2021年九年级数学中考复习——方程专题:分式方程实际应用(一)

合集下载

河北省2021年九年级中考数学一轮复习-第7课-分式方程的解法及应用

河北省2021年九年级中考数学一轮复习-第7课-分式方程的解法及应用

依题意,得:(300-200)×m +(300×0.7-200)×m +
2
2
(400-28100)0× m
+(400×0.7-218000)×m
=5 800,
2
2
解得m=40,
∴100-m=60.
答:第二次购进A种茶叶40盒,B种茶叶60盒.
谢谢!
x(x-1)=2(x+2)+(x-1)(x+2),
解得x=-
1 2
.
检验:当x=-
1
时,(x-1)(x+2)≠0,
2
∴原分式方程的解为x=-
1
.
2
6.(2020·陕西)分式方程:x
x
2
x
3
2
1的解为__x___54___.
类型3 分母先因式分解,再乘最简公分母
7.【例3】(2020·盐城)解方程: x
商品 进价/(元/件) 数量/件 总金额/元

7 200

3 200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
解:设乙商品的进价为x元/件,则甲商品的进价为(1+
1
2
4 x2
4
1.
解:方程两边都乘(x2-4),得 x+2-4=x2-4, 解得x1=2,x2=-1 检验:当x=2时,x2-4=0, ∴x=2不是原分式方程的解 当x=-1时,x2-4≠0, ∴原分式方程的解为x=-1.
考点2 分式方程的应用
8.【例4】(广东中考)某品牌瓶装饮料每箱价格26元,某商店

2021年九年级数学中考复习——方程专题:分式方程实际应用(一)

2021年九年级数学中考复习——方程专题:分式方程实际应用(一)

2021年九年级数学中考复习——方程专题:分式方程实际应用(一)1.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?2.2020年12月1日6时26分,北京延庆迎来首列高铁G8881停靠,标志着京张高铁延庆支线及市郊铁路S2线正式开通运营,综合交通服务中心(换乘中心)同步投入使用.作为京张高铁支线火车站,延庆综合交通服务中心是集高铁、市郊铁路、公交、出租车、自行车及停车场等多种形式于一体的综合枢纽.同时,作为北京2022年冬奥会重点交通服务配套设施,该中心将在冬奥会期间承担观众和部分注册人员的交通转换及服务功能,冬奥会后将服务于延庆区日常活动及通勤,并为游客提供出行便利.小李计划周末到延庆站参观.为了响应绿色出行号召,他从家到延庆站由驾车改为骑自行车.小李家距离延庆站20千米,在相同路线上,驾车的平均速度是骑自行车平均速度的4倍,骑自行车所用时间比驾车所用时间多45分钟,求小李驾车的平均速度是多少?3.外出时佩戴口罩可以有效防控流感病毒,某药店用4000元购进若干包医用外科口罩,很快售完,该店又用7500元钱购进第二批同种口罩,第二批购进的包数比第一批多50%,每包口罩的进价比第一批每包的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持不变,若售完这两批口罩的总利润不高于3500元,那么药店销售该口罩每包的最高售价是多少元?4.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?5.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?6.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?7.某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用300元购买甲种口罩的件数恰好与用250元购买乙种口罩的件数相同.(1)求甲、乙两种口罩每件的价格各是多少元?(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?8.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?9.在某遥控船模比赛中,其赛道共长100米,“番畅号”和“挑战号”两赛船进入了决赛.在比赛前的一次练习中,两船从起点同时出发,“番畅号”到达终点时,“挑战号”离终点还有5米,已知“番畅号”的平均速度为5米/秒.(1)求“挑战号”的平均速度;(2)如果两船重新开始比赛,“番畅号”从起点后退5米,若两船同时出发,可否同时到达终点?若能,请求出两船到达终点的时间;若不能,请重新调整一艘船的平均速度使两船能够同时到达终点.10.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?1.解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),依题意得:+10(﹣)=1,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1÷(﹣)=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲、乙合作了m天.①若剩下的工程由甲工程队单独完成还需=(60﹣3m)天,依题意得:m+60﹣3m≤24,解得:m≥18;②若剩下的工程由乙工程队单独完成还需=(30﹣m)天,依题意得:m+30﹣m≤24,解得:m≥12.由①②可知m的最小值为12,∴应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.2.解:设小李骑自行车的平均速度为xkm/h,则小李驾车的平均速度为4x km/h,依题意得:﹣=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴4x=80.答:小李驾车的平均速度为80km/h.3.解:(1)设购进的第一批医用口罩有x包,则购进的第二批医用口罩有(1+50%)x包,依题意得:﹣=0.5,解得:x=2000,经检验,x=2000是原方程的解,且符合题意.答:购进的第一批医用口罩有2000包.(2)设药店销售该口罩每包的售价是y元,依题意得:[2000+2000×(1+50%)]y﹣4000﹣7500≤3500,解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.5.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.6.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.7.解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据题意得:=,解得:x=40,经检验,x=40是原方程的解,∴x+8=48.答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)设购买y件甲种商品,则购买(80﹣y)件乙种商品,根据题意得:48y+40(80﹣y)≤3600,解得:y≤50.答:最多可购买50件甲种商品.8.解:(1)设原来生产防护服的工人有x人,由题意得:=,解得:x=20.经检验,x=20是原方程的解,答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务,=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y≥15500,解得:y≥9,答:至少还需要生产9天才能完成任务.9.解:(1)设“挑战号”的平均速度为x米/秒,由题意得:=,解得:x=4.75,经检验,x=4.75是原方程的解,答:“挑战号”的平均速度为4.75米/秒;(2)不能同时到达,理由如下:∵“番畅号”到达终点所用的时间为=21(秒),“挑战号”到达终点所用的时间为=21(秒),∴“番畅号”从起点后退5米,若两船同时出发,不能同时到达终点;“番畅号”从起点后退5米,若两船同时出发,同时到达终点,调整一艘船的平均速度有两种方案:方案一:增加“挑战号”的平均速度,设调整后“挑战号”的平均速度增加y米/秒,由题意得:=,解得:y=,经检验,y=是原方程的解;方案二:降低“番畅号”的速度,设调整后“番畅号”的平均速度降低z米/秒,由题意得:=,解得:z=,经检验,z=是原方程的解;综上所述,把“挑战号”的平均速度增加米/秒,或把“番畅号”的平均速度降低米/秒,可以使两船能够同时到达终点.10.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400。

