高三数学必考知识点汇总
数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。
高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
高三数学知识点全集

高三数学知识点全集一、集合与函数1. 集合的表示与性质集合的定义、集合的表示方法、集合的性质等。
2. 集合的运算交集、并集、补集和差集等基本运算,以及运算法则。
3. 函数与映射函数的定义、函数的表示方法、函数的性质等。
二、数列与数列的极限1. 数列的概念与性质数列的定义、通项公式、等差数列、等比数列等概念和性质。
2. 数列的求和等差数列的求和公式、等比数列的求和公式等。
3. 数列极限的概念与性质数列极限的定义、数列极限的性质及运算法则等。
三、函数的极限与连续性1. 函数极限的概念与性质函数极限的定义、性质以及函数极限的运算法则等。
2. 函数连续性的概念与性质函数连续性的定义、连续函数的性质、间断点等。
3. 函数的导数与微分函数导数的定义、导数的性质、常见函数的导数等。
四、导数与其应用1. 导函数的性质与运算导函数的定义、常见函数的导函数、导函数的性质及运算法则等。
2. 高阶导数与高阶导数的应用高阶导数的概念及性质、高阶导数在曲线研究中的应用等。
3. 函数的求导公式与高阶导数常见函数的求导公式、复合函数的求导、隐函数的求导等方法。
五、概率与统计1. 概率的基本概念与性质概率的定义、基本概率规则、加法定理、乘法定理等。
2. 随机变量及其分布随机变量的定义、离散随机变量、连续随机变量、分布函数等。
3. 统计与抽样统计的基本概念、抽样的方法与意义、样本调查等。
六、空间几何与立体几何1. 空间几何图形的性质点、线、面的基本概念和性质,空间几何图形的分类与特征等。
2. 空间几何与向量空间向量的定义、向量的运算法则、向量的数量积与向量的垂直、向量的平行等。
3. 空间几何与平面几何的关系点与直线的位置关系、平面与直线的位置关系等。
七、三角函数与平面向量1. 三角函数的定义与性质正弦函数、余弦函数、正切函数等三角函数的定义与性质。
2. 三角函数的基本公式与解法三角函数的基本公式、解三角方程等方法。
3. 平面向量的基本概念与性质向量的概念、向量的性质、向量的运算法则等。
高中数学必考知识点

