精确总热负荷发热量的计算

合集下载

热负荷量的计算公式

热负荷量的计算公式

热负荷量的计算公式热负荷量是指建筑物或设备需要排除的热量的量度。

在建筑设计和工程领域中,热负荷量的计算是非常重要的,它可以帮助工程师和设计师确定建筑物所需的制冷或供暖能力,以确保建筑物内部的舒适性和能源效率。

热负荷量的计算公式是根据建筑物的尺寸、材料、朝向、使用情况等因素来确定的,下面我们将详细介绍热负荷量的计算公式及其应用。

热负荷量的计算公式通常包括以下几个主要因素,传导热、对流热和辐射热。

传导热是指热量通过建筑物的墙壁、屋顶、地板等传导到室内的过程;对流热是指空气或水通过对流传热的方式将热量传递到室内;辐射热是指太阳辐射或室内设备产生的热量通过辐射的方式传递到室内。

这些因素都会对建筑物的热负荷量产生影响,因此在计算热负荷量时需要综合考虑这些因素。

传导热的计算公式通常采用热传导方程来确定,该方程可以根据建筑物的尺寸、材料的热传导系数和温度差来计算传导热的量。

对流热的计算公式通常采用对流传热方程来确定,该方程可以根据空气或水的流速、温度差和表面积来计算对流热的量。

辐射热的计算公式通常采用辐射传热方程来确定,该方程可以根据辐射源的温度、表面积和辐射率来计算辐射热的量。

在实际的热负荷量计算中,通常会将传导热、对流热和辐射热的计算结果进行综合考虑,以确定建筑物所需的制冷或供暖能力。

一般来说,热负荷量的计算公式可以表示为以下形式:Q = U × A ×ΔT。

其中,Q表示热负荷量,U表示传导热系数或对流传热系数,A表示传热表面积,ΔT表示温度差。

这个公式可以根据具体的情况进行调整,以满足不同建筑物的需求。

在实际的工程项目中,热负荷量的计算通常会结合建筑物的设计参数、使用情况和环境条件来确定。

例如,建筑物的朝向、材料的热传导系数、空调系统的效率等因素都会对热负荷量产生影响,因此在计算热负荷量时需要综合考虑这些因素。

除了热负荷量的计算公式外,建筑物的能源消耗和能源效率也是非常重要的考虑因素。

供热计算公式范文

供热计算公式范文

供热计算公式范文供热计算是指根据建筑物的热损失情况和室内温度要求,计算所需供热能量的过程。

供热计算公式一般涉及建筑热传递、热负荷计算和供热系统选择等方面。

下面将介绍一些常用的供热计算公式及相关内容。

1.热传递公式:热传递公式是供热计算的基础,它描述了热量在建筑物中的传递方式。

常用的热传递公式有简化公式和复杂公式两种。

(1)简化公式:Q=U×A×ΔT其中,Q表示热损失能量,U表示单位面积热传导系数,A表示面积,ΔT表示温度差。

(2)复杂公式:Q=Σ(U×A×ΔT)其中,Σ表示对所有热流通路求和。

2.热负荷计算公式:热负荷计算是供热系统设计的基础,它主要用于确定供热系统的热负荷,以便正确选择供暖设备和管线的规格。

常用的热负荷计算公式有以下几种:(1)传热负荷计算公式:Q=U×A×ΔT其中,Q表示传热负荷,U表示传热系数,A表示传热面积,ΔT表示温度差。

(2)风冷负荷计算公式:Q=(V×ρ×Cp×ΔT)/3600其中,Q表示风冷负荷,V表示风速,ρ表示空气密度,Cp表示空气比热容,ΔT表示温度差。

(3)太阳辐射负荷计算公式:Q=A×K×η其中,Q表示太阳辐射负荷,A表示太阳辐射面积,K表示太阳辐射系数,η表示太阳辐射利用系数。

3.供热系统选择公式:供热系统选择是根据热负荷计算的结果,确定供热系统的类型和规格。

常用的供热系统选择公式有以下几种:(1)锅炉功率计算公式:Q=V×ΔHw×η或者Q=G×ΔHw×η其中,V表示热负荷,ΔHw表示水的比热容差,η表示锅炉的热效率,G表示热载体的流量。