2021年九年级中考数学复习 分式方程及其应用 复习 讲义

2021年九年级中考数学复习 分式方程及其应用 复习 讲义

分式方程及其应用考点1:分式方程的相关概念分母中含有未知数的方程叫做分式方程.考点2:分式方程的解法(可化为一元一次方程的分式方程)解分式方程的一般步骤(1)去分母:方程两边同乘最简公分母,约去分母,化为整式方程;(易漏乘)(2)解整式方程;(3)验根:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;如果最简公分母的值为0,则这个解不是原分式方程的解,分式方程无解;(4)得出解答.考点3:分式方程的应用列分式方程解应用题的六个步骤(1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程;(4)解:求出所列方程的解;(5)验:“双重验根”;(①检验是否是分式方程的解;②检验解是否符合题意)(6)答:写出答案.精选例题例1. (1)若x=3是分式方程2102a x x --=-的根,则a 的值是___________. (2).已知关于x 的分式方程1131=-+-x x m 的解是非负数,则m 的取值范围是( ) A.2>m B .2≥mC .32≠≥m m 且D .32≠>m m 且 (3).若关于x 的方程ax 1+x −1=3x+1的解为整数,则满足条件的所有整数a 的和是( )A. 6B. 0C. 1D. 9例2 解下列分式方程:(1) 13112-=-x x ;(2)1416222-=-+-+x x x ; (3)2x+1+51−x =−10x 2−1 例3.观察下列分式方程的求解过程,指出其中错误的步骤,说明错误的原因,并直接给出正确结果. 解分式方程:331221x x x x --=++. 解:去分母,得 2x+2﹣(x ﹣3)=3x. ……………步骤1 去括号,得 2233x x x +--=. ……………步骤2移项,得 2323x x x --=-. ……………步骤3合并同类项,得21x -=-. ……………步骤4解得 12x =. ……………步骤5 所以,原分式方程的解为12x =. ……………步骤6 例4.当a 为何值时,关于x 的方程223242ax x x x +=--+无解? 例5.某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.例6. 今年初,新型冠状病毒肺炎侵袭湖北,武汉是重灾区,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.例7.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3 120元购买A 型芯片的条数与用4 200元购买B 型芯片的条数相等.设该公司购买的A 型芯片的单价为x 元.(Ⅰ)根据题意,用含x 的式子填写下表:(Ⅱ)根据题意列出方程,求该公司购买的A、B型芯片的单价各为多少元.。

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

2021年中考数学复习第7讲 分式方程及其应用(精讲课件)

2021年中考数学复习第7讲 分式方程及其应用(精讲课件)
解:设这款羽绒衣促销活动前的售价为 x 元/件, 由题意得方程:50x00 (1+10%)=x5-00400 . 解得 x=440.经检验,x=440 是原方程的解. 答:这款羽绒衣促销活动前的售价为 440 元/件.
重点题型
题题组组训训练练
3.(2020·永州)某药店在今年3月份,购进了一批口罩,这批 口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数 相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费 9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价 少10元.
A.y2-2y+1=0 B.y2+2y+1=0
C.y2+y+2=0
D.y2+y-2=0
4.(2020·长沙)随着5G网络技术的发展,市场对5G产品的需求 越来越大,为满足市场需求,某大型5G产品生产厂家更新技术 后,加快了生产速度,现在平均每天比更新技术前多生产30万 件产品,现在生产500万件产品所需时间与更新技术前生产400 万件产品所需时间相同.设更新技术前每天生产x万件产品,依 题意得( B )
考点精讲
1.下列各式中是分式方程的是( D )
A.1x
B.x2+1=y
C.x2 +1=0
D.x-1 1 =2
2.(2020·南京)方程x-x 1 =xx- +12 的解是
x=14
对对应应训训练练

考 点 二 分式方程的实际应用
考考点点精精讲讲
(考情实录:2019T11) 1.用分式方程解实际问题的一般步骤
例 2.(2020·江西宜春仿真模拟)
解方程:x-1 2 =x+4 1 .
解:去分母得:x+1=4x-8, 解得:x=3, 经检验x=3是分式方程的解.
重点题型

2021年九年级数学中考一轮复习专题突破训练:实际问题与分式方程(附答案)

2021年九年级数学中考一轮复习专题突破训练:实际问题与分式方程(附答案)

