中学生思维能力训练活动初一年级试题(附答案)
思维能力测试(有答案的)

思维能力测试(60分钟)请将答案写在答题卡上,不在要试题上涂画。
一.1、山羊和卷心菜请用3条直线将图中的山羊和卷心菜分开。
2、他们最少是几个人?小刘一家人在一起欢聚圣诞节。
他们是:一位祖母,一位祖父,两位母亲,两位父亲,一位岳父,一位岳母,一位儿媳,4个孩子,3个孙子,1个哥哥,2个姐姐,2个儿子,2个女儿,问他们最少是几个人?()3、往一个篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加一倍,一小时后,篮子里的鸡蛋满了,请问在什么时候是半篮鸡蛋?4、错变对62-63=1是一个错误的等式,能不能移动一个符号让等式成立呢?62-63=15、画下边这幅图的画家犯了一系列视觉的,概念的和逻辑的错误。
共多少处?二.下面的每道题包含两套图形。
其中一套图形包括三个图形,第二套图形包括两个图形和一个问号。
在这两套图形之下选择之下还有供选择的四个图形。
请你认真观察两套图形的相似性,然后从四个供选择的图形中选择你认为最适合取代问号的一个。
正确的答案使两套图形表现出最大程度的相似性。
6、7、9、10、11、13、14、15、三. 在下面的每道题中给出一段陈述,在这项考试中,这段陈述被假设是正确的,不容置疑的。
请你根据这段陈述从四个备选答案中选出一个能够从陈述中直接推出的结论。
16、西欧在建立文明社会时打破了原有的氏族关系,建立了以区域为中心的政治关系,中国与西欧不同,它在建立文明社会时没有打破原有的氏族关系,相反却以氏族关系为依据,以血缘关系为纽带建立起国家制度。
这样的国家是以家族的宗法关系为主干的,所以A.西欧的文明比中国的文明先进。
B.在中国文明里,国便是家,家为国的本体,国是家的放大。
C.西欧文明并不重视血缘亲情关系。
D.中国的文明比西欧的文明先进。
17、“传统与现代”并不是一个时间的概念,它们应有其价值内容。
现代法律文化以实现社会成员的性格与发展,自由、平等、尊严、幸福为追求的价值目标。
因此A.所有产生于现代的法律文化现象都具有现代的特征。
七年级新思维数学试卷答案

1. 下列各数中,不是有理数的是()A. -2.5B. √2C. 0.1010010001…D. -1/3答案:B解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
选项B的√2是无理数,不能表示为两个整数之比。
2. 若a、b是实数,且a+b=0,则下列各式中,正确的是()A. a=0B. b=0C. a=-bD. ab=0答案:C解析:由题意知,a+b=0,则a=-b。
3. 下列各式中,正确的是()A. 3^2 = 9B. (-2)^3 = -8C. 2^0 = 1D. (-3)^2 = 9答案:B解析:A选项中的3^2=9是正确的,B选项中的(-2)^3=-8也是正确的,C选项中的2^0=1是正确的,D选项中的(-3)^2=9也是正确的。
但题目要求选择正确的式子,故选B。
4. 若a、b、c是三角形的三边长,则下列各式中,正确的是()A. a+b>cB. a-b>cC. a+b>cD. a-b>c答案:C解析:根据三角形的性质,任意两边之和大于第三边,故选C。
5. 下列各式中,正确的是()A. √9=±3B. √16=4C. √25=5D. √36=6答案:C解析:A选项中的√9=±3是错误的,因为√9=3;B选项中的√16=4是正确的;C 选项中的√25=5是正确的;D选项中的√36=6是正确的。
故选C。
1. 若x^2=9,则x=_________。
答案:±3解析:由平方根的定义可知,若x^2=9,则x=±3。
2. 若a=2,b=-3,则a^2+b^2=_________。
答案:13解析:将a、b的值代入公式,得a^2+b^2=2^2+(-3)^2=4+9=13。
3. 若x=5,则(x+2)^2=_________。
答案:49解析:将x的值代入公式,得(x+2)^2=5+2)^2=49。
4. 若x=3,则|x-2|=_________。
最近新都一中数学七年级上册思维训练试卷(含答案)

最近新都一中数学七上册思维训练试卷(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在1,0,-1,1/2这四个数中,最小的数是()A. 1B. 0C. -1D. 1/22.一个点在数轴上表示-1,该点向右移动6个单位长度后所表示的数是:( )(A)-7 (B)+5 (C)+7 (D)-53、在有理数-3,0,23,-85,3.7中,属于非负数的个数有().A.4个B.3个C.2个D.1个4.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是().A、在公园调查了1000名老年人的健康状况B、在医院调查了1000名老年人的健康状况C、调查了10名老年邻居的健康状况D、利用派出所的户籍网随机调查了该地区10%的老年人的健康状况5.如果a>b,下列各式中不正确...的是……………………………………………( )A.-5a>-5b B.a+3>b+3 C.a2>b2D.a-b>06.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上7.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为--------------------------------------------()A.2a+5B.2a+8 C.2a+3 D.2a+28.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算时,左手伸出根手指,右手伸出根手指,两只手伸出手指数的和为,未伸出手指数的积为,则.那么在计算时,左、右手伸出的手指数应该分别为()A.2 、3 B.2、1 C.3、2D. 1 、29.下列计算中,正确的是()A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10 下列一组是按一定规律排列的数:1,2,4,8,16,……,则第2016个数是 ( )A、 B、 C、 D、4032第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.-1/7的倒数为______。
2022年七年级数学创新思维竞赛试卷及答案解析

