湍流模型
湍流模型

第六章湍流模型湍流模型湍流运动中动量与能量交换主要受大尺度涡的影响湍流的基本方程无论湍流运动多么复杂,非稳态的连续方程和Navier-stokes 方程对于瞬时运动仍然是使用的。
对不可压流动:=01+=-+(grad )1+=-+(grad )1+=-+(grad )u p u v u t x v p v v t y w p w v w t zρρρ∇∂∂∇∇∂∂∂∂∇∇∂∂∂∂∇∇∂∂u u u u ()(v )()一、“雷诺平均”模式(RANS)根据湍流统计平均理论,湍流的速度、压强都可以分解为平均量和脉动量'i i iu u u=+p p p '=+其中,,i u p 为系综统计平均量,任意变量ф的时间平均值定义为:1()t ttt dt t φφ+∆=∆⎰,i u p ''为脉动量一、“雷诺平均”模式(RANS)对N-S 方程做系综平均()0i iu x ∂=∂遵循求导和系综平均可交换的原则,上式的线性项可直接写出:i iu u t t∂∂=∂∂21()i i i j i j i j ju u pu u f t x x x x νρ∂∂∂∂+=-++∂∂∂∂∂一、“雷诺平均”模式(RANS)对非线性对流项()()(()())()()i j i j j i i j i j i j i j i j j j j j i j i j ju u u u u u u u u u u u u u u u x x x x u u u u x ∂∂∂∂''''''==++=+++∂∂∂∂∂''=+∂将以上方程代入N-S 方程的系综平均中:'2'''''''2'''''''2=01+=-+(grad )+[---]1+=-+(grad )[---]1+=-+(grad )[---]u p u u v u w u v u t x x y z v p u v v v w v v v t y x y z w p u w v w w w v w t zx y z ρρρ∇∂∂∂∂∂∇∇∂∂∂∂∂∂∂∂∂∂∇∇+∂∂∂∂∂∂∂∂∂∂∇∇+∂∂∂∂∂u u u u ()()()()0i iu x ∂=∂21()()i i i j i j iji j j i u p u u u v u u f t x x x x x ρ∂∂∂∂∂''+=-+-+∂∂∂∂∂∂()ij i j R u u ρ''=-为雷诺应力项一、“雷诺平均”模式(RANS)()0i iu t x ρρ∂∂+=∂∂()1()[()]i i i j i j i ji j j u p u u u u u s t x x x x ρρμρρ∂∂∂∂∂''+=-+-+∂∂∂∂∂()()[()]j i j j i ju u s t x x x φρφρφρφ∂∂∂∂''+=Γ-+∂∂∂∂RANS方程和原N-S方程在形式上很相似,只是多了雷诺应力项(6个)。
9个湍流模型介绍

9个湍流模型介绍
好的,为你介绍9个湍流模型:
1. Reynolds平均的NS方程(Reynolds-Averaged Navier-Stokes,RANS):Reynolds 提出了平均法,将“瞬时值=平均值+脉动值”带入不可压缩流体控制方程中,得到了一个更复杂的方程。
对于可压缩流体,假设瞬时密度的变化对流动影响不大,忽略其影响。
2. Reynolds应力模型(RSM):模仿控制方程的样子,搞出一个针对Reynolds应力的输运方程。
3. 代数应力模型(ASM):简化Reynolds应力方程的对流项和扩散项。
此外,还有一些其他湍流模型,如Spalart-Allmaras模型、k-双方程模型等。
这些模型都有各自的特点和适用范围,可根据具体问题选择合适的湍流模型进行计算。
第三章_湍流模型

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图Direct Numerical Simulation包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节 平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。
fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
四种湍流模型介绍