2021年九年级数学中考一轮复习专题突破训练:实际问题与分式方程(附答案)1.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20C.=+D.=+203.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=14.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5B.﹣=5C.+5=D.﹣=55.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=7.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=28.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=49.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1 B.=1 C.=1 D.=110.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km 时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=11.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2B.﹣=2C.﹣=2D.﹣=212.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的 1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10B.﹣=10C.﹣=10D.+=1013.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.14.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.15.某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为.16.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.18.2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为.19.“复兴号”是世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为.20.在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的.求甲、乙两班各有多少人?设乙班有x人,则甲班有(x+3)人,依题意,可列方程为.21.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米.第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程.22.某圾处理厂日处理垃圾3600吨,实施垃圾分类后,每小时垃圾的处理量比原来提高20%,这样日处理同样多的垃圾就少用3h.若设实施垃圾分类前每小时垃圾的处理量为x吨,则可列方程.23.某市为治理无水,需要铺设一段全长为600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程.24.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学一共有x人,则可列分式方程.25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.26.已知A,B两地相距80千米,甲车从A地到B地,乙车从B地到A地,两车同时出发,已知甲车的速度比乙车的速度快15千米/时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/时,则根据题意可列方程为.27.题目:为了美化环境,某地政府计划对辖区内60km2的土地进付绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.甲同学所列的方程为﹣=2乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.28.2019年4月4日,珊瑚中学组织七年级学生乘车前往距学校130km的大观参观.学校租用30座和48座两种客车运送学生.(1)一部分学生乘48座客车先行,出发0.5小时后,另一部分学生乘30座的客车前往,结果他们同时到达大观.已知30座客车的速度是48座客车速度的1.3倍,求48座客车的速度.解:设48座客车的速度为xkm/h:填写表格:s v t 48座客车x30座客车 1.3x列出方程:,解:,答:.(2)若学校单独租用50座客车m辆,则有2人没有座位,则全校七年级学生人数可表示为人.参考答案1.解:设实际参加游览的同学共x人,根据题意得:﹣=3.故选:D.2.解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选:C.3.解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.4.解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选:A.5.解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.6.解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.7.解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.8.解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.9.解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选:B.10.解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.11.解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选:D.12.解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.13.解:设原计划每天挖x米,则原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:C.14.解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.15.解:依题意得:=﹣3,故答案为:=﹣3.16.解:由题意可得,+3=,故答案为:+3=.17.解:设原来的平均速度为x千米/时,可得:,故答案为:18.解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x 千兆,根据题意,得﹣=720.故答案为﹣=720.19.解:设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:﹣=.故答案是:﹣=.20.解:设乙班有x人,则甲班有(x+3)人,根据题意得:×=.故答案是:×=.21.解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣=.故答案是:﹣=.22.解:设实施垃圾分类前每小时垃圾的处理量为x吨,根据题意,得﹣3=.故答案是:﹣3=.23.解:设原计划每天铺设xm管道,由题意得:+=11,故答案为:+=11.24.解:依题意,得:﹣=10.故答案为:﹣=10.25.解:设甲厂每天生产该种口罩x万只,则乙厂每天生产该种口罩(x﹣5)万只,依题意,得:,故答案为:,26.解:由题意可得,,故答案为:.27.解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.28.解:填写表格:s v t 48座客车130x30座客车130 1.3x列出方程:﹣0.5=,解:x=60,经检验:x=60是原方程的解,答:48座客车的速度为60km/h.(2)全校七年级学生人数可表示为(50m+2)人;故答案为:130,,130,,﹣0.5=,x=60,经检验:x=60是原方程的解,48座客车的速度为60km/h,(50m+2)。

