欧氏空间的定义与基本性质
第八章 欧氏空间

例3 在R3中,向量 (1, 0, 0), (1, 1, 0) 求 , 的夹角。
欧氏空间
§1 欧氏空间的定义和性质
三、向量的正交
定义4 对欧氏空间V中的两个向量 , , 若内积 ( , ) 0, 则称
与 正交或垂直,记为:
注意: 零向量与任一向量正交。 例4 在R4中求一单位与下面三个向量
例1 设 (1 , 2 ), (1 , 2 ) 为二维实空间R2中的任意两个 向量,问:R2对以下规定的内积是否构成欧氏空间?
(1) ( , ) 1 2 2 1
(2) ( , ) (1 2 )1 (1 2 2 ) 2
正交向量组。
如果一个正交组的每一个向量都是单位向量,则这样的向 量组称为标准正交向量组。 性质1 欧氏空间V中的正交向量组必定线性无关。 注: (1) 单个非零向量也称为一个正交向量组。 (2) 线性无关的向量组不一定是正交向量组。
欧氏空间
§2 标准正交基
定义2 在n维欧氏空间中,由n个向量组成的正交向量组称为 正交基,由n个标准正交向量组成的正交基称为标准正交基。 性质2 设 1 , 2 , , n 是n维欧氏空间V中的一组标准正交基,则
(3) ( , ) ( , ) ( , ) (4) ( , ) 0,当且仅当 0 时有 ( , ) 0 这里 , , 是V中任意的向量,k为实数,这样的线性空间V
称为欧几里得空间,简称为欧氏空间。
欧氏空间
§1 欧氏空间的定义和性质
i 1 i 1 i 1 i 1n n n
n
(4) 一组基为标准正交基的充要条件是它的度量矩阵为 单位矩阵。
欧氏空间
图形学欧氏空间具体概念

(α , β ) ≤ α β
三、欧氏空间中向量的夹角(续) 欧氏空间中向量的夹角(
〈α , β 〉 = arc cos (α , β )
α β
( 0 ≤ 〈α , β 〉 ≤ π )
(α , β ) = 0
定义: 为欧氏空间中两个向量, 定义:设 α、β为欧氏空间中两个向量,若内积
正交或互相垂直, 则称 α 与 β 正交或互相垂直,记作 α ⊥ β . 注: ① 零向量与任意向量正交 零向量与任意向量正交.
3) 非零向量 α 的单位化: α α . 的单位化:
1
三、欧氏空间中向量的夹角
1. 柯西-布涅柯夫斯基不等式 柯西- 对欧氏空间V中任意两个向量 α、β 对欧氏空间V
线性相关时等号成立. 当且仅当 α、β 线性相关时等号成立. 2. 欧氏空间中两非零向量的夹角 定义: 为欧氏空间, 中任意两非零向量, 夹角定义为 α 定义: 设V为欧氏空间, 、β 为V中任意两非零向量,α、β 的夹角定义为 ,有
π α ⊥ β ⇔ 〈α , β 〉 = 即 cos〈α , β 〉 .= 0 , ② 2
3. 勾股定理 为欧氏空间, 设V为欧氏空间,∀α , β ∈ V , α ⊥ β ⇔ α + β 2 = α 2 + β 为欧氏空间 推广:若欧氏空间V中向量 两两正交, 推广:若欧氏空间 中向量 α 1 ,α 2 ,⋯ ,α m 两两正交, 即 (α i ,α j ) = 0, i ≠ j , i , j = 1, 2,⋯ , m 2 2 2 2 α1 + α 2 + ⋯ + α m = α1 + α 2 + ⋯ + α m . 则
关于欧氏空间的若干问题