2022年七年级数学创新思维竞赛试卷一、选择题(共8小题,每小题5分,满分40分) 1.a 代表有理数,那么,a 和﹣a 的大小关系是( ) A .a 大于﹣aB .a 小于﹣aC .a 大于﹣a 或a 小于﹣aD .a 不一定大于﹣a2.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个3.9点12分时,时钟的分针和时针的夹角(小于180°的角)为( ) A .150°B .154°C .156°D .162°4.从长度分别为1,3,5,7,9个单位的5条线段中任取3条作边,能组成三角形的概率为( ) A .15B .25C .12D .3105.如图,是5×5的网格图,任意上下左右相邻的两点间距离都是1,则以网格图中的格点为顶点画正方形,共能画出面积互不相等的正方形的个数是( )A .8B .9C .10D .116.如图是测量一颗玻璃球体积的过程:(1)将300mL 的水倒进一个容量为500mL 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在( )A.20mL以上,30mL以下B.30mL以上,40mL以下C.40mL以上,50mL以下D.50mL以上,60mL以下7.把一根长为100cm的铁丝截成n小段(n≥3),每段长不小于10cm,若对不论怎样的截法,总存在3小段.以它们为边可拼成一个三角形,则n的最小值是()A.4B.5C.6D.78.有6种颜色的手套混放在暗室里,现要取出若干只手套,若暗室中各种颜色有足够多,为了保证取出的手套有9副,则至少需要取出几只手套()A.21B.23C.25D.54二、填空题(共8小题,每小题5分,满分40分)9.根据国务院全面实行农村义务教育经费保障机制改革的精神,据《潇湘晨报》2月28日报道:2007年春季开学,我省投入19.8114亿元,对农村义务教育阶段的学生实行“两免一补”.19.8114亿元用科学记数法(保留两个有效数字)表示为元.10.在五环图案内,分别填写五个数a,b,c,d,e,如图1其中a,b,c,d,e是互不相等的质数,且满足a+b+c=d+e.请你选择一组符合条件的数填入图2.11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.12.如果5x﹣8=3x﹣4的解与关于x的方程7x+a9=1+2x3的解互为相反数.那么a=.13.某信用卡上的号码由14位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,那么x的值是.9x714.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度.15.将正偶数按下表排列成5列:第1列第2列第3列第4列第5列第一行2468第二行16141210第三行18202224第四行32302826……………根据表中的规律,偶数2004应排在第行,第列.16.如图,△ABC内三个三角形的面积分别为5,8,10,则△ADE的面积是.三、解答题(共5小题,满分40分)17.(6分)计算:20082﹣20072+20062﹣20052+…+22﹣12.18.(8分)团体购买公园门票,票价如下:购票人数1~5050~100100以上每人门票价13元11元9元今有甲乙两个旅游团,若分别购票,两团总计应付门票1314元,若合在一起作为一个团体购票,总计支付门票费1008元,问这两个旅游团各有多少人?19.(8分)三个同学对问题“若方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =8y =9,求方程组{4a 1x +3b 1y =5c 14a 2x +3b 2y =5c 2的解”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,请你解答这个题目.20.(8分)已知x,y为正整数,并且xy+x+y=71,x2y+xy2=880,求3x2+8xy+3y2的值.21.(10分)平面上任意给定5个点,它们之中无三点共线,证明:总能找到3个点,使得这3个点为顶点的三角形的内角中,有不超过36°的角.2022年七年级数学创新思维竞赛试卷参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.a代表有理数,那么,a和﹣a的大小关系是()A.a大于﹣a B.a小于﹣aC.a大于﹣a或a小于﹣a D.a不一定大于﹣a解:令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选:D.2.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.3.9点12分时,时钟的分针和时针的夹角(小于180°的角)为()A.150°B.154°C.156°D.162°解:9点12分时,时针和分针之间有四个数字,共120°,时针距数字有四个格,为4×6°=24°,分针偏离数字2,两格,为12°.因此9点12分时,时钟的分针和时针的夹角(小于180°的角)为120°+24°+12°=156°. 故选:C .4.从长度分别为1,3,5,7,9个单位的5条线段中任取3条作边,能组成三角形的概率为( ) A .15B .25C .12D .310解:∵三角形的任二边长度之和大于第三边长度,∴1,3,5,7,9中,只有(3,5,7),(3,7,9),(5,7,9)三种组合可以组成三角形,因此任取3条作边,能组成三角形的概率为3C 53=310.故选:D .5.如图,是5×5的网格图,任意上下左右相邻的两点间距离都是1,则以网格图中的格点为顶点画正方形,共能画出面积互不相等的正方形的个数是( )A .8B .9C .10D .11解:在5×5方格中,可以画出11个正方形,其面积均不相等, 边长不相等,即面积不相等,故边长不相等即可求解. 边长分别为1,2,3,4,5,√2=√12+12, √5=√12+22, √10=√12+32, √17=√12+42, 2√2=√22+22, √13=√22+32.该11个正方形边长、面积均不相等.符合题意. 故选:D .6.如图是测量一颗玻璃球体积的过程:(1)将300mL 的水倒进一个容量为500mL 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A.20mL以上,30mL以下B.30mL以上,40mL以下C.40mL以上,50mL以下D.50mL以上,60mL以下解:500﹣300=200,200÷4=50,200÷5=40,所以介于40到50之间.故选:C.7.把一根长为100cm的铁丝截成n小段(n≥3),每段长不小于10cm,若对不论怎样的截法,总存在3小段.