路径损耗和阴影衰落
86. 无线通信中的信号衰减模型有哪些?

86. 无线通信中的信号衰减模型有哪些?86、无线通信中的信号衰减模型有哪些?在当今高度依赖无线通信的时代,我们能够随时随地与他人保持联系、获取信息,这都得益于无线通信技术的不断发展。
然而,在无线通信中,信号在传输过程中不可避免地会发生衰减,这会影响通信的质量和可靠性。
为了更好地理解和预测信号衰减的情况,科学家们提出了多种信号衰减模型。
首先,我们来了解一下自由空间传播模型。
这是一种相对简单但基础的模型,它假设信号在没有任何障碍物的理想自由空间中传播。
在这种情况下,信号的衰减与传输距离的平方成正比,与信号的频率也有关系。
自由空间传播模型适用于卫星通信等长距离、无障碍的通信场景。
比如说,当我们通过卫星电视接收信号时,就可以用这个模型来大致估计信号的衰减情况。
路径损耗模型是另一个常见的信号衰减模型。
它考虑了信号在实际环境中传播时,由于建筑物、地形、植被等因素造成的损耗。
路径损耗模型通常比自由空间传播模型更复杂,因为它需要考虑更多的实际因素。
比如在城市环境中,高楼大厦会阻挡信号,导致信号强度大幅下降;在山区,地形的起伏也会对信号传播产生影响。
阴影衰落模型则关注的是由于大型障碍物(如山丘、建筑物等)造成的信号阴影效应。
这种模型认为,即使在同一地点,信号强度也会因为障碍物的遮挡而出现随机的波动。
这种波动通常用对数正态分布来描述。
想象一下,当你在一个高楼林立的城市街道行走时,有时会突然发现手机信号变弱,这可能就是受到了阴影衰落的影响。
多径衰落模型是无线通信中一个非常重要的模型。
当信号在传播过程中遇到多个反射和散射体时,会产生多个路径的信号,这些信号在接收端叠加,可能导致信号幅度和相位的快速变化,从而引起多径衰落。
多径衰落分为快衰落和慢衰落两种情况。
快衰落通常发生在移动速度较快的情况下,比如在行驶的汽车中;慢衰落则与环境的长期变化有关。
瑞利衰落模型是多径衰落模型中的一种常见形式。
它假设信号的多径分量是相互独立的,并且没有直射路径。
路径损耗、阴影衰落和多径衰落

路径损耗、阴影衰落和多径衰落转载▼路径损耗(path loss)是由发射功率的辐射扩散及信道的传输特性造成的。
在路径损耗模型中一般认为对于相同的收发距离,路径损耗也相同。
阴影(shadowing)效应是发射机和接收机之间的障碍物造成的,这些障碍物通过吸收、反射、散射和绕射等方式衰落信号功率,严重时甚至会阻断信号。
多径衰落即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机。
由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。
不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。
这样,接收信号的幅度将会发生急剧变化,就会产生衰落。
路径损耗引起长距离上(100m~1000m)接收功率的变化,而阴影引起障碍物尺度距离上(室外环境是10m~100m,室内更小)功率的变化。
两者在相对较大的距离上引起功率变化,故称其为大尺度传播效应(largescale propagation effect)。
多径信号干扰也会引起接收功率的变化,但这种变化发生在波长数量级距离上,这个距离较短,所以称为小尺度传播效应(smallscale propagation effects)。
多径信号的时延扩展可以导致频率选择性衰落(frequency-selective fading),即针对信号的中不同的频率万分,无线传输信道会呈现不同的随机响应,由于信号中不同频率分量的衰落是不一致的,所以经过衰落之后,信号波形就会发生畸变。
由此可以看到,当信号的速率较高,信号宽带超过无线信道的相干带宽时,信号通过无线信道后各频率分量的变化是不一样的,引起信号波形的失真,造成符号间的干扰,此时就认为发生了频率选择性衰落;反之,当信号的传输速率较低,信道带宽小于相干带宽时,信号通过无线信道后各频率分量都受到相同的衰落,因而衰落波形不会失真,没有符号间干扰,则认为信号只是经历了平衰落,即非频率选择性衰落。
第2章 路径损耗和阴影衰落

|
E
|
2
|
Ed
| sin( )
2
2
|
Ed
| sin( 2 hT hR R
)
PR
Ae
| E |2
