分离的方法有多种,纸层析是最简便的一种。
当溶剂(有机推动剂)不断从纸上流过时,由于混合物(叶绿素提取液)中各种成分在固定相(滤纸纤维素所吸附的水分)和流动相(有机推动剂)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
▪叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
实验原理▪叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
▪叶绿素中的镁可以被氢离子所取代而成褐色的去镁叶绿素。
去镁叶绿素遇铜则成为铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
实验步骤(1)▪根据朗伯一比尔定律,某有色溶液的吸光度D与其中溶液浓度C和液层厚度L成正比,即:▪D=KCL▪D:吸光度,即吸收光的量,C:溶液浓度, K:为比吸收系数(吸光系数),L:液层厚度,通常为1cm.▪如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和,这就是吸光度的加和性。
叶绿体色素的提取分离及理化性质检测实验报告

叶绿体色素的提取分离及理化性质检测实验报告摘要:叶绿体是植物细胞中最重要的细胞器之一,其中的叶绿素是进行光合作用的重要色素。
本实验是研究叶绿体的色素成分,通过酒精提取和乙醚分离的方法对叶绿体中的色素进行提取和分离,通过吸收光谱分析、薄层色谱和比色法对叶绿素的化学性质进行检测。
实验结果表明,经过酒精提取和乙醚分离后,我们成功地从叶绿体中提取出了叶绿素和类胡萝卜素。
通过比色法测定叶绿素含量,结果显示样品中叶绿素的含量为0.491mg/g,与文献中报道的值相近。
薄层色谱结果显示,叶绿素的Rf值为0.197,类胡萝卜素的Rf值为0.598。
吸收光谱显示叶绿素在420nm和660nm的波长处有吸收峰。
本实验不仅可以帮助我们深入了解叶绿体的化学成分和理化性质,还有助于我们学习不同的色谱分离和检测方法。
一、实验目的1. 学习通过酒精提取和乙醚分离的方法,用于提取叶绿体中的色素,探究叶绿体的色素成分。
2. 了解叶绿素的化学性质,通过吸收光谱分析、薄层色谱和比色法,检测叶绿素的理化性质。
二、实验原理1. 叶绿体植物细胞中最重要的细胞器之一,是进行光合作用的地方。
叶绿体中最主要的色素,分为叶绿素a和叶绿素b两种,分子式C55H72O5N4Mg。
吸收光谱表现为在绿色和黄色波段有吸收峰,吸收峰位于420nm和660nm处。
3. 类胡萝卜素4. 酒精提取法通过将叶绿体与酒精混合并长时间振荡,使得叶绿体中的色素被溶解到酒精中。
5. 乙醚分离法将酒精溶液中的色素与等量的乙醚混合,色素会被乙醚除去,实现了色素的分离。
6. 比色法根据叶绿素对吸收光谱的特点,可利用比色法测定样品中叶绿素的含量。
7. 薄层色谱根据化合物在不同移动相中的极性,通过在硅胶或薄层板上分离,分离化合物的一种技术方法。
8. 吸收光谱根据吸收法原理,测定样品对特定波长的光吸收情况,从而识别和测定不同化合物的含量和种类。
三、实验步骤1. 取适量淡绿色菠菜叶片,用预冷的0.1mol/L盐酸液洗涤3次。
实验四、叶绿素的提取、分离及化学性质鉴定

实验四、叶绿素的提取、分离及化学性质鉴定一.实验目的:掌握植物中叶绿体色素的成分分离和定性、定量分析的原理和方法。
二.实验原理:1、溶解性。
叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取2、吸附性。
滤纸对Chlb、Chla、叶黄素、胡萝卜素的吸附能力不同(?),当用石油醚作推动剂时,其在滤纸上的移动速度不同,可相互分离。