(2)热水锅炉的燃料消耗量计算公式:Gf=Q/C其中,Gf表示燃料消耗量,Q表示热负荷,C表示燃料的热值。

(3)燃气锅炉的燃气消耗量计算公式:Gg=Q/LHV其中,Gg表示燃气消耗量,Q表示热负荷,LHV表示燃气的低位热值。

热负荷计算方法

热负荷计算方法

热负荷计算方法1.围护物的基本耗热量QJ 的计算通过供暖房间某一面围护物的温差传热量(也称围护物的基本耗热量)Qτ(W),按下式计算:Qj=k·F·(tn-tw) ·a(1.1)式中:k—该围护物的传热系数,W/(㎡·℃);F—该面围护物的散热面积,㎡;tn—室内空气计算温度,℃;tw—供暖室外计算温度,℃;a—温差修正系数。

[1]. 外墙,屋顶的热桥计算外墙、屋顶的传热系数当考虑梁、楼板、柱等的热桥影响时,采用外墙平均传热系数Km。

按规定,取各成分面积的加权平均值。

[2]. 地面传热计算当围护物是贴土的非保温地面时,其温差传热量Qj.d(W)用下式计算:Qj.d=kpj.d ·Fd·(tn-tw) (1.2)式中:kpj.d—非保温地面的平均传热系数,W/(㎡·℃);Fd—房间地面总面积,㎡。

2. 附加耗热量附加耗热量按基本耗热量的百分数计算。

考虑了各项附加后,某面围护物的传热耗热量Q1(W):Q1=Qj ·(1+βch+βf+βlang+βm)(1+βfg)(1+βjian)(2.1)式中:Qj—该围护物的基本耗热量,W;βch—朝向修正;βf—风力修正;βlang—两面外墙修正;βm—窗墙面积比过大修正;βfg—房高修正;βjian—间歇附加。

3. 通过门、窗缝隙的冷风渗透耗热量 Q2(W)Q2 = 0.28 ·Cp ·V·ρw·(tn - tw) (3.1)式中:Cp—干空气的定压质量比热容, Cp = 1.0 Kj / (Kg·℃);V—渗透空气的体积流量, m^3 / h;ρw—室外温度下的空气密度,Kg / m^3;tn—室内空气计算温度, ℃;tw—室外供暖计算温度, ℃。

[1]. 缝隙法忽略热压及室外风速沿房高的递增,只计入风压作用时的V的计算方法:V = ∑(l ·L ·n)(3.1.1)式中:l—房间某朝向上的可开启门、窗缝隙的长度,m;L—每米门窗缝隙的渗风量,m3/(m ·h);n—渗风量的朝向修正系数。

采暖热负荷指标值及热力换算

采暖热负荷指标值及热力换算

采暖热负荷指标值及热力换算
对流方式采暖热负荷指标推荐值
地板辐射热负荷计算时,可将要求温度降低2-3℃,或采暖热负荷取对流热负荷方式的80%-90%。

1吨/小时≈0.7兆瓦;1瓦=1焦/秒;1兆=100万;
1千卡=1大卡=4184焦;1吉焦=1百万千焦。

耗煤量×0.7143=标准煤
总耗煤量×燃煤平均热值÷7000=标准煤
粒煤吨位×粒煤热值+末煤吨位×末煤热值=燃煤平均热值标准煤÷供暖面积×1000=供暖每平方米标准煤的耗量
《综合能耗计算通则》(GB/T 2589-2008)
附录 A
(资料性附录)
各种能源折标准煤参考系数
附录 B (资料性附录)耗能工质能源等价值
说明:以上数据摘录自2008年6月1日正式实施的最新国家标准GB/T 2589-2008《综合能耗计算通则》,本标准代替GB/T 2589—1990《综合能耗计算通则》。