0
Ae
4|
R
)
PR
4PT
(
4 R
)2
GT
GR
sin2 ( 2 hT hR R
)
—修正的Friis方程
如果R比hT hR大得多,sin可用来近似,
PR
PT
GT
2
路径损耗、阴影及多径与距离的关系
Pr (dB) Pt
仅路径损耗 阴影及路径损耗 多径、阴影及路径损耗
log(d )
3
2.1 无线电波传播
1)自由空间或视距传输(直射); 2)反射:当无线电波遇到碰到几何尺寸比电磁波波长大
得多的物体,发生反射,如建筑物、山脉和过往车辆等; 3)绕射:当无线电波被尖利边缘阻挡时会发生绕射;
29
2.4.1 地面传播:物理模型
二、绕射
来构造一个圆族,经过每个圆从T到R的路径长度为:
R q / 2 q为整数,额外路径长度为半
波长的整数倍的点的集合;
R h2 d1 d2 , v h (2 d1 d2)
2 d1d2
d1d 2
h rq
qd1d2 ,
d1 d2
vq 2q
即菲涅尔-基尔霍夫绕射参数vq定义了一个额外路径不变的椭圆;
其中:(t) 2 f (t)t (t)
7
2.2 发送和接收信号模型
s(t) (t) cos((t) 0 ) cos(2 fct) (t) sin((t) 0) sin(2 fct) 可定义载频为fc的带通信号s(t) sI (t) cos(2 fct) sQ (t) sin(2 fct)
室内传播模型

下行链路预算模型为:天线口功率(dBm)=路径损耗+阴影衰落余量(dB)+人体损耗(dB)-终端接收增益(dB)+终端接收灵敏度(dBm)1、路径损耗根据室内传播模型Keenan-Motley:LP=32.5+20logf+20logd+pWiLP:路径损耗f:频率(MHz)取值2600Mhzd:发射机与接收机间距离(km)取值0.02P:墙壁的数目取值2Wi:室内墙壁损耗取值20dBLP=32.5+20lg(2600)+20lg(0.02)+2*20=106.822、阴影衰落余量阴影衰落遵循对数正态分布,又称慢衰落。
决定阴影衰落的主要参数有阴影衰落的标准方差和边缘通信概率,阴影衰落标准方差的典型值在5~12dB之间,一般取8dB,边缘通信概率是根据服务质量要求有关,服务质量越高边缘概率越大。
阴影衰落余量=NORMINV(边缘覆盖概率,0,标准方差),其中的0是指正态分布函数的均值。
阴影衰落余量= NORMINV(95%,0,8)=13.163、人体损耗人体对电磁信号的影响,一般取3dB。
4、终端接收增益是指接收机的天线增益,一般取0dB。
5、终端接收灵敏度终端接收灵敏度=噪声功率+噪声系数+信噪比噪声功率=热噪声功率谱密度*带宽热噪声功率谱密度=K*TK:玻尔兹曼常数(J/K)1.38*10-23J/KT:绝对温度(K)300K(27℃)热噪声功率谱密度=10lg(K*T*1000)=-174dBm/Hz带宽(Hz):20*106Hz噪声功率=-174+10lg(20*106)=-174+73=-101dBm噪声系数:输入端信噪比/输出端信噪比,取5dB信噪比:-6dB终端接收灵敏度=-101+5-6=-102dBm天线口功率(dBm)=106.82+13.16+3-102=20.98。
路径损耗和阴影衰落

入了一个复数因子,产生接收信号:
2.3 自由空间的路径损耗
: 视距方向上发射天线和接收天线的
增益之积
:由传播距离d引起的相移
2.3 自由空间的路径损耗
发送信号s(t)功率Pt则有:
接收功率与收发天线间距离d的平方成反比(其
经由反射、绕射和散射到达接收机的信号分量: 多径信号分量
2.4 射线跟踪
接收端收到多径信号cf直射信号:功率衰减、时
延、相移及频移
多径信号和直射信号在接收端叠加信号失真
Q:考虑有限个反射体,if位置和介电性质已知
适当边界条件求解Maxwell方程多径传播路
径
计算复杂,不适于通用建模方法 ☺射线跟踪法:简单几何方程取代Maxwell方程,近
成
障碍物通过吸收、反射、散射和绕射等方式衰减信
号功率,甚至严重时阻断信号。
cf: 路径损耗引起在长距离上;
而阴影引起在障碍物尺寸
的距离上功率变化 (室外:10m-
100m,室内更小)
大尺度传播效应:两者在相对较大距离上 引起的功率变化(cf.小尺度传播效应)
小尺度传播效应:如:多径信号干涉,在 波长数量级距离上引起功率变化。
、形状)