2021年春人教版河北省数学九年级中考《 分式方程及应用》专题复习

2021年春人教版河北省数学九年级中考《 分式方程及应用》专题复习

分式方程及应用1.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.13x=18x-5 B.13x=18x+5C.13x=8x-5 D.13x=8x+52.(2020·河北中考样题)方程7x+2=5x的解是.3.(2020·唐山路北区二模)解分式方程2xx-2=1-12-x,去分母后得到的方程正确的是()A.-2x=1-(2-x) B.-2x=(2-x)+1 C.2x=(x-2)-1 D.2x=(x-2)+14.(2020·邯郸丛台区二模)若关于x的分式方程m+1x-1=x1-x有增根,则m的值是()A.m=-1 B.m=1 C.m=-2 D.m=25.(2020·遵化市一模)A,B两地相距180 km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x-180(1+50%)x=1 B.180(1+50%)x-180x=1C.180x-180(1-50%)x=1 D.180(1-50%)x-180x=16.小明解方程1x -x -2x =1的过程如图所示.请指出他解答过程中的错误,并写出正确的解答过程.7.(2020·唐山路北区一模)解分式方程2x +1 +3x -1 =6x 2-1,分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(x -1)(x +1)B .方程两边都乘(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程,得x =1D .原方程的解为x =18.(2020·唐山市一模)使分式x x -3 和分式x +1x -1相等的x 值是( ) A .-5 B .-4 C .-3 D .-19.解方程:x x -5 -x -12x -10=2.10若分式方程xx-1-m1-x=2有增根,则这个增根是.11.(2020·龙东中考)已知关于x的分式方程xx-3-4=k3-x的解为非正数,则k的取值范围是() A.k≤-12 B.k≥-12C.k>-12 D.k<-1212..如果关于x的方程m3-x -1-xx-3=0无解,则m的值是()A.2 B.0 C.1 D.-213.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟?(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中x,y均为正整数.当x=10时,y=________;当y=10时,x=________.14.(2020·石家庄新华区二模)两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3x+2x-2=1 B.3x+2x+2x-2=1C.3+2x+2x-2=1 D.3x+2⎝⎛⎭⎪⎫1x+1x-2=115.(2020·邯郸永年区一模)为了疫情防控需要,某防护用品厂计划生产150 000个口罩,但是在实际生产时,……,求实际每天生产口罩的个数.在这个题目中,若设实际每天生产口罩x个,可得方程150 000x-500-150 000x=10,则题目中用“……”表示的条件应是()A.每天比原计划多生产500个,结果延期10天完成B.每天比原计划少生产500个,结果提前10天完成C.每天比原计划少生产500个,结果延期10天完成D.每天比原计划多生产500个,结果提前10天完成15.(2020·河北模拟)某学校食堂需采购部分餐桌,现有A,B两个商家,A 商家每张餐桌的售价比B商家的优惠20元.若该校花费4 400元采购款在B商家购买餐桌的张数等于花费4 000元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.197元B.198元C.199元D.200元分式方程及应用1. (2016·河北中考)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是(B)A.13x=18x-5 B.13x=18x+5C.13x=8x-5 D.13x=8x+52.(2020·河北中考样题)方程7x+2=5x的解是x=5.3.(2020·唐山路北区二模)解分式方程2xx-2=1-12-x,去分母后得到的方程正确的是(D)A.-2x=1-(2-x) B.-2x=(2-x)+1 C.2x=(x-2)-1 D.2x=(x-2)+14.(2020·邯郸丛台区二模)若关于x的分式方程m+1x-1=x1-x有增根,则m的值是(C)A.m=-1 B.m=1 C.m=-2 D.m=25.(2020·遵化市一模)A,B两地相距180 km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为(A)A .180x -180(1+50%)x =1B .180(1+50%)x-180x =1 C .180x -180(1-50%)x =1 D .180(1-50%)x-180x =1 6.小明解方程1x -x -2x =1的过程如图所示.请指出他解答过程中的错误,并写出正确的解答过程.解:小明的解法有三处错误.步骤①去分母有误;步骤②去括号有误;步骤⑥缺少检验.正确解法如下:方程两边同乘x ,得1-(x -2)=x .去括号,得1-x +2=x .移项,得-x -x =-1-2.合并同类项,得-2x =-3.系数化为1,得x =32 .经检验,x =32 是原分式方程的解.∴x=32是原分式方程的解.,7.(2020·唐山路北区一模)解分式方程2x+1+3x-1=6x2-1,分以下四步,其中错误的一步是(D)A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6 C.解这个整式方程,得x=1D.原方程的解为x=18.(2020·唐山市一模)使分式xx-3和分式x+1x-1相等的x值是(C)A.-5 B.-4 C.-3 D.-19.解方程:xx-5-x-12x-10=2.解:方程两边同乘2(x-5),得2x-(x-1)=4(x-5).解得x=7.检验:当x=7时,2(x-5)≠0.∴x=7是原分式方程的解.10若分式方程xx-1-m1-x=2有增根,则这个增根是x=1.11.(2020·龙东中考)已知关于x的分式方程xx-3-4=k3-x的解为非正数,则k的取值范围是(A)A.k≤-12 B.k≥-12C.k>-12 D.k<-125.如果关于x 的方程m 3-x -1-x x -3=0无解,则m 的值是 (A ) A .2 B .0 C .1 D .-212.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟?(3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x ,y 均为正整数.当x =10时,y =________;当y =10时,x =________.解:(1)设甲、乙两车每趟的运费分别为m 元、n 元.由题意,得⎩⎪⎨⎪⎧m -n =200,12(m +n )=4 800. 解得⎩⎪⎨⎪⎧m =300,n =100.答:甲、乙两车每趟的运费分别为300元、100元;(2)解:设单独租用甲车运完此堆垃圾,需运a 趟.由题意,得12⎝ ⎛⎭⎪⎫1a +12a =1.解得a =18.经检验,a =18是原方程的解.答:单独租用甲车运完此堆垃圾,需运18趟;(3)16;13,13.(2020·石家庄新华区二模)两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是(A)A.3x+2x-2=1 B.3x+2x+2x-2=1C.3+2x+2x-2=1 D.3x+2⎝⎛⎭⎪⎫1x+1x-2=114.(2020·邯郸永年区一模)为了疫情防控需要,某防护用品厂计划生产150 000个口罩,但是在实际生产时,……,求实际每天生产口罩的个数.在这个题目中,若设实际每天生产口罩x个,可得方程150 000x-500-150 000x=10,则题目中用“……”表示的条件应是(D)A.每天比原计划多生产500个,结果延期10天完成B.每天比原计划少生产500个,结果提前10天完成C.每天比原计划少生产500个,结果延期10天完成D.每天比原计划多生产500个,结果提前10天完成15.(2020·河北模拟)某学校食堂需采购部分餐桌,现有A,B两个商家,A 商家每张餐桌的售价比B商家的优惠20元.若该校花费4 400元采购款在B商家购买餐桌的张数等于花费4 000元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为(D)A.197元B.198元C.199元D.200元。

2021年九年级数学中考一轮复习专题突破训练:分式方程的应用(含答案)

2021年九年级数学中考一轮复习专题突破训练:分式方程的应用(含答案)