采暖热负荷的计算的理论公式

采暖热负荷的计算的理论公式

采暖热负荷的计算的理论公式传统方法采用建筑物的整体热平衡原理,将建筑物划分为不同的传热面,计算各个传热面的传热损失,再将其累加得到总的热负荷。

该方法计算简单,但对建筑物内部不同区域的热负荷分布不够精细。

节能法则是通过提高建筑物的节能标准和计算方法,以准确估计建筑物的热负荷。

以下是传统方法和节能法的计算公式和方法。

传统方法的计算公式1.室内传热负荷(Qh)的计算:Qh = (Qh1 + Qh2 + ... + Qhn) + QB其中,Qh1 ~ Qhn 分别代表建筑物各面的传热负荷,QB 为补偿比例。

2. 墙体传热负荷(Qhw)的计算:Qhw = A × Uw × ∆tw其中,A 为墙体面积,Uw 为墙体的传热系数,∆tw 为室内外温度差。

3. 屋顶传热负荷(Qhr)的计算:Qhr = A × Ur × ∆tr其中,A 为屋顶面积,Ur 为屋顶的传热系数,∆tr 为室内外温度差。

4. 地板传热负荷(Qhf)的计算:Qhf = A × Uf × ∆tf其中,A 为地板面积,Uf 为地板的传热系数,∆tf 为室内外温度差。

5. 窗户传热负荷(Qhw)的计算:Qhw = A × Uw × ∆tw × (1 - Lr)其中,A 为窗户面积,Uw 为窗户的传热系数,∆tw 为室内外温度差,Lr 为窗户的阳光热辐射透射率。

节能法的计算公式1.室内传热负荷(Qh)的计算:Qh=Q¤K×A×∆θ其中,Q为设计取暖能耗,K为节能系数,A为建筑物的朝向系数,∆θ为设计室内外两种状态的温差。

2.传热损失系数(Q'L)的计算:Q'L=Qh/A其中,A为传热面积。

3.建筑物比例系数(R)的计算:R=Q'S/Q'L其中,Q'S为节能设计取暖能耗。

4.重要参数的计算:a.运动风量(Qy)Qy=(Qh+Qt+Qv)×CVR×Cf其中,Qh是室内传热负荷,Qt是室内气流发热,Qv是室内人员发热,CVR是风量调节系数,Cf是风流系数。

采暖热负荷计算方法

采暖热负荷计算方法

热负荷计算方法发布时间:2016-02-24城市集中供热系统的用户在单位时间内所需的热量。

它是制订城市供热规划和设计供热系统的重要依据,也是对供热系统设计进行技术经济分析的重要原始资料。

集中供热系统的热负荷主要有采暖、通风、热水供应和生产工艺等热负荷。

其中采暖和通风用热是季节性热负荷,而热水供应和生产工艺用热则多是常年性热负荷。

季节性热负荷随气候条件而变化,在一年中变化很大,但在一天内波动较小。

常年性热负荷受气候条件影响较小,在一年中变化不大,但在一天内波动大,特别是对非全天需热的用户。

采暖热负荷在冬季某一室外温度下,为达到要求的室内温度,供热系统在单位时间内向建筑物供给的热量。

采暖设计热负荷是指当室外温度为采暖室外计算温度时,为了达到上述所要求的室内温度,供热系统在单位时间内向建筑物供给的热量。

在制订城市或区域供热规划或设计其供热系统时,往往缺乏确切的原始资料,一般只能用热指标法估算,即用单位建筑面积的热指标乘以建筑面积,得出采暖的设计热负荷Q(瓦)。

用公式表示为:Q=qfFq仁-单位建筑面积热指标(W/叶);F--建筑面积⑴)如已知房屋体积,也可采用每立方米建筑体积在室内外温差为1°C时的热指标qv【W/(m3・°C)】Q=qvV(tn-tw)V--建筑体积(m3);tn--室内计算温度(°C);tw--采暖室外计算温度(°C)。

采暖热指标qv和qf的大小与建筑物围护结构的传热系数、外围体积、密闭性或通风条件、建筑物的类型和外形以及墙窗面积比等许多因素有关,通常是依据实际工程统计分析而得,设计时可参考有关部门提供的资料,结合具体情况选用。