天线增益
该模型假定按自由空间模型从发射体传播到散射 体,在散射体处再以散射体接收功率σ倍向外辐接收到信号:所有多径分量叠加 如果有1条直射路径、Nr条反射路径、Nd条绕射路
径和Ns条散射路径,总的接收信号:
2.4.4 本地接收平均功率
所有射线跟踪模型中路径损耗计算:发射机和接 收机位置固定情况下进行
两径模型、经验模型、统计模型等等
路径损耗和阴影衰落

无线信道的衰落特性无线通信近年来移动通信技术飞速发展,经历了三个发展阶段,第一代模拟系统仅提供语音服务,不能传输数据;第二代数字移动通信系统的数据传输速率也只有9.6Kbit/s,最高可达32kbit/s;第三代移动通信系统数据传输速率可达到2Mbit/s。
随着第三代移动通信(3G)陆续在各国投入商业运营,必将给人们的生活带来更多的方便。
过去所采用的一些成熟的无线技术,例如窄带信道中的调制技术,由于其速率的限制,已渐渐被宽带信道调制技术所代替,对宽带信道的传输性能及调制技术的研究已经达到前所未有的高度。
无线通信的发展目标是使用者能够在任意地点、任何时间与任何人实现即时通信。
无线电波的传播无线信道的电波传输特性与传播环境—地貌、人工建筑、气候特征、电磁干扰情况、通信体移动速度和使用的频段等密切相关。
无线通信系统的通信能力和服务质量、无线通信设备要采用的无线传输技术都与无线移动信道性能的好坏密切相关。
电磁波在空中传播时,墙壁、地面、建筑物和其他物体会对电磁波形成反射、散射、折射和衍射等现象。
无线移动信号的损耗包括自由空间传播损耗与弥散、阴影衰落和多径效应。
无线电波在理想的空间中传播时,电磁波的能量不会被障碍物吸收,也不存在电波的反射、折射、绕射、色散和吸收等现象,但是随着传播距离的增大,电磁能量在扩散过程中产生球面波扩散损耗;由于电波传播遇到的障碍物等阻挡,形成电波阴影区,阴影区的电场强度减弱的现象称为阴影效应。
引起的衰落幅度服从对数正态分布(正态衰落或高斯衰落);由于移动传播环境的多径传播引起的衰落称为多径衰落。
当接收信号中无主导信号时,衰落振幅服从瑞利分布。
当接收信号中有主导信号时,衰落振幅服从莱斯分布。
多径衰落使信号电平起伏不定,严重时将影响通话质量。
无线电波的衰落作用使得到达接收端的信号的功率变小。
在发射机和接收机之间的存在的任何障碍物都会引起信号功率的衰减。
发送和接收信号模型在频率范围为0.3GHz~3GHz的UHF频段和频率范围为3GHz~30GHz的SHF 频段,电波的传播特性良好,天线尺寸也比较小,很适合无线通信。
路径损耗 多径衰落 阴影效应 多普勒效应

路径损耗多径衰落阴影效应多普勒效应路径损耗是指无线信号在传输过程中由于传播距离增加而导致的信号衰减。
在无线通信中,信号在传输过程中会遇到多种因素的影响,其中路径损耗是最主要的因素之一。
路径损耗与传输距离成正比,距离越远,信号衰减越大。
多径衰落是指信号在传输过程中由于经过多条路径到达接收端,不同路径的信号相互干扰而引起的衰落现象。
当信号经过不同路径到达接收端时,由于路径长度和传播时间的不同,信号会出现相位差,导致信号之间相互叠加或相消,从而引起信号强度的变化。
阴影效应是指信号在传输过程中遇到建筑物、地形等物体的阻挡而引起的信号衰减现象。
当信号遇到建筑物等物体时,会发生衍射、反射和绕射等现象,从而使信号强度发生变化。
阴影效应是不可预测的,会导致信号强度在不同位置和时间发生剧烈变化。
多普勒效应是指当信号源或接收器相对于传播介质运动时,引起信号频率发生变化的现象。
根据多普勒效应的原理,当信号源或接收器向远离方向运动时,信号频率会降低;当信号源或接收器向靠近方向运动时,信号频率会升高。
多普勒效应在无线通信中起到重要作用,尤其在移动通信中,需要对多普勒效应进行补偿。
路径损耗、多径衰落、阴影效应和多普勒效应是无线通信中不可避免的现象,对无线信号的传输质量产生重要影响。
在无线通信中,路径损耗是由于信号在传输过程中经过空气、建筑物等介质而导致的信号衰减。
路径损耗与传输距离成正比,同时也受到频率和传输介质的影响。
在传输过程中,信号会经历自由空间损耗、地面反射损耗、穿透损耗等,这些因素都会导致信号强度的减弱。
为了克服路径损耗,可以采用增大发射功率、使用高增益天线、改进调制技术等方法。
多径衰落是由于信号在传输过程中经过多条路径到达接收端而引起的衰落现象。