2021年九年级数学中考一轮复习专题突破训练:分式方程的应用(附答案)1.一个化学实验小组人员分别做测量锌跟盐酸反应生成氢气的实验:5人分别称取锌块6.51克,6.52克,6.49克,6.50克,6.48克,生成的氢气用排水法收集,测得分别为:2.25升,2.26升,2.23升,2.24升,2.22升,则由此实验得出的氢气的密度为()A.8.9×10﹣5克/厘米3B.8.9×10﹣4克/厘米3C.8.9×10﹣3克/厘米3D.8.9×10﹣2克/厘米32.一轮船顺流航行100千米与逆流航行64千米所用的时间的和等于逆流航行80千米,再顺流航行返回所用的时间的和,则该船在静水中的速度与水流速度之比为()A.9:1B.5:4C.4:1D.5:13.一个人步行从A地出发,匀速向B地走去.同时另一个人骑摩托车从B地出发,匀速向A地驶去.二人在途中相遇,骑车者立即把步行者送到B地,再向A地驶去,这样他在途中所用的时间是他从B地直接驶往A地原计划所用时间的2.5倍,那么骑摩托车者的速度与步行者速度的比是()A.2:1B.3:1C.4:1D.5:14.小王步行的速度比跑步慢50%,跑步的速度骑车慢50%.如果他骑车从A城去B城,再步行返回A城共需2小时,问小王跑步从A城到B城需要()分钟.A.45B.48C.56D.605.两块含铜百分比不同的合金重量之比为2:3,分别从两块合金上切下重量为3千克的一块,再把切下的每一块与另一块切后剩余部分合在一起,熔炼后两者含铜的百分比恰好相等,则原来两块合金的重量分别是()A.4千克,6千克B.5千克,7.5千克C.6千克,9千克D.8千克,12千克6.有甲、乙、丙三个工作组,已知乙组2天的工作量与甲、丙共同工作1天的工作量相同.A 工程如由甲、乙组共同工作3天,再由乙、丙组共同工作7天,正好完成如果三组共同完成,需要整7天.B工程如由丙组单独完成正好需要10天,问:如由甲、乙组共同完成,需要多少天?()A.超过8天B.7天多C.6天多D.不到6天7.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用()秒.A.12.5B.10C.D.8.一个容器盛满酒精,第一次倒出10升后,用水加满,第二次倒出6升后,再用水加满,这时容器内的酒精与水的体积之比为7:13,则这个容器的容积为()A.18升B.20升C.24升D.30升9.某市为落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,那么汽车原来的平均速度为()A.80km/h B.75km/h C.70km/h D.65km/h10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m(AB上方),第二次相遇时离B点60m(AB下方),则圆形跑道的总长为()A.240m B.360m C.480m D.600m11.甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后50分钟到达B,甲乙的速度之比为()A.2:3B.3:5C.3:2D.3:412.甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A.17小时B.14小时C.12小时D.10小时13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.14.市场上的红茶由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买15吨纯净水.由于今年以来茶产地连续大旱,茶原液收购价上涨50%,纯净水价也上涨了10%,导致配制的这种茶饮料成本上涨40%,问这种茶饮料中茶原液与纯净水的配制比例为.15.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A和B.已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过28件.现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为元.16.将三支长度相同的蜡烛A,B,C同时点燃,当蜡烛A剩一半时,蜡烛B和蜡烛C剩余部分的长度之比为28:33,当蜡烛B剩一半时,蜡烛A和蜡烛C剩余部分的长度之比为16:25,若整个燃烧过程中.每支蜡烛燃烧速度均保持不变,则当蜡烛C剩一半时,蜡烛A和蜡烛B剩余部分的长度之比为.17.某饮品店老板新推出A、B两种囗味的饮料,其中每杯A种口味饮料的利润率为60%,每杯B种口味饮料的利润率为20%.当售出的A种口味的杯数比B种口味的杯数少50%时,这个老板得到的总利润率为36%;当售出的A种口味的杯数比B种口味的杯数多25%时,这个老板得到的总利润率为.(利润率=利润÷成本)18.某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加80件,并且商场第二个月比第一个月多获利300元.则此商品的进价是.19.小明暑假外出旅行时,准备给朋友们些土特产作为礼物.预先了解到当地最富盛名的A、B两种特产的价格之和为140元,小明计划购买B特产的数量比A特产的数量多5盒,但一共不超过60盒,小明在土特产商店发现A正打九折销售,而B的价格提高了10%,小明决定将A、B特产的购买数量对调,这样,实际花费只比计划多20元,已知价格和购买数量均为整数,则小明购买土特产实际花费为元.20.植树节时,某班平均每人植树6棵.如果只由女同学完成,每人应植树10棵;如果只由男同学完成,每人应植树棵.21.某车间有甲、乙两个小组,甲组的工作效率比乙组的工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间少半小时,甲组每小时加工个零件.22.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是.23.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)若小区一次性购买A型,B型垃圾桶共60个,要使总费用不超过4000元,最少要购买多少个A型垃圾桶?24.