一、维护结构的耗热量1•维护结构的基本耗热量Qj--j部分围护结构的基本耗热量,W;Aj--j部分围护结构的表面积,m2;Kj--j部分围护结构的传热系数,W/(m2*。

);tR--冬季室内计算温度,°C;tow--采暖室外计算温度,C;a--围护结构的温差修正系数2•维护结构附加耗热量(1)朝向修正率不同朝向的围护结构,收到的太阳辐射热量是不同的;同时,不同的朝向,风的速度和频率也不同。

供暖热负荷计算

供暖热负荷计算

供暖热负荷计算供暖热负荷计算是针对建筑物或空间的供暖系统设计的重要环节,能够确保供暖系统的正常运行和满足室内舒适温度的要求。

热负荷计算是通过对建筑物或空间内各种因素的综合考虑,计算出供暖系统需要提供的热量。

下面将从热负荷的定义、计算方法以及影响热负荷的因素等方面进行详细介绍。

首先,热负荷是指在室内环境中,建筑物或空间所需要的热量。

室内温度、外部气温、建筑物的结构、材料、面积等因素都会影响建筑物的热负荷。

因此,热负荷计算应该综合考虑以上因素,以确定合适的供暖系统容量。

热负荷计算一般可以分为两种方法,即传统方法和现代方法。

传统方法主要通过经验公式和因数来进行计算,例如根据建筑物的面积、外墙材料、窗户的数量和尺寸等来估计热负荷。

而现代方法则采用计算机软件来进行热负荷计算,更加科学和精确。

这些软件可以根据建筑物的具体参数,如墙体材料、窗户型号、保温层厚度等进行热负荷计算。

影响热负荷计算的因素有很多,下面列举几点主要的因素:1.窗户和墙体的传热系数:窗户和墙体是建筑物外部与室内的分界面,传热系数的大小直接影响热负荷计算的准确性。

一般来说,传热系数越小,热负荷越小。

2.外部气温和室内温度:外部气温和室内温度是热负荷计算的两个基本参数。

当外部气温较低,室内温度要求较高时,热负荷就会增加。

3.建筑物的保温性能:建筑物的保温性能是指建筑物对外界热传导的抵抗能力。

建筑物的保温性能越好,热负荷就越小。

4.室内人员和设备的热量释放:人员和设备的热量释放是热负荷计算中的一个重要因素。

人员和设备产生的热量会增加热负荷。

5.通风换气量:通风换气量也会影响热负荷。

通风换气量越大,热负荷也会相应增加。

综上所述,供暖热负荷计算是建筑物供暖系统设计的重要环节。

通过对室内外温度、建筑物结构、面积、保温性能、人员和设备热量释放以及通风换气量等因素的综合考虑,可以准确计算出供暖系统所需的热量。

计算方法可以根据传统方法和现代方法进行选择,以满足实际需求。

采暖热负荷指标 值 及 热力换算

采暖热负荷指标 值 及 热力换算

对流方式采暖热负荷指标推荐值
地板辐射热负荷计算时,可将要求温度降低2-3℃,或采暖热负荷取对流热负荷方式的80%-90%。

1吨/小时≈0.7兆瓦;1瓦=1焦/秒;1兆=100万;
1千卡=1大卡=4184焦;1吉焦=1百万千焦。

耗煤量×0.7143=标准煤
总耗煤量×燃煤平均热值÷7000=标准煤
粒煤吨位×粒煤热值+末煤吨位×末煤热值=燃煤平均热值标准煤÷供暖面积×1000=供暖每平方米标准煤的耗量
《综合能耗计算通则》(GB/T 2589-2008)
附录 A
(资料性附录)
各种能源折标准煤参考系数
附录 B (资料性附录)耗能工质能源等价值
说明:以上数据摘录自2008年6月1日正式实施的最新国家标准GB/T 2589-2008《综合能耗计算通则》,本标准代替GB/T 2589—1990《综合能耗计算通则》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精确总热负荷的计算
按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下:
1:机房主要热量的来源
²设备负荷(计算机及机柜热负荷);
²机房照明负荷;
²建筑维护结构负荷;
²补充的新风负荷;
²人员的散热负荷等。