在城市环境中,由于建筑物的存在,信号会经过多次反射、绕射和散射,从而引起信号强度的变化。
多径衰落会导致接收端接收到的信号出现淡化、增强或失真等现象。
为了克服多径衰落,可以采用等化技术、多天线技术等方法。
信道频率 损耗模型 阴影模型 衰落模型

信道频率损耗模型阴影模型衰落模型本文主要介绍无线通信中常用的四个模型:信道频率模型、损耗模型、阴影模型和衰落模型。
这些模型是对无线信号传输的描述,可用于无线电路设计、无线网络规划、信号覆盖预测等领域。
一、信道频率模型信道频率模型是描述无线信道频率特性的模型。
由于每个频率都有不同的传播特性,因此,无线信道的频率响应是需要建模的一个方面。
信道频率模型主要用于预测在不同频率(即不同带宽)上信道的性能和损失。
其中,常见的信道频率模型有两种:理想无限平坦频率响应模型和实际的有限频带响应模型。
理想的无限平坦频率响应模型假定无线信道对所有频率的信号响应相同,并无任何滚降和干扰。
这种模型主要用于在不同频谱范围内比较不同的无线网络方案,例如Wi-Fi和蜂窝无线电连接。
实际的有限带宽响应模型基于实际信道的复杂特性,由于加性白噪声和多径反射等,信号的响应会随着信号频率而发生变化。
这种模型更加接近实际情况,但是比起理想模型更加复杂。
二、损耗模型在无线通信系统中,有很多因素能够影响信号的传输质量,如空气介质、障碍物、雨雪、建筑物等。
而这些环境因素会因传输距离的不同而导致信号衰减,这就是所谓的信号损耗。
损耗模型主要被用来描述这种随距离而发生变化的信号弱化。
由于信号损耗涉及到多个因素,因此建立一个准确的信号损耗模型是必须的。
普遍采用的损耗模型包括路径损耗模型和自由空间传输损耗模型。
路径损耗模型考虑了多种影响信号强度的因素,包括距离、传播介质、障碍物、频率、传输功率等。
该模型描绘了信号强度沿着直线传输路径的弱化过程,并使用密集度函数表示环境因素对信号传输的影响。
自由空间传输损耗模型是另一种常见的损耗模型,它假定空气介质是完全透明的,没有任何干扰。
这种模型假设无线信号在没有障碍物的情况下沿着一条直线传播,其信号强度随着传输距离的平方根而减弱。
三、阴影模型阴影模型是一种经验模型,用于描述障碍物阻挡无线信号的效果。
在真实环境中,无线信号发射器和接收器之间存在很多干扰,包括建筑物、植被、地形等障碍物,因此阴影模型非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路径损耗和阴影衰落
1 概述
无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。
因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。
其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。
2 发送信号与接收信号模型
调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。
又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。
下面分别给出发送和接收信号模型。
2.1 发送信号
发送信号表达式为
2()Re{()}c j f t s t u t e π= (1)
其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。
发送信号s(t)的功率P t =P u /2。
2.2 接收信号
接收信号表达式与发送信号类似,只是叠加了噪声:
2()Re{()}()c j f t r t v t e n t π=+ (2)
其中n(t)为信道噪声。
v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。
3 路径损耗
路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。
显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。
假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。
则定义信道的路径损耗(path loss )为