当用适当溶剂推动时,混合物中各成分在两相(固定相和流动相)间具有不同分配系数,所以移动速度不同,一定时间后可将各种色素分离三.实验材料:新鲜植物叶片器具:研钵一个,漏斗一个,刻度试管两支,剪刀一把,长滴管一个,培养皿(直径9cm)一个,圆形滤纸(11cm和7cm)各一张,滤纸条一张试剂:95%乙醇,石油醚四.实验步骤:1.色素提取(乙醇粗提液)a.取新鲜叶片洗净擦干,去中脉称1g左右剪碎于研钵b.研钵中加3-5ml 95%乙醇研磨成匀浆过滤于刻度试管残渣用少许乙醇冲洗一并过滤定容至10ml注:研磨用石英砂或SiO2以利于充分研磨,加入CaCO3以保护叶绿素。
2.荧光观察将乙醇提取液试管放于太阳光下观察反射光和透射光下的颜色现象:透射光下呈绿色,反射光下呈红色为叶绿素荧光3.色素萃取(石油醚提取液)取乙醇提取液5ml与另一支试管加2ml石油醚摇荡静止片刻上层深绿色为石油醚提取液注:用丙酮提取会更好些,各色素在石油醚中溶解度不同4.色素分离a.将(11cm)圆滤纸中间剪一小圆孔取滤纸条捻成紧实芯一端插入圆滤纸中心(孔缘与纸芯紧贴且露出少许,最好相平)用长滴管吸少许石油醚提取液滴于纸芯上端待风干后再滴加几次。
b.将盛有石油醚的内盖(不要过满)放于培养皿中央将插上纸芯的滤纸放在培养皿上纸芯下端浸入石油醚迅速盖好培养皿。
c.推动剂前缘接近滤纸边缘时取出滤纸,风干可见分离色带,用铅笔标出各种色素位置和名称注:带宽和移动速度说明?答:带宽:色素越多,色素带越宽,所以色素共分为好几个带移动速度:溶解度高的移动速度快,就越接近滤纸上边缘。
叶绿体色素的提取分离及理化性质检测实验报告

实验名称:叶绿体色素的提取、分离、理化性质系别:机械工程系班级:机械11实验者:潘霖学号:2011010389同组姓名:肖鹤翀实验日期:2011.10.22Ⅰ提取与分离一、实验目的:1.学习应用薄层色谱法分离叶绿体色素的实验方法。
2.了解叶绿素的组成、性质和测定叶绿素有助于理解光合作用的本质。
二、实验原理:叶绿体是进行光合作用的细胞器。
叶绿体中的叶绿素a,叶绿素b,胡萝卜素和叶黄素与类囊体膜结合成为色素蛋白复合体。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。
提取液可用薄层色谱法加以分离和鉴别。
薄层层析色谱法是将吸附剂均匀地涂在玻璃板上成一薄层,将此吸附剂薄层作为固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂作流动相,将薄层板的下端浸入到展开剂当中。
由于吸附剂对不同物质的吸附能力大小不同,吸附力强的物质相对移动慢一些,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。
植物活性成分的分离常用薄层层析法和柱层析法,其中柱层析适用于大量制备。
本实验采用薄层层析色谱法,其中固定相用硅胶预制板。
三、实验材料与试剂:1.新鲜的菠菜叶片。
2.体积分数为95%的乙醇,碳酸钙粉末,展开剂(石油醚:丙酮:苯=7:5:1,体积比)。
3.研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸。
四、实验步骤:(一)色素提取液的制备1.取新鲜叶片4~5片,洗净,擦干叶表面,去除中脉剪碎,放入研钵中。
2.向研钵中加入少量CaCO3粉末,再加2~3ml体积分数为95%的乙醇,充分研磨至糊状,再加10~15ml体积分数为95%的乙醇,上清液用漏斗过滤出,残渣再用10ml体积分数为95%的乙醇冲洗一次,一同过滤于三角瓶中,即制成叶绿体色素提取液。
提取液应避光保存,因提取量较大,可用于其他相关实验(如后面的叶绿素理化性质的验证)。
(二)叶绿体色素的分离1.取硅胶预制板一个,用点样毛细管吸取上述提取液,平行于硅胶板的短边,距下边缘1cm处用毛细管划线,保证划线细直。
实验4叶绿素的提取、理化性质和含量测定

透射光下
反射光下