以它们为边可拼成一个三角形,则n的最小值是()A.4B.5C.6D.7解:先假设截取的上都从短到长排列依次是a1,a2,a3,a4,a5, (10)∵每一段不小于10厘米,∴a1+a2≥20,a3不与前两段组成三角形的话,a3≥a1+a2,即a3≥20,a4不与前三段的任意两段构成三角形的话,必须大于任意两段之和,即a4≥a3+a2,即a4≥30,此时剩下的a5≤100﹣10﹣10﹣20﹣30,实际上a5≤30,那么前面四段中必有两段与a5组成三角形.∴n的最小值为5.故选:B.8.有6种颜色的手套混放在暗室里,现要取出若干只手套,若暗室中各种颜色有足够多,为了保证取出的手套有9副,则至少需要取出几只手套()A.21B.23C.25D.54解:6种颜色看成6个抽屉,则至少要拿7只才能保证有一副颜色相同,那么有了一副,剩余5张,再取两只一定又有一副,以此类推再取两只一定又会有一副,则有6次取2只的过程就会出现.则至少取的只数是:7+8×2=7+16=23.故选:B .二、填空题(共8小题,每小题5分,满分40分)9.根据国务院全面实行农村义务教育经费保障机制改革的精神,据《潇湘晨报》2月28日报道:2007年春季开学,我省投入19.8114亿元,对农村义务教育阶段的学生实行“两免一补”.19.8114亿元用科学记数法(保留两个有效数字)表示为 2.0×109 元. 解:19.8114亿=19.8114×108≈2.0×109.10.在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图1其中a ,b ,c ,d ,e 是互不相等的质数,且满足a +b +c =d +e .请你选择一组符合条件的数填入图2.解:本题答案不唯一,只要满足题意即可:∵a ,b ,c ,d ,e 是互不相等的质数,且a +b +c =d +e , 如图所示2,7,13,5,17符合题意,11.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为 9 cm .解:DE =CD ,BE =BC =7cm , ∴AE =AB ﹣BE =3cm ,∴△AED 的周长=AE +AD +DE =AC +AE =6+3=9cm . 12.如果5x ﹣8=3x ﹣4的解与关于x 的方程7x+a 9=1+2x 3的解互为相反数.那么a = 11 .解:解5x ﹣8=3x ﹣4得:x =2, ∴将x =﹣2代入方程7x+a 9=1+2x 3,得:−14+a 9=1−43,解得:a =11. 故填11.13.某信用卡上的号码由14位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,那么x 的值是 4 . 9 x 7 解:如表,9 a b c x d e f 7 由题意知:9+a +b =20,得a +b =11, a +b +c =20,得c =9; 同理7+f +e =20,得e +f =13, d +e +f =20,得d =7; 又因c +x +d =20,所以x =4. 故填4.14.如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于 60 度.解:连接BC .设正方体的边长为1,则AB =AC =BC =√2,所以△ABC 为等边三角形,∠BAC =60°.故答案是60.15.将正偶数按下表排列成5列:第1列第2列第3列第4列第5列第一行2468第二行16141210第三行18202224第四行32302826……………根据表中的规律,偶数2004应排在第251行,第3列.解:因为2004÷2÷4=250余2,由表可知,奇数行从第2列开始,从小到大排列,偶数行从第一列开始,从大到小排列,所以可得其在第251行,第三列.故答案为251,3.16.如图,△ABC内三个三角形的面积分别为5,8,10,则△ADE的面积是18.解:∵△ABC内三个三角形的面积分别为5,8,10,∴S△BEFS△BCF =12,S△CFDS△BCF=810=45,∴S△EFD=4,连接AF,设S△AEF=a,S△ADF=b.则{ab+8=125+a b =54,解得a=10,b=12;则S△ADE=a+b﹣S△EFD=10+12﹣4=18.故答案为:18.三、解答题(共5小题,满分40分)17.(6分)计算:20082﹣20072+20062﹣20052+…+22﹣12. 解:原式=(20082﹣20072)+(20062﹣20052)+…+(22﹣12),=(2008+2007)(2008﹣2007)+(2006+2005)(2006﹣2005)+(2+1)(2﹣1), =2008+2007+2006+2005+…+2+1, =2017036.18.(8分)团体购买公园门票,票价如下:购票人数 1~50 50~100 100以上 每人门票价13元11元9元今有甲乙两个旅游团,若分别购票,两团总计应付门票1314元,若合在一起作为一个团体购票,总计支付门票费1008元,问这两个旅游团各有多少人?解:由团体购票可得两个旅游团人数共112个,若两个团都在50人之上,则与题干中分别购票时的条件不成立,故可设一个旅游团有x (1≤x ≤50)人,另一个旅游团有y (51≤y ≤100)人,根据题意,得{9(x +y)=100813x +11y =1314, 解得{x =41y =71.答:甲、乙旅游团分别有41人和71人或,71人和41人.19.(8分)三个同学对问题“若方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =8y =9,求方程组{4a 1x +3b 1y =5c 14a 2x +3b 2y =5c 2的解”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,请你解答这个题目.解:所求方程组可变形为:{45a 1x +35b 1y =c 145a 2x +35b 2y =c 2,两方程相加得: 45(a 1+a 2)x +35(b 1+b 2)y =c 1+c 2,①根据第一组方程的解可得:{8a 1+9b 1=c 18a 2+9c 2=c 2,两方程相加得:8(a 1+a 2)+9(b 1+b 2)=c 1+c 2,②由①②得:{45x =835y =9,解得:{x =10y =15. 原方程组的解为:{x =10y =15. 20.(8分)已知x ,y 为正整数,并且xy +x +y =71,x 2y +xy 2=880,求3x 2+8xy +3y 2的值. 