四种湍流模型介绍湍流是一种自然界中的非常普遍的现象,它的产生非常复杂且难以完全理解。
然而,对于一些科学领域来说,湍流是非常重要的,比如气象学、海洋学、工程学等。
湍流的模拟对于这些领域中的许多问题都是至关重要的。
本文将介绍四种湍流模型的基本概念及其应用。
1. DNS(直接数值模拟)DNS模型是把流体问题看做一组微分方程的解,对流体流动的每个细节都进行了计算。
这种模型的重要性在于它能够提供非常详细的流场信息,而且可以完全地描述流体力学问题,因此它也被称为“参考模型”。
然而,DNS模型也有一些局限性。
由于湍流的分子尺度是非常小的,因此在模型计算时需要高分辨率的计算网格,这使得计算时间和存储空间要求非常高。
此外,由于瞬时的湍流性质非常不稳定,因此DNS模型的计算过程也非常复杂。
因此,在实际应用中,DNS模型的应用受到了很大的限制。
2. LES(大涡模拟)LES模型是将湍流分解成大尺度的大涡和小尺度的小涡,并通过计算大涡的运动来获得流场的信息。
相比于DNS模型,LES模型计算的时间和存储空间要求比较低。
但是,这种模型仍然需要计算小涡的贡献,因此计算时仍然需要很高的分辨率。
在工程学中,这种模型常用于模拟湍流流动问题,比如气动噪声、汽车的气动流动、空气污染等问题,因为模型能够更好地反映流场的基本特性,提供比较准确的结果。
3. RANS(雷诺平均纳维-斯托克斯方程模型)RANS模型通过对湍流流场的平均速度和压力场进行求解,以获得平均情况下的流动情况。
该模型在计算湍流流场时,只需要考虑平均的流态,不需要计算流动中的小且不稳定的涡旋,因此计算效率比较高。
这种模型常用于一些基于大规模的工程计算,如风力发电机、涡轮机、船舶的流动等。
研究发现,在这些问题中,相比于LES模型,RANS模型所得到的结果精度略低,但是在很多领域中已经被广泛地应用。
4. VLES(小尺度大涡模拟)VLES模型是LES模型和RANS模型的结合体,通过计算流场中的大尺度涡旋和小尺度涡旋来提高计算的准确性。
湍流模型

湍流模型推导对纳维斯托克斯方程做时间平均处理,即采用雷诺平均法(RANS :Reynolds-Averaged Navier-Stokes ),可以得到湍流基本方程。
对于任意变量φ,按照雷诺时间平均法,可以拆分为如下格式:φφφ'+=“-” 表示对时间的平均,上标“’”代表脉动量。
按照dt TTt tφφ⎰∆+∆=1计算平均值,将流动变量i u 和p 转换成时间平均和脉动值之和u u u i '+=,p p p '+=为了使方程组更具有封闭性,必须模化雷诺应力,引入模型使方程组封闭。
其方法之一是湍流粘性系数法。
按照基于Boussinesq 的涡粘假设湍流粘性系数法有ij i i t i jj i t j i x u k x u xu u u δμρμρ⎪⎪⎭⎫ ⎝⎛∂∂+-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''-32 上述方程式中t μ为涡粘系数,i u 为时均速度,ij δ是Kronecker 符号,k 为湍流动能(当j i =时,1=ij δ;当j i ≠时,0=ij δ)。
2i i u u k ''=确定涡粘性系数t μ就是整个湍流模型的目标关键,确定湍流粘性系数法具体可以分为零方程模型、一方程模型、和二方程模型等等。
一 零方程模型零方程模型也可称作代数模型,直接建立雷诺应力和时均值的代数关系,从而把涡粘系数和时均值联系到一起的模型。
1 混合长度模式混合长度模式是基于分子运动的比拟,在二维剪切层中导出的。
混合长度l 类比分子运动自由程,在经历混合长度的横向距离上,脉动速度正比于混合长度及流向平均速度梯度,即:yUlu ∂∂∝' (1.1-1) 而粘性系数应当正比于脉动速度和混合长度之积(分子粘性系数正比于自由程和分子热运动速度之积),从而涡粘系数有如下的估计式:yUl l u v t ∂∂∝'∝2(1.1-2) 在湍流输运中,涡粘系数和沃扩散系数之比定义为普朗特数t Pr ,即:t t t v κ=Pr (1.1-3)工程计算中通常采用0.1~8.0Pr =t 。
湍流模型