叶绿体吸收光后,激发了捕光色素蛋白复合体(LHC),LHC将其 能量传递到PSII或PSI。其间所吸收的光能有所损失,大约3%-9%的所吸 收的光能被重新发射出来,其波长较长,也即叶绿素荧光 。
叶绿素吸收红光后处于第一单线态,叶绿素分子要从 第一单线态返回基态所发射的光称为荧光。
分子吸收的光能有一部分消耗 于分子内部的振动上,发射的 荧光的波长总是比被吸收光的 波长要长
2.2.3 含量测定
• 叶绿素a、b在红光区的最大吸收峰分别位于663 nm 和 645 nm;
• 叶绿素a、b在652 nm处有相同的比吸收系数(34.5), 测OD652求出叶绿素a、b总量。
• 故叶绿素浓度 C=OD652 / 34.5 ( mg/ml )
• 叶绿素的含量(mg/g)= [叶绿素的浓度×提取液体积 ×稀释倍数]/样品鲜重
• 叶绿素的含量(mg / g)=[叶绿素的浓度×提取 液体积×稀释倍数]/样品鲜重
以样品重为3g为例: = C ×(25×50 / 5)/3 = OD652 / (34.5×3) ×(25×50 / 5)
6 注意事项
① 操作应在弱光下进行 ? ② 研磨时间尽可能短,以不超过2分钟为宜 ③ 分光光度计的正确使用(更换波长后要调0) ④ 皂化反应最后做
亲脂的叶绿醇的“尾巴”: 叶醇是ቤተ መጻሕፍቲ ባይዱ四个异戊二烯单位组
成的双萜,是一个亲脂的脂肪链, 它决定了叶绿素的脂溶性。
2.2 叶绿素的物理性质
2.2.1 吸收光谱 2.2.2 荧光现象 2.2.3 含量测定
2.2.1 叶绿素的吸收光谱
2.2.2 荧光现象
叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。
叶绿体色素的提取实验报告

叶绿体色素的提取实验报告叶绿体色素的提取、分离、定量及理化性质的鉴定生命科学学院09生科基朱文杰实验目的:掌握提取和分离叶绿体色素的方法;掌握测定叶绿体色素含量的方法;熟悉叶绿体色素的理化性质及吸光特性;了解植物叶绿体色素组成及其与生境的相关性。
实验原理:叶绿体色素是吸收光能的重要物质,包括叶绿素和类胡萝卜。
利用不同色素的极性不同可以用色谱分离法将其分离。
不同的色素对光的吸收范围不同,因此我们也可以测量不同色素在不同波长光下的吸光值,即可用公式计算出其中各色素的含量。
光对叶绿体色素有破坏作用,将叶绿体色素暴露于强光下,可以发现叶绿素被破坏,溶液颜色变化。
叶绿体色素分子吸收光后变为激发态,如能量不被光合作用利用,激发态变回到基态,放出波长较长的红光。
叶绿素分子中卟啉环上的Mg处于不稳定的状态,可被H、Cu、Zn离子取代。
叶绿素不溶于水,能溶于有机溶剂,且各色素的脂溶性不同,故可利用乙醇或丙酮提取,用不同的有机溶剂萃取或用色谱法进行分离。
实验步骤:分别选取2g左右新鲜菠菜和0.2g左右玉米幼株的叶片剪碎放入研钵中。
在研钵中加入5ml丙酮以及少量的石英砂和氯化钙,充分研磨至无纤维装组织。
过滤并转移动至量筒中,再用3ml丙酮冲洗研钵,最后加入丙酮定容至10ml 作为备用提取液。
实验一:吸光值测定:取0.1 ml色素提取液,用80%丙酮稀释到3 ml ,测定663、645 nm 处的吸光值,根据公式计算叶绿素a、叶绿素b的含量。
Chla(μg /ml)=12.7 OD663-2.69OD645,Chlb (μg /ml)=22.9 OD645-4.68 OD663。
实验二:光破坏:取少量色素提取液并稀释3到5倍,分为2份,一份至于暗处,一份正对观察透射光,反身观察反射光,最后放在培养箱中的强光下放置2H。
实验三:铜带反应:取少量色素提取液少许于试管中,一滴一滴加浓盐酸,直至溶液颜色出现褐绿色。
然后加醋酸铜晶体少许,慢慢用水浴加热溶液,则又产生鲜亮的绿色。
实验三十四植物叶绿体色素的提取、分离、表征及含量测定

实验三十四植物叶绿体色素的提取、分离、表征及含量测定摘自王尊本主编,综合化学实验(第二版),第226-244页,北京:科学出版社,2007年9月。