解:∵xy +x +y =71 ∴xy =71﹣(x +y ) ∵x 2y +xy 2=880∴x 2y +xy 2=xy (x +y )=[71﹣(x +y )]*(x +y )=71(x +y )﹣(x +y )2=880 ∴(x +y )2﹣71(x +y )+880=0 ∴[(x +y )﹣55]•[(x +y )﹣16]=0 ∴(x +y )﹣55=0或(x +y )﹣16=0 解得:x +y =55或x +y =16(1)当x +y =55时,代入xy +x +y =71中得:xy =16 (2)当x +y =16时,代入xy +x +y =71中得:xy =55 因为x ,y 为正整数,所以结果(1)不可能,去掉 3x 2+8xy +3y 2=3(x +y )2+2xy =3×162+2×55 =3×256+110 =87821.(10分)平面上任意给定5个点,它们之中无三点共线,证明:总能找到3个点,使得这3个点为顶点的三角形的内角中,有不超过36°的角.证明:①如图(1)显然∠1、∠2、…、∠15分别是某一个三角形的一个内角,不妨设∠i 最小,∵∠1+∠2+…+∠15=540°, ∴15∠i ≤540°, 解得∠i ≤36°,∴至少有一个角不超过36°; ②如图(2),∵∠1+∠2+…+∠12=360°,∴12∠i≤360°,解得∠i≤30°,∴至少有一个角不超过36°;③如图(3),∵∠1+∠2+…+∠9=180°,∴9∠i≤180°,解得∠i≤20°,∴至少有一个角不超过36°.综上所述,由①②③得证.。
最新永川中学数学七年级上册思维训练试卷及答案分析

最新永川中学数学七年级上册思维训练试卷及答案分析第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、3的相反数是()A.-3B.3C.0D.62.已知∠A=65°,则∠A的补角等于( )A.125°B.105°C.115°D.95°3.在-(-5),3.1415,0,-0.333…,-|9|,-1/7,2.010010001…中,有理数有()A.2个B.3个C.4个D.5个4.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A.2771×107B.2.771×107 C.2.771×104 D.2.771×1055.已知代数式x+2y的值是3,则代数式2x+4y+1的值是…………………………()A.1 B.4 C.7 D.不能确定6.|a|=a,则a()A.a<0 B.a>0 C.a=0 D.a07.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是…………………………………………………()A.4m B.4n C.2(m+n)D.4(m-n)8.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59`在数轴上与-3的距离等于4的点表示的数是().A、1.B、-7C、1或 -7D、无数个10.已知等式3m=2n+5,则下列等式中不成立的是()A.3m﹣5=2n B.3m+1=2n+6 C.3m+2=2n+2 D.3m﹣10=2n﹣5第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃。
七年级数学思维训练(共10套)5(2)

七年级数学思维训练(共10套)(第一套)班级______________ 姓名_____________一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+-3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷ 7._________________31313131=-+-8._______________99163135115131=++++9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++ 三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
最新广东阳江市七年级上册思维训练试题(含答案)

最新广东阳江市七年级上册思维训练试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.多项式3x2-2xy3-y-1是( ).A.三次四项式 B.三次三项式 C.四次四项式 D.四次三项式2. 4点10分,时针与分针所夹的小于平角的角为()A.55° B.65°C.70° D.以上结论都不对3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是---------------------------------------------------------------------------------------------------------- 【】A.a > 1 B.b > 1C.a <-1 D.b <04.下列说法中,错误的是()A.零的相反数是零B.正数和负数统称为有理数C.零既不是正数,也不是负数D.零的绝对值是零5.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或126.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上7.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或128.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为--------------()A.1 B.-1 C.7 D.-79.下列各组数中,相等的是( )A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣1610、地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法记为()A.1.1×105米 B. 1.1×106米 C. 1.1×107米 D. 1.1×108米第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 化简-9/3的结果是 .12、定义“*”是一种运算符号,规定a﹡b=5a+4b+2013,则(-4)﹡5的值为。
七年级思维训练80题(含答案),拔高数学思维能力