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?25.疫情过后,为做好复工复产,某工厂用A、B两种型号机器人搬运原料.已知A型机器人每小时搬运的原料比B型机器人每小时搬运的原料的一半多50千克,且B型机器人搬运2400千克所用时间与A型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.26.随着人们环保意识的增强,混动汽车也成了广大消费者的宠儿.某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为70元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.4元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?27.城镇老旧小区改造是重大民生工程和发展工程;安定区积极响应党的号召,全面推进城区老旧小区改造工作.现计划对城区某小区的居民自来水管道进行改造;该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为3500元,乙队每天的施工费用为2500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?28.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?29.为了应对新型冠状病毒肺炎疫情,某工厂接到600件防护服的紧急生产任务,为了尽快完成任务,该工厂实际每天生产防护服的件数比原来每天多50%,结果提前10天完成任务,那么原来每天生产防护服多少件?30.列分式方程解应用题:“5G改变世界,5G创造未来”.2019年9月,全球首个5G上海虹桥火车站,完成了5G 网络深度覆盖,旅客可享受到高速便捷的5G网络服务.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输7千兆数据,5G网络比4G网络快630秒,求5G网络的峰值速率.31.甲、乙两人分别从距目的地8km和14km的两地同时出发,甲、乙的速度比是2:3,结果甲比乙提前20min到达目的地,求甲、乙的速度.32.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?参考答案1.解:设制得氢气的质量为x克.Zn+2HCl=ZnCl2+H2↑65 20.01gx故=解得:x=g.÷0.01=克/升=8.9×10﹣5克/厘米3故选:A.2.解:可直接设船在静水中的速度与水流速度之比为x,由于静水中的速度和水流速度都是未知数,可设水流速度为1,则静水速度就为x.则.解得x =9.所以船在静水中的速度与水流速度之比为9:1.经检验x=9是方程的根,故选A.3.解:设步行者的速度为1,骑摩托车者的速度为v,AB两地相距s.由题意,有+=,∴=,解得v=3,∴v:1=3:1.即骑摩托车者的速度与步行者速度的比是3:1.故选:B.4.解:设骑车速度为x,则跑步的速度为(1﹣50%)x,步行的速度为(1﹣50%)(1﹣50%)x,根据题意列方程得+,解得x=,跑步的速度为,小王跑步从A城到B城需要1÷=小时=48分钟.故选:B.5.解:设第一块的质量为2x千克,含铜的百分比为a,第二块的质量为3x千克,含铜的百分比为b,,解得,x=2.5,经检验,x=2.5是原分式方程的解,∴2x=5,3x=7.5,故选:B.6.解:设甲、乙、丙三个工作组单独完成A工程分别需要x天、y天和z天.A工程:根据题意得:①②③把③代入②得:④把④代入①得:⑤由④⑤可得:x:y:z=20:15:12 ⑥B工程:设丙单独完成B工程需要az天,则甲乙单独完成B工程需要ax、ay天,设甲乙共同完成B工程需要m天.根据题意得:⑦⑧由⑥⑦⑧得:m=>7答:甲乙共同完成B工程需要7天多.故选:B.7.解:设无风时的速度是x米/秒,风速是y米/秒,=,x=8y.又∵=10=10∴y=1,∴x=8.100÷8=12.5(秒).跑100米用的时间是12.5秒.故选:A.8.解:设这个容器的容积为x升,由题意得:x﹣10﹣6×=x,整理得:13x2﹣320x+1200=0,解得:x=20,或x=(舍去),∴x=20,经检验,x=20是原分式方程的解;即这个容器的容积为20升;故选:B.9.解:设汽车原来的平均速度是xkm/h,根据题意得:﹣=2,解得:x=70,经检验:x=70是原方程的解.即汽车原来的平均速度70km/h.故选:C.10.解:设圆形跑道总长为2s,又设甲乙的速度分别为v,v′,再设第一次在C点相遇,根据题意得:,化简得:,100(2s﹣60)=(s﹣100)(s+60),化简得s2﹣240s=0,∴s(s﹣240)=0,解此方程得s=0(舍去)或s=240.经检验s=240是方程的解;所以2S=480米.故选:C.11.解:设甲的速度为v1千米/时,乙的速度为v2千米/时,根据题意知,从出发地点到A 的路程为v1千米,到B的路程为v2千米,从而有方程:,化简得:,解得:,﹣是负数,应该舍去故选:A.12.解:设甲打字员原计划完成此项工作的时间是x小时,则甲的工作效率是,乙的工作效率是甲的1.5倍,即,依题意得:+=1,整理得:2x﹣12+3(x﹣8)=2x,解得:x=12,经检验,x=12是所列分式方程的解,即甲打字员原计划完成此项工作的时间是12小时;故选:C.13.解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.解:设这种茶饮料中茶原液与纯净水的配制比例为a:b,购买一吨纯净水的价格是x,=(1+40%),=1:5.故答案为:1:5.15.解:设小商品A的单价为x元/件,则B商品的单价为(25﹣x)元/件,计划购买小商品Aa件,则B商品为(a﹣3)件,(1+20%)x(a﹣3)+0.8a(25﹣x)+6=xa+(25﹣x)(a﹣3),解得x=,由题意得:a+a﹣3≤28a≤15.5,∵x和a都是整数,∴当x=10,a=15时,小明原计划购买费用为:xa+(25﹣x)(a﹣3)=15×10+15×12=330.故答案为:33016.解:设蜡烛的长度为l,蜡烛A,B,C燃烧的速度分别是x、y、z,由题意可知,蜡烛A剩一半所用时间t1==,此时蜡烛B剩余部分的长度为:l﹣yt1=l﹣,蜡烛C剩余部分的长度:l﹣zt1=l﹣.