实验三十四植物叶绿体色素的提取、分离、表征及含量测定[1-27]一、叶绿体色素的提取(一) 实验目的1)掌握有机溶剂提取叶绿体色素等天然化合物的原理和实验方法。
2)了解皂化-萃取提取胡萝卜素的原理。
3)了解1,4-二氧六环沉淀法提取叶绿素的原理。
(二) 实验原理植物光合作用是自然界最重要的现象,它是人类所利用能量的主要来源。
在把光能转化为化学能的光合作用过程中,叶绿体色素起着重要的作用。
高等植物体内的叶绿体色素有叶绿素和类胡萝卜素两类,主要包括叶绿素a、叶绿素b、胡萝卜素和叶黄素四种。
它们所呈现的颜色和在叶绿体中含量大约比例见表34.1。
表34.1 高等植物体内叶绿体色素的种类、颜色及含量项目叶绿素类胡萝卜素叶绿素a 叶绿素b 胡萝卜素叶黄素颜色蓝绿色黄绿色橙黄色黄色在叶绿体内各色素含量比例 3 1 2 13 1 叶绿素chlorophylls是叶绿酸的酯,它在植物进行光合作用中吸收可见光,并将光能转变为化学能。
叶绿素是植物进行光合作用所必需的催化剂。
在绿色植物中叶绿素主要以叶绿素a(C55H72O5N4Mg)和叶绿素b(C55H70O6N4Mg)两种结构相似的形式存在,其差别仅是叶绿素a中一个甲基被叶绿素b中的甲酰基所取代。
叶绿素的基本结构见图34.1。
在叶绿素分子结构中含有四个吡咯环,它们由四个甲烯基联结成卟啉环,在卟啉环中央有一个镁原子,它以两个共价键和两个配位键与4个吡咯环的氮原子结合成内配盐,形成镁卟啉。
在叶绿素分子中还有两个羧基,其中一个与甲醇酯化成COOCH3,另一个与叶绿醇酯化成COOC20H39长链。
类胡萝卜素carotenoids是一类不饱和的四萜类碳氢化合物(例如胡萝卜素,carotenes,或它们的氧化衍生物(例如叶黄素类,xanthophylls。
叶绿体色素的提取、分离、定量及理化性质的鉴定

实验日期:2011.9.28叶绿体色素的提取、分离、定量及理化性质的鉴定1、实验原理叶绿体色素是植物吸收太阳光能进行光合作用的重要物质,主要由叶绿素a 、叶绿素b 、胡萝卜素和叶黄素组成。
它们与类囊体膜相结合成为色素蛋白复合体。
1. 叶绿体色素的结构与分离叶绿素a为蓝黑色固体,在乙醇溶液中呈蓝绿色;叶绿素b为暗绿色,其乙醇溶液呈黄绿色。
Chla与Chlb是吡咯衍生物与镁的络合物,它们很相似,不同之处仅在于Chla第二个吡咯环上的一个甲基(-CH3)被醛基(-CHO)所取代即Chlb。
Chla与Chlb 是植物进行光合作用必需的催化剂,易溶于石油醚等非极性溶剂中。
通常植物中叶绿素a的含量是叶绿素b的三倍。
其结构式如下:类胡萝卜素是一种橙色的天然色素,属于四萜,为一长链共轭多烯,有α、β、γ三种异构体,其中β异构体含量最多。
β-胡萝卜素(R=H)和叶黄素(R=OH)叶黄素是一种黄色色素,与叶绿素同存在于植物体内,是胡萝卜素的羟基衍生物,较易溶于乙醇,在石油醚中溶解度较小。
秋天,高等植物的叶绿素被破坏后,叶黄素的颜色就显示出来。
叶绿素与类胡萝卜素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
提取液可用色谱分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
2. 叶绿体色素的物理性质叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它从第一单线态返回基态时可发射出红光量子,因而产生荧光。
因为分子吸收的光能有一部分消耗于分子内部的振动上,发射的荧光的波长总是比被吸收光的波长要长。
3. 叶绿体色素的化学性质叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
植物生理学及实验(甲)实验类型:课程
名称:实验名称:叶绿体色素的提取、分离、理化性质和叶