1. 计算:七年级思维训练80题(含答案),拔高数学思维能力111113355720212023________. 2. 已知20212021202120222022202220232023202320202020+2020202120212021202220222022a b c,,,则abc ________.3. 123499910001001(1)1(1)1(1)1(1) 的值是________.4. 设11112018201920202050M,则1M的整数部分是________. 5.计算:44444444441032422324343244632458324432416324283244032452324 =________.6.已知5555284110133144□,其中□里的数字是________.7.哪些连续正整数之和为1000?试求出所有的解.8.2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.9.n个正数的乘积的n次方根称为这n个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________.10.有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数;(2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数.其中正确的命题个数是________.11. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.13. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________.15. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________.16. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.17. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.18. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.19.________.20. 222 − 4有________个不同的质因数.21. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.22. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________.23. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________.24. 若正整数x ,y ,z 满足11145x y z ,则xyz 的最大值是________.25. 231x x x 的最小值是________.26. 满足24x y y 的整数对(x ,y )有________个.27. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.28. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.29. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对.30. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________.31. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________.32. 如果关于x 的不等式组9080x a x b 的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对.33. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.34. 在1~100的自然数中与10互质的自然数共有________个.35. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.36.已知三位数abc能被5整除,但不能被6和7整除;三位数cba能被6整除,但不能被5和7整除;三位数cab能被7整除,但不能被5和6整除,则abc =________.37.九位数ABCABCBBB能被1~17中的任意整数整除,且A,B,C是不同的数字,则九位数ABCABCBBB是________.38.乘积376×733的个位数字是________.39.四位数aabb是一个整数的平方,aabb=________.p 的不同正因数的个数不超过10,则满足题意的p 40.已知p是质数,且271的个数是________.41.如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.42.已知圆环内直径为a厘米,外直径为b厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米.43.设有一个边长为1的正三角形,记作A1(如图1),将A1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图3);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是________.图1 图2 图344. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.45. 如图,AB //CD ,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.46. 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ).A .450°B .540°C .630°D .720°47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.48.一个凸n边形的内角和小于1998°,那么n的最大值是________.49.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.1250.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.51.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.52.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.53.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.54.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.55.