T k xk
由量纲分析 S 方程的源项可模拟为 S k k 方程 S (c1Gk c2 )
k
( ) ( k ) ( ) (c1Gk c2 ) t xk xk xk k
YM 2 M t
2
(25)
其中,Mt是湍流Mach数, M t k / a 2 ; a是声速,a RT
标准k- 模型中的系数
在标准的k-ε模型中,根据Launder等的推荐值及 后来的实验验证,模型常数 C1、C2、C、 k、 的取值为:
C1 1.44,C2 1.92,C 0.09, k 1.0, 1.3 (26)
对于可压缩流体的流动计算中与浮力相关的系数 C3,当主流方向与重力方向平行时,有C3=1,当主 流方向与重力方向垂直时,有C3=0。
根据以上分析,当流体为不可压,且不考虑用户自定义源 G 项时, b 0,YM 0,Sk 0,S 0,这时,标准k-ε模型变为:
k kui t xi x j
标准k- 模型的适用性
1)模型中的有关系数,主要根据一些特殊条件下的试验
结果而确定的,在不同的文献讨论不同的问题时,这些值
可能有出入。在数值计算的过程中,针对特定的问题,参 考相关文献,寻求更合理的取值。
2)上述k- 模型,是针对湍流发展非常充分的湍流流动来建
例如,在近壁区内的流动,湍流发展并不充分,湍流的脉动
i j k 2i 2 2 2( ) xk xi x j xk x j
– 左端第一,第二项分别为时间变化率及对流,右端第 一、第二、第三、第四项分别为湍流扩散、分子扩散、 产生项(涡旋拉伸)及粘性耗散项
湍流模型

湍流模型一、 引言以时均量表示的湍流基本方程都刻有相应的瞬时值方程经雷诺分解后再取时均导出。
因此经雷诺平均后,得到了描述湍流时均化的基本方程组,其共包含四个方程,包含一个平均流连续方程一个、以及三个雷诺方程。
但是方程组中的未知量的个数远远多于方程数,除了四个时均量)3,2,1(,=i u p i 外,还有对称的雷诺应力张量''j i u u 的六个分量,因此湍流的时均化方程是不封闭的。
若导入雷诺应力方程,尽管''j i u u 被表达,但是只能在现有方程组中导入更多的变量,方程组不封闭的问题仍旧得不到有效的解决。
湍流模型问题就是建立脉动关联量与平均量之间的关系,或更一般的说,建立高阶关联量与低阶关联量之间的关系,使湍流平均运动的方程组能够封闭。
由于没有“附加”的物理定律可用于建立这些关系,所以湍流模型问题很复杂很困难的。
人们只能以大量的试验观测为基础,通过量纲分析、张量分析或其它手段,包括合理的推理和猜测,提出假设,建立模型,然后与试验对比,进行进一步的修正和精确化。
由此可见,迄今为止建立的湍流模型没有一个是建立在完全严密的理论基础上的,所以也称之为湍流的半经验理论。
二、 湍流模型的主要型式模式理论的思想可以追溯至100多年前。
1872年布辛涅斯克就提出了用涡粘性系数来模拟雷诺应力 )(''i j j i T j i x U x U u u ∂∂+∂∂=-υρ1925年,普朗特沿这一方向做了重要的工作,提出了混合长度理论。
但是混合长度理论本身没有给出确定混合长度l 的理论,冯卡门的相似性假设却使估计l 与空间坐标的关系成为可能。
对于冯卡门的理论,在离避免很近的区域,流动状态将受分子粘性很大的影响,而相似性理论都不能反映这一情况。
为此,范德列斯特提出了对相似理论中的l 的修正公式。
现在广泛使用的一种零方程模型是由薛贝赛和斯密斯提出的两层模型,对于边界层的内层,以范德列斯特模型为基础,在外层则用尾迹型。