绿素含量的测定姓名:专业:学号:指导老师:同组学生姓名:
实验日期:实验地点:
二、实验内容和原理一、实验目的和要求装
四、操作方法与实验步骤三、主要仪器设备订
六、实验结果与分析五、实验数据记录和处理
七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法。
1和b的方法及其计算。
a2、熟悉在
未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为
材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下:80%勺乙醇或95%十绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。
、皂化反应。
叶绿素是二羧酸酯,与强碱反应,
形成绿色的可溶性叶绿素2.
盐,就可与有机溶剂中的类胡萝卜素分幵。
-COOCHCO O
Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH
HONC o
+C20H390H -COOCOOCH 绿素卟啉环中的Mg+取代反应。
Mg2+, Cu2+取代Cu++取代形成褐色的去 镁叶绿素和绿色的铜代叶绿素。
(H+和H+ )
取代(Zn2+)绿色褐色
、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
4645其 中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。
652 可直接用于总量分析。
663用于定量叶绿素a,b 及总量,而和C 最大吸收 光谱不同的两个组分的混合液,它们的浓度根据朗伯 -比尔定律,
*k+C*kOD=Ca*k 与吸光值之间有如下的关系:
OD 二Ca*k+C 2b1 b1a1a2b 时,比吸收系%丙酮溶液,当浓度为
^/L 和b 的80查阅文献得, 叶绿素a 值如下。
数k
k
比吸收系数波长/nm
b 叶绿素a
叶绿素
9.27 82.04 663
45.60
645
16.75
、3H+可依次被在酸性或加温条件下,叶
20
将数值代入式子得:OD663=82.04*Ca+9.27*Cb
OD645=16.75*Ca+45.60*Cb
Ca=0.0127 OD663 - 0.00269 OD645 Cb=0.0229 OD645 经整理后,得到式子:- 0.00468 OD663
三、主要仪器设备
天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等
四、操作方法与实验步骤
1、定性分析:
鲜叶5g+950ml(逐步加入),磨成匀浆,过滤入三角瓶中,观察荧光现象。
皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H20 1ml分层后
观察
取代反应(1):加醋酸约2ml,取1/2加醋酸铜粉加热。
观察颜色变化。
取代反应(2):鲜叶2-3cm2,力口Ac-AcCu 20ml加热。
2、叶绿素和类胡萝卜素的吸收光谱测定:
皂化反应的上层黄色石油醚溶液T稀释(470nm OD 0.5-1 )
反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)-稀释(663nm
OD
0.5-1 )
两者在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰
3、叶绿素定量分析:
鲜叶0.1g ,加1.9mlH2O,磨成匀浆,各取0.2ml加80初酮4.8ml,摇匀,
4000转离心3min,上清液在645, 652, 663测定OD计算Chla,Chlb 和
Chl总量的值。
五、实验数据记录和处理.