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.57.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.58. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________.62. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)63. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的最大值是________.64. 图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a 本书,又过了若干天,四个书架又分别被借出0,b ,c ,d 本书,并且四个书架上余下同样本数的书. 若b ,c ,d ≥1,b +c +d =a ,则两次借出书后,1号书架剩有________本书.65.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.66.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.67.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)69.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.70.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.71.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.72.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.73.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.75.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.76.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.77.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.78.如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z的值是________.79. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________.80. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.1.计算:7年级思维训练80题答案1111 13355720212023________.答案:1011 20232.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.答案:13.123499910001001(1)1(1)1(1)1(1)的值是________.答案:–14.设11112018201920202050M,则1M的整数部分是________.答案:615.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.答案:3736.已知5555284110133144□,其中□里的数字是________.答案:77.哪些连续正整数之和为1000?试求出所有的解.答案:198+199+200+201+202;55+56+...+70;28+29+ (52)8. 2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.答案:202310009. n 个正数的乘积的n 次方根称为这n 个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________. 答案:12810. 有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数; (2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数. 其中正确的命题个数是________. 答案:011. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数答案:C12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.答案:213. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a答案:C14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________. 答案:1915. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________. 答案:15,2116. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.答案:017. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.答案:11118. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.答案:119.________.答案:20. 222 − 4有________个不同的质因数.答案:621. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.答案:–1622. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________. 答案:223. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________. 答案:424. 若正整数x ,y ,z 满足11145x y z,则xyz 的最大值是________. 答案:16025. 231x x x 的最小值是________.答案:526. 满足24x y y 的整数对(x ,y )有________个.答案:627. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.答案:–3,1,528. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.答案:429. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对. 答案:230. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________. 答案:531. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________. 答案:2032. 如果关于x 的不等式组9080x a x b的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对. 答案:7233. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.答案:1a34. 在1~100的自然数中与10互质的自然数共有________个.答案:4035. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.答案:15436. 已知三位数abc 能被5整除,但不能被6和7整除;三位数cba 能被6整除,但不能被5和7整除;三位数cab 能被7整除,但不能被5和6整除,则abc =________. 答案:67537. 九位数ABCABCBBB 能被1~17中的任意整数整除,且A ,B ,C 是不同的数字,则九位数ABCABCBBB 是________. 答案:30630600038. 乘积376 ×733 的个位数字是________.答案:739. 四位数aabb 是一个整数的平方,aabb =________.答案:774440. 已知p 是质数,且271p 的不同正因数的个数不超过10,则满足题意的p的个数是________. 答案:241. 如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.答案:442. 已知圆环内直径为a 厘米,外直径为b 厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米. 答案:49a +b43. 设有一个边长为1的正三角形,记作A 1(如图1),将A 1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图2);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图3);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长是________.图1 图2 图3答案:64944. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.答案:6045.如图,AB//CD,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.答案:046.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=().A.450° B.540° C.630° D.720°答案:B47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.答案:1548.一个凸n边形的内角和小于1998°,那么n的最大值是________.答案:1349.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.12答案:C50.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.答案:5.551.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.答案:1652.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.答案:17553.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.答案:12554.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.答案:13555.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°答案:A56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.答案:3357.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.答案:1258. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .答案:证明:由∠DCB =90°-∠B =∠BAC ,知∠HCG =12∠DCB =12∠BAC =∠HAD .而∠CHG =∠AHD ,从而∠CGH =180°-(∠HCG +∠CHG )=180°-(∠HAD +∠AHD )=90°,知AG ⊥CG ,即AG ⊥CF .此时,∠FCA =90°-∠GAC =90°-∠GAF =∠CF A ,故AC =AF ,即点A 在CF 的垂直平分线AG 上.又H 在AG 上,则HC =HF ,即知∠HFC =∠FCH =∠FCB ,故HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).答案:C60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n答案:A61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________. 答案:1762. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)答案:1763. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的最大值是________.答案:864.图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a本书,又过了若干天,四个书架又分别被借出0,b,c,d本书,并且四个书架上余下同样本数的书.