关于欧氏空间的若干问题欧氏空间,也称欧几里德空间,是数学中研究最广泛、应用最广泛的一个空间概念。
它是一个三维的空间,通常用欧氏度量来度量距离。
在欧氏空间中,可以进行许多有趣的几何推理和计算,下面将针对欧氏空间的一些常见问题进行探讨。
一、欧氏空间的定义和性质:1. 欧氏空间的定义:欧氏空间是一个具有三个轴向(x、y、z)的空间,其中任意两点之间的距离可以用欧氏度量来度量。
2. 欧氏度量的定义:欧氏度量是指两个点之间的距离,即在空间中点A和点B的距离可以表示为√[(xB-xA)² + (yB-yA)² + (zB-zA)²]。
3. 欧氏空间的性质:欧氏空间满足公理化的欧氏几何的所有性质,包括点、线、平行、相似、共面等等。
二、欧氏空间中的几何推理和计算:1. 直线和平面:在欧氏空间中,可以定义直线和平面,直线是两点之间的最短路径,平面是由三个或更多点组成的平坦表面。
2. 平行和垂直:在欧氏空间中,可以定义平行和垂直关系,平行的直线永远不会相交,垂直的直线相交时角度为90度。
3. 距离和角度:在欧氏空间中,可以计算两点之间的距离,并且可以计算两条直线或两个平面之间的夹角。
4. 对称和相似:在欧氏空间中,可以定义对称和相似的概念,对称是指关于某一中心轴或点对称,而相似是指形状和大小相似但不完全相同。
5. 三角形和多边形:在欧氏空间中,可以进行三角形和多边形的计算,包括面积、周长、角度等。
6. 空间图形的投影:在欧氏空间中,可以进行空间图形的投影计算,包括平行投影和透视投影等。
三、欧氏空间在现实生活中的应用:1. 建筑和工程:欧氏空间的几何推理和计算在建筑和工程领域中得到广泛应用,如房屋设计、结构力学分析等。
2. 机械制造:欧氏空间的几何推理和计算在机械制造中也起到重要作用,如零件加工、装配设计等。
3. 计算机图形学:欧氏空间的概念在计算机图形学中被广泛应用,如三维建模、渲染等。
欧式空间

欧氏空间(Euler space )一、 内积与欧氏空间1.设V 是实数域R 上的线性空间,在V 上定义一个二元实函数,称为内积,记为),(βα,它具有以下性质: )3(,)2(),,(),)(1( αββα= 这样的线性空间V 称为欧几里的空间,简称欧氏空间.2.设V 是数域P 上的线性空间,如果V 中的任意两个向量βα,都按某一法则对应P 内唯一确定的数,记为),(βαf ,且),(),(),(,,,,)1(221122112121βαβαβααβααk f k k k f V P k k +=+∈∈∀有;),(),(),(,,,,)2(221122112121βαβαββαββαl f l l l f V P l l +=+∈∈∀有 则称),(βαf 是V 上的一个双线性函数.3.内积是双线性函数.4.设V 是n 维欧氏空间,n e e e ,,,21 为V 的一组基,V ∈βα,,若n n e x e x e x +++= 2211α; n n e y e y e y +++= 2211β则j i n j ni j i j i n j n i j i y x a y x e e ∑∑∑∑====∆=1111),(),(βα,5.称 )),(()(j i ij e e a A ==为基n e e e ,,,21 的度量矩阵.6. 设n e e e ,,,21 是n 维欧氏空间V 的一组基,,A 是基n e e e ,,,21 下的度量矩阵,则任意V ∈βα,,有AY X '=),(βα.7.度量矩阵必为正定矩阵,且不同基下的度量矩阵是合同的.二、 长度与夹角1。
欧氏空间V 中向量长度 ),(||ααα=;单位化:当||0||0αααα=≠时, 2.欧氏空间中的重要不等式:① Cauchy-Буняковский不等式:对任意向量V ∈βα,有线性相关时等式成立。
,当且仅当βαβαβα|,||||),(|≤。
欧氏空间

≤ α + 2 α ⋅ β + β = ( α + β )2
2 2
由于 α + β 与 α + β 此即三角不等式。
都是非负实数,故有
α+β ≤ α + β
第九章 欧几里得空间
(α , β ) 由于 ≤ 1, α⋅β
(α , β ) 有意义。 故 cos θ = α⋅β
定义3 设 α 与β 是欧氏空间V的两个非零向量,α 与β 的夹 (α , β ) , 0≤θ ≤π θ = arc cos 角规定为: α⋅β 例9.1.8 在欧氏空间 R 3 中,取向量 α = (1, 0, 0), β = (1,1, 0), 求 α 与β 的夹角。 解: 于是
(γ , γ ) = (α + t β , α + t β ) = (α , α ) + 2(α , β )t + ( β , β )t 2 ≥ 0 (9.1.4)
这是关于t的一个二次三项式,又 ( β , β ) > 0, 故 ∆ ≤ 0, 4(α , β )2 − 4(α , α )( β , β ) ≤ 0 (α , β )2 ≤ (α , α )( β , β ), 故有 (α , β ) ≤ α ⋅ β 因此 即
(α , β + γ ) = (α , β ) + (α , γ ) 。 (α , k β ) = k (α , β ) 。
∀α 1 , α 2 , k1 , k2 ,
n m
,α n , β1 , β 2 , , kn , l1 , l2 ,
n m
, β n ∈V
, ln ∈ R,
则有
( ∑ kiα i , ∑ li β i ) = ∑ ∑ ki li (α i , β j ) 。
高等代数 第7章欧式空间 7.1 欧氏空间的定义及性质