²其他
热负荷分析:
(1)计算机设备热负荷:
Q1=860xPxη1η2η 3 Kcal/h
Q:计算机设备热负荷
P:机房内各种设备总功耗
η1:同时使用系数
η2:利用系数
η3:负荷工作均匀系数
通常,η1η2η3取0.6—0.8之间,
本设计考虑容量变化要求较小,取值为0.7。

(2)照明设备热负荷:
Q2=CxP Kcal/h
P:照明设备标定输出功率
C:每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应
大于2001x,其功耗大约为20W/M2以后的计算中,照明
功耗将以20 W/M2为依据计算。

(3)人体热负荷
Q3=PxN Kcal/h
N:机房常有人员数量
P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为102Kcal。

(4)围护结构传导热
Q4=KxFx(t1-t2) Kcal/h
K:转护结构导热系统普通混凝土为1.4—1.5
F:转护结构面积
t1:机房内内温度℃
t2:机房外的计算温度℃
在以后的计算中,t1-t2定为10℃计算。

屋顶与地板根据修正系数0.4计算。

(5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。

(6)其他热负荷
除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘
器等也将成为热负荷,由于这些设备功耗小,只粗略根据
其输入功率与热功当量之积计算。

Q5=860xP
机房精密空调工程总热负荷的计算
本机房主要的热负荷来源于设备的发热量及维护结构的热负荷。

因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。

根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积按经验进行测算。

专业机房精密空调的设备选型
1、机房空调制冷负荷的计算方法
精确计算法"
综合考虑计算以下因素产生的负荷,使用这种计算方式对空调负荷选择而言相对比较准确:根据机房所在地区的气候条件,考虑一年中的最大负荷工况。

围护结构的外围负荷(包含墙体传热以及太阳直射所造成的空调负荷)
机房内设备发热量
机房内新风负荷
机房气流组织以及消除局部温差所需要的循环风量。

机房的扩容以及备用需求。

根据机房面积估算法"
υ 按照机房内面积空间进行相应估算,在一般小型集中机房中,我们一般按照300W/m2~550W/m2来估算机房内的空调负荷,而每平方米的空调负荷量要根据机房内设备的发热及密集程度确定,一般常规小型机房选取400 W/m2就可以。

设备特别密集的机房需要单独估算机房负荷及气流方式,选取600 W/m2~1000 W/m2。

υ " 根据机房设备供电量估算法
υ 按照机房内总配电功率乘以相应系数进行估算,系数大小根据机房设备的种类以及使用频率确定,一般选取0.5~0.9。

2、机房空调的风量计算方法
" 按机房新风负荷计算风量
υ 在恒温恒湿机房当中,新风除了给人员提供新鲜的空气能保持房间的正压之外,给机房环境控制带来的影响是负面的,所以,机房当中的新风选择比例远远小于常规办公空间的30%。

一般机房的新风量选择都在5%~10%。

" 按机房换气次数估算风量
υ 为了保证机房内部的温湿度场足够均匀,我们对机房内换气次数一般选取为30~50次,设备冷风比不大于3.5。

但是我们也不建议风量过大,风量过大时会使机房内的气流速度过快,影响设备及人员的工作,严重时还会产生噪音过大的问题。

" 按设备冷风比估算风量
υ 在计算出了设备机房的冷量负荷之后,根据机房实际情况选取冷风比,一般为2~4.5。

对于设备热岛效应明显的机房,冷风比选取相应要小,而对于热负荷比较均匀的机房,冷风比可以相对大些。

3、机房内部空调气流方式的选择
" 室内直吹风气流方式
υ 室内直吹式就是把空调机安装在机房内,通常又称为上侧送风下侧回风式,从上侧送出的空气先与室内空气相混合,再进入计算机柜。