若b,c,d≥1,b+c+d=a,则两次借出书后,1号书架剩有________本书.答案:3665.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.答案:4.266.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.答案:4067.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().答案:C68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)答案:300369.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.答案:313670.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.答案:1671.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.答案:1572.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.答案:15673.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)答案:(0,0,0,0),(1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A .这样的三位数A 共有________个. 答案:1575. 如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A 接到球后可以传给C 、D 或E ),开始时,球在A 的手中,若球被传递三次后又回到A ,此种情况出现的概率是________.答案:22776. 如图,△ABC 中,D 、E 分别是边BC 、AC 的中点,从这 8个图形△ABD 、△ACD 、△ABE 、△BCE 、△GAB 、△GAE 、△GBD 、四边形CEGD 中任取2个图形,取出的2个图形面积相等的概率是________.答案:2777. 按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是________.答案:7<x ≤1978. 如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z 的值是________.答案:379. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________. 答案:14580. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.答案:6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学生思维能力训练活动初一年级试题
填空题:
1.因式分解:x3+2013x2+2013x+2012=___________________
2.对分式进行越分:=__________________
3.在1、2、3、…、2013之中的每个数面前添上一个正号或负号,则和式可以得到的最小正数是_____________________
4.将长为10cm的一条线段用任意的方式分成5小段,以这5段为边可以围城一个五边形,那么其中最长的一段的取值范围是_____________________,则
x4+4x2y2+5y4=__________
5.若x、y的值满足方程式组,则x4+4x2y2+5y4=__________
6.已知两个方程:=0与x2-2x-8=0,有一个相同的解,则a=_______________
7.如果一个数正写和逆写的值不变,那么我们称这样的数为回文数码比如12331或121,如果一个数不能表示为两个回文数之和,我们就称其为中环数。
则超过2013的最小中环数为____________
8.已知(m≥3),则的最大值为__________
9.计算:=_____________
10.将编号为1-10的10本书放入编号为1-10的10个书架上,要求编号为k的书只能
放在编号为k-1或k或k+1的书架上,例如:编号为1的书只能放在编号为1或2的书架上;编号为4的书只能放在编号为3或4或5的书架上;编号为10的书只能放在编号为9或10的书架上。
那么一共有______________种放法。
11.下列数阵中,有__________个完全平方数。
111111...11 (1)
2013个1
222222...22 (2)
2013个2
333333...33 (3)
2013个3
………………
999999...99 (9)
2013个9
12.已知(丨a-1丨+丨a-2丨+3丨a-3丨)(b2-4b+5)=3,则a2-3ab+b2=___________
13、如图:一个半径为0.5的小圆环在一个直角△ABC内滚动,从A1到B1,再到C1,最后回到A1,已知AB=3,BC=4,且AA1,BB1,CC1的延长线交于同一点I,点I到三条边的距离相等,那么,小圆环滚了一圈,△A1B1C1的周长为___________,则此事的△DHL的面积为________的解为___________
14、已知a满足a3+3a2+4a+2=0,a、b满足a(a(a+b)+b)+b=1,则a2+(a+b)2=_________
15、如图,三个边长为6的正方形放在一起,连接它们的顶点形成两个三角形A和B(图阴影表示)。
我们用SA表示A的面积,SB表示B的面积,若,则此事的△DHL的面积为________
16、已知a,b,c是三个不同的实数,则方程的解为___________
17、从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率是
_____________
18、如果正整数对(a,b)使得与都是正整数,则所有满足条件的(a,b)为__________
19、四个等边三角形如图排列,它们的边长都是整数,且构成一个等差数列。
B、C、G 三点共线,=,值是一个循环小数,则IH的最小值为_______________
20、在一个8×8的表格中,将1-12这12个数字填入表格中。
使得:
①每个格子中最多填入一个数字,并且这12个数字每个只能使用一次;
②两个填入数字的格子不会接触(没有公共点,也没有公共边)
③一些行、列外给出了一些数字,这些数字告诉我们这行、列中所含有的所有数字之和,没有给出数字的行、列中的数字之和未知(不是0)
请讲1-12填入下方的表格中。