由题意,可得=,整理,得10x=33y﹣28z①;蜡烛B剩一半所用时间t2==,此时蜡烛A剩余部分的长度为:l﹣xt2=l﹣蜡烛C剩余部分的长度:l﹣zt2=l﹣.由题意,可得=,整理,得25x=18y+16z②.①与②联立组成方程组,解得.所以,蜡烛C剩一半所用时间t3====,此时蜡烛A剩余部分的长度为:l﹣xt3=l﹣=,蜡烛B剩余部分的长度:l﹣yt3=l﹣x•=1﹣=,蜡烛A和蜡烛B剩余部分的长度之比为:=.故答案为:.17.解:60%=0.6,20%=0.2,50%=0.5,25%=0.25,∵每杯A种口味饮料的利润率为60%,每杯B种口味饮料的利润率为20%.∴设A种囗味的饮料进价为a元每杯,则售出价为1.6a元每杯;B种囗味的饮料进价为b元每杯,则售出价为1.2a元每杯,其中a>0,b>0,根据题意得:×100%=36%,解得a=b,a与b的数量关系符合问题的实际意义.当售出的A种口味的杯数比B种口味的杯数多25%时,设B种口味的杯数为y杯,则A 种口味的杯数为1.25y杯,由题意得,这个老板得到的总利润率为:×100%=×100%=×100%=45%.故答案为:45%.18.解:设此商品的进价是x元,根据题意,得:=﹣80,解得x=50.经检验:x=50是所列方程的解,即此商品的进价是50元.19.解:设A特产的单价为x元/盒,则B特产的单价为(140﹣x)元/盒,计划购买A特产a盒,则B特产为(a+5)盒,0.9x(a+5)+(140﹣x)(1+10%)a﹣[ax+(140﹣x)(a+5)]=20,解得x==+70,∵x和a都是整数,550=2×5×11,∴95﹣2a=5,11,55,当95﹣2a=5时,a=45;当95﹣2a=11时,a=42;当95﹣2a=55时,a=20;∵a+a+5≤60,解得a≤27.5,∴a=20,95﹣2a=55,∴x=+70=80,小明实际花费ax+(a+5)(140﹣x)+20=20×80+(20+5)×(140﹣80)+20=1600+1500+20=3120答:小明购买土特产实际花费为3120元.20.解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:+=,解得:x=15.检验得x=15是方程的解.因此单独由男生完成,每人应植树15棵.故答案是:15.21.解:设乙每小时加工的零件数为x个,则可得甲每小时加工零件数为(1+25%)x个.由题意可得方程:.解得:x=400.经检验:x=400是原方程的解,且符合题意.∴(1+25%)x=1.25×400=500.答:甲每小时加工500个零件,故答案为:500.22.解:设原计划每天种树x棵,由题意得:﹣=4,解得:x=120,经检验:x=120是原分式方程的解,故答案为:120棵.23.解:(1)设购买一个A型垃圾桶需x元,则一个B型垃圾桶需(x+30)元,由题意得:=×2,解得:x=50,经检验:x=50是原方程的解,且符合题意,则x+30=80,答:购买一个A型垃圾桶需50元,一个B型垃圾桶需80元.(2)设小区一次性购买A型垃圾桶y个,则购买B型垃圾桶(60﹣y)个,由题意得:50y+80(60﹣y)≤4000,解得y≥60.答:最少要购买60个A型垃圾桶.24.解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥33,因此,A种型号健身器材至少购买34套.25.解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+50)kg原料,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=125.答:A型机器人每小时搬运125kg原料,B型机器人每小时搬运150kg原料.26.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.4)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100(千米);答:汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)汽车行驶中每千米用油费用为0.3+0.4=0.7(元),设汽车用电行驶ykm,可得:0.3y+0.7(100﹣y)≤50,解得:y≥50,所以至少需要用电行驶50千米.27.解:(1)设该项工程的规定时间是x天,由题意得:,解得:x=30.经检验x=30是原分式方程的解.答:该项工程的规定时间是30天.(2)甲、乙队合做完成所需的天数为:.则该工程施工费用是:18×(3500+2500)=108000(元).答:该工程施工费用为108000元.28.解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.29.解:设原来每天生产防护服x件,则实际每天生产(1+50%)x件,由题意得,+10=,解得:x=20,经检验:x=20是原分式方程的解,且符合题意.答:原来每天生产防护服20件.30.解:设4G网络的峰值速率为每秒传输x千兆数据.依题意,得,解得x=0.01.经检验:x=0.01是原方程的解,且满足实际意义.10x=10×0.01=0.1答:5G网络的峰值速率为每秒传输0.1千兆数据.31.解:设甲的速度为2x千米/小时,乙的速度为3x千米/小时,依题意得:+=,解得:x=2,经检验:x=2是分式方程的解,则2x=4,3x=6.答:甲的速度为4千米/小时,乙的速度为6千米/小时.32.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年九年级数学中考复习——方程专题:分式方程实际应用
(一)
1.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20棵,结果在时间相同的情况下多种了240棵树,原计划每天种植多少棵树?
2.小华早上从家到离家3000米的学校,今天的速度比昨天提高了20%,结果比昨日早到了5分钟,问小华今日用的速度和时间.
3.某快餐店欲购进A、B两种型号的餐盘,每个A种型号的餐盘比每个B种型号的餐盘费用多10元,且用120元购进的A种型号的餐盘与用90元购进的B种型号的餐盘的数量相同.