显然,从空调上侧送出的空气温度低于室内空气温度。

υ 此送风方式适用于微机房,也就是机房狭小、计算机设备台数少、设备发热量小的微型计算机房,如30m2左右的微机房。

υ 采用这种送风形式,其空气流很可能被机房内的设备阻挡,会出现小区域的涡流、特别是在空气流经的室内工作区会有吹风感。

因此在布置设备时防止设备间空气短路、在空气流路上,设备应先低后高排列,发热量大的设备优先得到足够的冷风。

" 地板下送风气流方式——机房最常见送回风方式
υ 空气在经专用空调机处理之后,通过计算机柜下部送进计算机柜内,而经机房上部返回空调机的送风形式,也称为下送上回式,如下图所示。

地板下送风方式
υ 由于下送上回式的冷风是通过保持正压的活动地板下的静压风库送入计算机设备和机房的,并且可以给发热量大的设备单独送风,因此,空调效率高,使机房内温度分布均匀,一般计算机房均采用这种送风形式。

在施工时应对地表面进行防尘涂料处理。

为了防止地面上产生结露,必须在地面上或在机房下层顶棚上进行隔热措施处理。

送风温度一般取17~19℃。

" 上送下回式——实验室常见
υ 上送下回式就是把空调机调整了温度和湿度的空气,经过吊顶送进计算机柜。

而后再通过活动地板下返回空调机下部回风口。

这种送风形式适用于计算机柜本身散热方式是从机柜顶部送风,机柜下部或侧下部排风的计算机系统,如图所示。

上送下回方式
风管上送风气流方式——应用也比较广泛"
υ 空气在经专用空调机处理之后,通过连接于空调机上部的风管被送进计算机柜内,而经机房内部空间返回空调机侧面回风口的送风形式,也称为上送风方式。

由于上送风方式气流有风管作为导向,所以能将气流送得比较远。

这种送风方式比较适用于送风要求远且设备发热比较集中的机房内。

" 混合式空调方式
混合式就是根据设备和操作人员对空调的不同要求而采用的综合送风形式。

υ
υ 其中计算机设备所需要的冷风是经活动地板下送入设备的,而人的舒适则是通过另一系统来实现的。

因此,这是一种比较理想的空调方式,设备和人都可以得到比较满意的空气调节。

υ 由于混合式空调造价高、气流组织复杂,在实际工程中应用较少。

4、设备选型需了解的
国家及行业机房建设的标准。

"
υ 计算机和数据处理机房用单元式空气调节机GB/T 19413-2003
单元式空气调节机GB/T 17758-1999υ
υ 电子计算机机房设计规范GB50174—93
机房内的空调冷量需求。

"
机房内的空调风量需求。

"
" 机房精密空调厂家的设备规格。

机房形状——决定机房空调的摆放以及气流组织情况。

"
" 机房现场的实际安装使用条件(决定精密空调的冷却形式为风冷、水冷、冷冻水或者双冷缘)。

υ 风冷式机组由于其系统简单、安装维护方便,而得到了最为广泛的应用。

但其效率相对较低,并且其安装还受到室内外机之间的高差以及距离的影响。

υ 水冷式空调应用于不便于安装风冷型空调的场所,其换热效率高,但安装和维护的成本都比风冷型空调高。

υ 冷冻水型空调能直接利用大楼中央空调系统所提供的冷源,设备简单成本低,但由于大楼中央空调一般都是上班时间才开,所以冷冻水型设备很难满足全年不间断工作的要求。

υ 双冷源设备由于其成本高、系统复杂,在实际中应用较少,只用在非常重要并且节能要求很高的场合,
用户机房对于设备配置的冗余要求。

"
υ 普通机房只需要系统备份(或者无备份)就可以。

集中机房单个机房需要N+1设备备份。

υ
υ 特别重要的大型数据处理中心机房需要N+2以上设备及系统备份。

机房精密空调常用计算方法:
1.常规机房每平方米500W发热量计算:
2.重要计算机房:每平方米150W发热量+计算机负载功率=精密
空调制冷量,例如一个200平方米的机房,负载功率是100K W那些这个空调就要用200*150W+100KW=130KW
那么这个机房就要大于130KW的机房精密空调。

相关文档
最新文档