1、定性分析:
观察荧光现象,透射光为绿色,反射光为红褐色光。
皂化反应(3ml):上层呈黄色,为类胡萝卜素,吸收蓝紫光。
下层呈绿色,为叶绿素,吸收红光和蓝紫光。
取代反应(1):加醋酸约2ml,变褐(去镁叶绿素),取1/2加醋酸铜粉加热变绿色,为铜代叶绿素。
2、叶绿素和类胡萝卜素的吸收光谱测定:
图1
2图图一在420nm左右及690nm左右波长处吸收光谱出现峰值,两者分别位于蓝紫光和红光的波长范围内,根据叶绿素吸收蓝紫光和红光的特性,可以推测图一是叶绿素的吸收光谱。
图二在450nm以及475nm波长处吸收光谱出现峰值,都位于蓝紫光的波长范围内,根据类胡萝卜素吸收蓝紫光的特性,可以推测图二是类胡萝卜素的吸收光谱。
3、叶绿素定量分析:
将数值代入式子,计算得:
/nm波长645 652 663
0.175 第一组0.066 0.094 OD 0.172
0.093
0.068
第二组.
平均0.067 0.0935 0.1735
—
Ca(mg/L)=12.7OD663-2.69 0D645=12.7*0.1735-2.69*0.067=2.02 mg/L
Cb (mg/L) =22.9OD645-4.68 OD663=22.9*0.067-4.68*0.1735=0.722 mg/L CT (mg/L) = Ca+ Cb =2.74 mg/L
Chia 含量(mg/g.FW)= (Ca(mg/L)/1000 ) *2/ 0.1 *5/ 0.2=1.01 mg/g.FW
Chib 含量(mg/g.FW) = (Cb(mg/L)/1000 ) *2/ 0.1 *5/ 0.2=0.361 mg/g.FW
Chi 总含量(mg/g.FW) = (CT(mg/L)/1000 ) *2/ 0.1 *5/ 0.2=1.37mg/g.FW
六、实验结果与分析
1、定性实验中,各组实验观测是颜色变化基本相同,区别只是颜色的深
浅,与研磨时加入的叶片量、研磨的程度等因素有关。
2、从定量实验所得数据的计算结果来看,实验所用的叶片中,叶绿素a 的含量大约是叶绿素b的三倍左右。
3、邻组所得实验数据与我们的数据有一定差距,分析可能是以下几个原
因造成的:1.研磨的充分程度不同2.所取叶片位置不同,导致叶绿素含
量有所区别
七、讨论、心得
1、为什么叶绿素吸收红光和兰紫光?
叶绿素有基态(G),第一单线激发态(E1)和第二单线激发态(E2)及第三线态(E3),光子吸收必须遵守普朗克定律。
被吸收光子能量必须等于
激发态和基态的能量差。
蓝紫光能量大,可使叶绿素分子中的电子跃迁到
E2,而红,故叶绿素只能吸收蓝紫光和红光。
E1光能量小,只能使其跃
迁到.
2、为什么可用皂化后的叶绿素盐来测定叶绿素的吸收光谱?因为由于叶绿素皂化反应后的叶绿素盐并不影响叶绿素分子的骨架结构,叶绿素对光的吸收规律与叶绿素盐对光的吸收规律几乎是相同的,而且皂化反应可以从叶绿体色素中只筛选出叶绿素,排除了其他色素的干扰,所以可用皂化后的叶绿素盐来测定叶绿素的吸收光谱。
.。