(1)A、B两种型号的餐盘单价各为多少元?
(2)若该快餐店决定在成本不超过3000元的前提购进A、B两种型号的餐盘80个,求最多购进A种型号餐盘多少个?
4.小明陪妈妈一起到超市购买大米,按原价购买,用了100元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了55kg.这种大米的原价是多少?
5.在党中央的正确领导下,在全体医护人员的努力下,新冠肺炎疫情在我国得到有效控制,学生复课指日可待,某班级班委会计划从商店购买同一种品牌的一次性医用口罩和消毒液,已知购买一包一次性医用口罩比购买一瓶消毒液多用20元,若用400元购买一次性医用口罩和用160元购买消毒液,则购买一次性医用口罩的包数是购买消毒液瓶数的一半.
(1)求购买该品牌的一包一次性医用口罩、一瓶消毒液各需要多少元?
(2)经商谈,商店给予该班级购买一包该品牌的一次性医用口罩赠送一瓶该品牌的消毒液的优惠,如果该班级需要消毒液的瓶数是一次性医用口罩包数的2倍还多8,且该班级购买一次性医用口罩和消毒液的总费用不超过670元,那么该班级最多可以购买多少包该品牌的一次性医用口罩?
6.某服装厂准备加工400套运动装,原计划由甲组单独完成,甲组加工完160套后,因有其他任务改由乙组完成剩下的运动装加工,因乙组每天加工的数量比甲组多20%,故提前了2天完成任务,问甲组每天加工运动装多少套?
7.甲、乙两地相距600千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早1个小时到达乙地,求两辆车的速度.
8.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3200元购买B消毒液的数量是用2400元购买A消毒液数量的2倍.
(1)求两种消毒液的单价;
(2)学校准备用不多于6800元的资金购买A、B两种消毒液共70桶,问最多购买A消毒液多少桶?
9.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,苏州某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求甲、乙两厂房每天各生产多少箱口罩.
10.某学校计划从商店购买测温枪和洗手液,已知购买一个测温枪比购买一瓶洗手液多用20元,若用400元购买测温枪和用160元购买洗手液,则购买测温枪的个数是购买洗手液个数的一半.
(1)求购买一个测温枪、一瓶洗手液各需要多少元;
(2)经商谈,商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠,如果该学校需要洗手液个数是测温枪个数的2倍还多8个,且该学校购买测温枪和洗手液的总费用不超过670元,那么该学校最多可购买多少个测温枪?
参考答案
1.解:设原计划每天种植x棵树,则实际每天种(x+20)棵树,
由题意可得:,
解得:x=80,
经检验,x=80是原方程的解,并符合题意,
答:原计划每天种植80棵树.
2.解:设小华昨天用的速度为x米/分钟,则小华今日用的速度为(1+20%)x米/分钟,根据题意得,﹣=5,
解得:x=100,
经检验,x=100是原方程的解,
∴(1+20%)x=120,
=25,
答:小华今日用的速度和时间分别为120米/分钟,25分钟.
3.解:(1)设A型号的餐盘单价为x元,则B型号的餐盘单价为(x﹣10)元,由题意可列方程=,
解得x=40.
经检验:x=40是原分式方程的根.
则x﹣10=40﹣10=30.
答:A型号的餐盘单价为40元,B型号的餐盘单价为30元;
(2)设购进A种型号餐盘m个,
由题可知40m+30(80﹣m)≤3000,
解得m≤60.
答:最多购进A种型号餐盘60个.
4.解:设这种大米的原价为每千克x元,
根据题意,得.
解这个方程,得x=5.
经检验,x=5是所列方程的解.
答:这种大米的原价为每千克5元.
5.解:(1)设购买该品牌的一包一次性医用口罩需要x元,则一瓶消毒液需要(x﹣20)元,依题意有
×2=,
解得x=25,
经检验,x=25是原方程的解,
x﹣20=25﹣20=5.
故购买该品牌的一包一次性医用口罩需要25元,一瓶消毒液需要5元;
(2)设该班级可以购买y包该品牌的一次性医用口罩,则该班级需要消毒液的瓶数是(2y+8)瓶,依题意有
25y+5(2y+8﹣y)≤670,
解得y≤21,
∵y是整数,
∴y最大为21.
故该班级最多可以购买21包该品牌的一次性医用口罩.
6.解:设甲组每天加工运动装x套,由题意得:
﹣2=+.
解得:x=20,
经检验:x=20是原方程的解.
答:甲组每天加工运动装20套.
7.解:设货车的速度为x千米/时,则小汽车的速度为1.2x千米/时,依题意,得:﹣=1,
解得:x=100,
经检验,x=100是原方程的解,且符合题意,
∴1.2x=120.
答:货车的速度为100千米/时,小汽车的速度为120千米/时.8.解:(1)设B消毒液的单价为x元,则A消毒液的单价为(x+40)元,依题意,得:=2×,
解得:x=80,
经检验,x=80是所列分式方程的解,且符合题意,
∴x+40=120.
答:A消毒液的单价为120元,B消毒液的单价80元.
(2)设购买A消毒液y桶,则购买B消毒液(70﹣y)桶,
依题意,得:120y+80(70﹣y)≤6800,
解得:y≤30.
答:最多购买A消毒液30桶.
9.解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意,得:﹣=5,
解得:x=600,
经检验,x=600是原分式方程的解,且符合题意,
∴2x=1200.
答:甲厂房每天生产1200箱口罩,乙厂房每天生产600箱口罩.
10.解:(1)设购买一瓶洗手液需要x元,则购买一个测温枪需要(x+20)元,依题意,得:=×,
解得:x=5,
经检验,x=5是原方程的解,且符合题意,
∴x+20=25.
答:购买一个测温枪需要25元,购买一瓶洗手液需要5元.
(2)设该学校购买m个测温枪,则购买(2m+8)瓶洗手液,
依题意,得:25m+5(2m+8﹣m)≤670,
解得:m≤21.
答:该学校最多可购买21个测温枪.。

相关文档
最新文档