1010log t L r P P dB dB P =
(3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。
下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。
3.1 自由空间路径损耗
在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号:
2()Re ()c j f t r t t e π⎫⎪=⎬⎪⎪⎩⎭ (4)
2/j d e πλ-是由传播距离d 引起的相移。
由式(4)可得自由空间路径损耗为
()210102410log 10log t L l l d P P dB P G πλ==
(5) 3.2 两径模型
两径模型属于单一的地面反射波在多径效应中起主导作用。
如图1所示,其接收信号由两部分组成:1)经自由空间到达接收端的直射分量和2)经地面反射到达接收端的反射分量。
两径模型中接收信号为
22()Re 4c j f t ray r t e πλπ-⎧⎫⎪⎪=⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭
(6)
其中τ
益乘积,R
x 方向上的发送天线和x’方向上的接收天线增益的乘积。
图1 两径模型
若发射信号是窄带的,即 ()()u t u t τ≈-。
则接收信号功率为 2
24j r t P P φλπ⎛⎫= ⎪⎝⎭
(7)
其中φ表示发射信号与接收信号的相位差,当t r d h h +时,可得 ()2'4=t r x x l h h d ππφλλ+-=
(8) 则由式(7)和式(8)可得,两径模型路径损耗为
2
210410log t r L h h P dB d πλ⎛⎫=- ⎪⎝⎭⎝⎭ (9) 根据式(7)可画出接收功率随距离变化的曲线,如图2所示,这条曲线可分为三段:1)d<h t 时,接收功率随距离缓慢增加;2)h t <d<一个临界值d c 时,两个分量产生干涉形成一系列极大值极小值;3)d>d c 时,功率随d -4减小。
为了清楚起见,将曲线去平均近似值,得到三段折线图:第一段中,功率恒定;第二段中,每10倍距离功率下降20dB ;第三段中,每10倍距离功率下降40dB 。
图2 两径模型中接收功率与距离的关系
3.3十径模型
十径模型是两边是建筑物的街道中无线电的传播,由于反射后信号能量衰减,故我们忽略经三次以上反射的路径。
又由于街道两边各有一条路径,所以该模型中共有十条路径,如图3所示。
图3 十径模型
十径模型中接收信号功率与两径模型计算方法类似,这里不再讨论。
4 阴影衰落
阴影衰落是有发射机和接收机之间的障碍物造成的,这些障碍物会吸收、反射、散射和绕射等方式衰减信号功率,甚至阻断信号。
信号在无线信道传播过程当中遇到的障碍物会导致信号衰减,而这些造成信号衰减的因素,如障碍物位置、大小和介电性质一般都是未知的,因此我们只能用统计模型来表示这种随机衰减。
最常用的模型是对数正态阴影模型,即发射和接收功率之比的分贝值服从正态分布。
假设发射和接收接收功率比值为/t r P P ψ=,1010log dB ψψ=,则dB ψ的概率密度函数为
22()()2dB dB dB dB p ψψψμψσ⎧⎫-⎪⎪=-⎨⎬⎪⎪⎩⎭
(10) 其中dB ψμ为dB ψ的均值,由实测值或解析模型确定。
在实测中,dB ψμ就等于路径
损耗。
对于解析模型,dB ψμ须综合考虑障碍物造成的平均衰减和路径损耗。
dB ψσ为标准差。
多次信道测量表明,dB ψσ围在4dB~13dB 之间。
dB ψμ随距离增大而减小,因
为1)存在路径损耗,2)距离增加障碍物增多,造成的平均衰减增大。
当阴影衰落由阻挡衰减主导时,其衰减可近似为
()d s d e α-= (11)
其中α为衰减系数,d 为障碍物厚度。
若有i 个障碍物衰减系数分别为i α,厚度分别为i d ,则衰减为
()i i
i d s d e α-
∑= (12)
5 路径损耗和阴影衰落的混合模型
将路径损耗模型和阴影衰落模型叠加在一起就可同时反映r t
P dB P 与距离的关系,如图4所示,路径损耗与阴影衰落的混合模型的曲线围绕着路径损耗正好体现了因距离增加,接收信号功率随障碍物增多而发生的随机变化。
图4 路径损耗和阴影衰落随距离变化。