章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用
高三数学必考知识点汇总

高三数学必考知识点汇总高三数学必考知识点汇总一1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_.(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高三数学必考知识点汇总二1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0?;a-b=0?;a-b<0?.另外,若b>0,则有>1?;=1?;<1?.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b?;(2)传递性:a>b,b>c?;(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;(5)可乘方:a>b>0?(n∈N,n≥2);(6)可开方:a>b>0?(n∈N,n≥2).复习指导1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.3.“两条常用性质”(1)倒数性质:①a>b,ab>0?<;②a<0③a>b>0,0;④0(2)若a>b>0,m>0,则①真分数的性质:<;>(b-m>0);②假分数的性质:>;<(b-m>0).高三数学必考知识点汇总三复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
高三数学考试总复习知识点
高三数学考试总复习知识点数学作为一门理科学科,是高中学生必修的一门课程。
随着学习的深入,数学的难度也逐渐增加。
为了顺利度过高三数学考试,掌握并复习重要的知识点是必不可少的。
下面,将为大家总结高三数学考试的重要知识点,帮助大家更好地备考。
一、数列与数列的性质1. 等差数列2. 等比数列3. Fibonacci数列4. 递推数列二、函数与方程1. 函数的基本概念2. 一次函数与二次函数3. 指数函数与对数函数4. 复合函数与反函数5. 一元二次方程与一元二次不等式6. 二元一次方程组与二元一次不等式组三、三角函数与三角恒等式1. 三角函数的定义2. 三角函数的性质3. 三角函数的射影解析式4. 三角函数的图像与性质5. 三角恒等式的运用四、立体几何1. 空间几何体的名称与性质2. 空间几何体的体积与表面积计算3. 空间几何体的投影与旋转体五、平面解析几何1. 平面上点和向量的表示2. 直线和平面的方程与性质3. 圆的方程与性质4. 平移、旋转、对称变换5. 直线和圆的位置关系六、数理统计与概率1. 数据的收集与整理2. 统计图与频率分布表3. 参数与抽样分布4. 概率的定义与性质5. 概率计算与排列组合七、数学证明与逻辑思维1. 数学证明的基本方法2. 常用的数学证明技巧3. 数学归纳法与递推思想4. 逻辑思维与解决问题的方法以上是高三数学考试的重要知识点的简要总结。
在备考过程中,同学们应该根据自己的掌握情况,有针对性地进行复习,查漏补缺。
除了理论知识的掌握外,有关数学题的应试技巧同样重要。
在解题过程中,大家应该注意思路的清晰与合理,同时多做一些典型题目进行巩固,提高解题能力。
希望以上的总结对大家备考高三数学考试有所帮助。
在备考期间,记得保持良好的学习习惯,合理安排时间,合理利用各种学习资源,相信你们一定能够取得优异的成绩。
祝愿大家取得理想的高考分数,顺利进入理想的大学!。
高考数学必考知识点归纳
高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学知识点全总结
高三数学知识点全总结一、函数与方程1. 函数的定义及性质函数是一个或多个自变量映射到一个因变量的规则。
函数的性质包括定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数一次函数的一般形式为y = kx + b,二次函数的一般形式为y = ax^2 + bx + c。
掌握函数图像的性质及相关计算方法。
3. 指数函数与对数函数指数函数和对数函数是互为反函数的关系。
理解指数函数与对数函数的基本性质,包括指数法则、对数法则等。
4. 三角函数熟悉三角函数的定义、图像及性质,包括正弦函数、余弦函数、正切函数等。
掌握相关公式的应用,如和差化积、倍角公式等。
5. 不等式与方程组理解不等式与方程组的解集表示方法,掌握解不等式和方程组的基本方法,如代入法、加减消元法等。
二、数列与数列的极限1. 数列的概念数列是数字按照一定规律排列形成的序列。
掌握等差数列、等比数列等常见数列的特点及求和公式。
2. 数列的极限理解数列极限的定义与性质,掌握数列极限的判定方法,如夹逼准则、单调有界准则等。
应用数列极限解决相关问题。
三、导数与微分1. 导数的概念与性质理解导数的定义,掌握导数的四则运算、求导法则及应用,如链式法则、隐函数求导等。
2. 函数的极限与连续性理解函数极限和连续性的概念,掌握相关定理和判定方法。
了解无穷小与无穷大的概念及性质。
3. 微分与应用掌握微分的概念与计算方法,理解微分的几何意义。
了解微分的应用,如切线方程、极值点等。
四、平面几何1. 三角形与四边形熟悉三角形的性质,包括角的性质、三角形的相似关系、共线与共点关系等。
掌握四边形的性质,如四边形内角和、对角线性质等。
2. 圆与圆锥曲线掌握圆的性质,包括圆心角、弧长、扇形面积等计算方法。
了解圆锥曲线的基本形式及性质,如椭圆、双曲线、抛物线等。
3. 平面向量熟悉平面向量的定义与性质,掌握向量的加减法、数量积、向量积等运算。
应用平面向量解决相关几何问题。
五、立体几何1. 空间几何基本概念熟悉空间几何的基本概念,包括点、线、面等。
高考数学必考知识点归纳全
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学必考知识点汇总
一
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+n-1d.
3.等差中项
如果A=a+b/2,那么A叫做a与b的等差中项.
4.等差数列的常用性质
1通项公式的推广:an=am+n-mdn,m∈N_.
2若{an}为等差数列,且m+n=p+q,
则am+an=ap+aqm,n,p,q∈N_.
3若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…k,m∈N_是公差为md的等差数列.
4数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
5S2n-1=2n-1an.
6若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中中间项.
注意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=na1+an/2
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元.
1若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
2若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
1定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
2等差中项法:验证2an-1=an+an-2n≥3,n∈N_都成立;
3通项公式法:验证an=pn+q;
4前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
二
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,则有>1?;=1?;<1?.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
1对称性:a>b?;
2传递性:a>b,b>c?;
3可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
4可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
5可乘方:a>b>0?n∈N,n≥2;
6可开方:a>b>0?n∈N,n≥2.
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
1倒数性质:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
2若a>b>0,m>0,则
①真分数的性质:<;>b-m>0;
②假分数的性质:>;<b-m>0.
三
复数的概念:
形如a+bia,b∈R的数叫复数,其中i叫做虚数单位。
全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bia,b∈R,这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
1复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bia、b∈R可用点Za,b表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。
显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
2复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一
个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bia、b∈R在复平面上对应的点Za,b到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
1它的平方等于-1,即i2=-1;
2实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
3i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另
一个根是-i。
4i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bia、b∈R,当且仅当b=0时,复数a+bia、b∈R是实数a;当b≠0时,
复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实
数0。
四
不等式分类:
不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号大于或等于号、不大于号小于或等于号“≥”
大于等于符号“≤”小于等于符号连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为Fx,y,……,
z≤Gx,y,……,z其中不等号也可以为<,≥,>中某一个,两边的解析式的公共定义域
称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
五
一次函数的定义
一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的
一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函
数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数的性质
一般地,形如y=kx+bk,b是常数,且k≠0,那么y叫做x的一次函数,当b=0时,
y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
注:一次函数一般形式y=kx+bk不为0
ak不为0
bx的指数是1
cb取任意实数
一次函数y=kx+b的图像是经过0,b和-b/k,0两点的一条直线,我们称它为直线
y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。
当b>0时,向上平移;b<0时,向下平移
感谢您的阅读,祝您生活愉快。