x, y
x y
例 求向量 1,2,2,3与 3,1,5,1的夹角.
18 2 解 cos 3 261. 非负性 当 x 0时, x 0;当 x 0时, x 0; 2. 齐次性 x x ; 3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时, 称 x 为单位向量 .
2 当 x 0, y 0时, arccos
(4)[ x , x ] 0, 且当x 0时有[ x , x ] 0.
则称V(R)关于这个数积构成一个欧氏空间。这里 x,y为任意向量,k为任意实数。
数积的性质: (1)(x ,ky)=k(x , y) (2) (x , y+z )=(x , y)+( x , z ) (3) (x , )=0
欧氏空间的定义及性质
定义:设V(R)是实数域R上的线性空间,
在V(R)中定义了一个叫做数积的运算,即 有一定的法则,按照这个法则,对V(R)中 的任意两个向量x,y,都能确定R中唯一一个实 数,称之为x与y的数积,记作(x,y),如果这个 运算具有性质:
(1) ( 2) ( 3)
x, y y, x ; x, y x, y; x y, z x, z y, z ;
n (4) k i i 1
, l
i j 1 i
n
n,m ki l j ( i i 1, j 1
,
i
j
)
向量的长度及性质
定义2 令
x
x, x
2 2 2 x1 x2 xn ,
称 x 为n 维向量 x的长度 或 范数 .
高等代数欧氏空间的定义与基本性质

. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足 右齐次性 (α, kβ) = k(α, β);
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. .. . . ..
欧氏空间的度量
由欧氏空间定义中内积的正定性,有 √
(α,
α)
≥
0.
所以对于任意
的向量 α, (α, α) 是有意义的. 在几何空间中,向量的长度为
√ (α, α).
类似地,我们在一般的欧氏空间中引进:
定义 √
非负实数 (α, α) 称为向量 α 的长度,(或称范数,或称模)记 为 |α|.
. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. . . .... .... .... . . . . .... .... .... . .
显然,向量的长度一般是正数,只有零向量的长度才是零,这样 定义的长度符合熟知的性质:
|kα| = |k||α|,
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
欧氏空间的度量
这里,k ∈ αR, α ∈ V. 事实上,
√
定义与基本性质欧氏空间

欧氏空间的性质
完备性
在欧氏空间中,任意柯西序列都收敛,即任意两点之间的距离可 以由有限步的有限位移得到。
有限维性
欧氏空间是有限维的,其维度等于空间中独立坐标的个数。
连通性
欧氏空间是连通的,即任意两点之间都存在一条连续的路径。
欧氏空间的维度
一维欧氏空间
只有一条坐标轴。
二维欧氏空间
有两条相互垂直的坐标轴。
向量的模
欧氏空间中向量的模定义为向量长度或大小,表 示为$| vec{v} |$,计算公式为$sqrt{v_1^2 + v_2^2 + cdots + v_n^2}$。
向量的内积
欧氏空间中向量的内积定义为两个向量的点积, 表示为$vec{v} cdot vec{w}$,计算公式为 $v_1w_1 + v_2w_2 + cdots + v_nw_n$。
连续性的几何意义
在欧氏空间中,连续性意味着函数图像的每一点附近都有其他点,这些点与图像 上对应的点足够接近。
03
欧氏空间的应用
解析几何中的欧氏空间
解析几何是数学的一个重要分支,它使用代数方法研究几何对象。在解析几何中 ,欧氏空间是一个基本的、重要的概念,用于描述平面和三维空间中的点、线、 面等几何元素。
长度和半径
欧氏空间中,线段的长度和圆的 半径可以通过度量性质进行计算 。
欧氏空间的平行性
平行直线
在欧氏空间中,两条直线平行当且仅当它们的方向向量成比 例。
平行平面
在欧氏空间中,两个平面平行当且仅当它们的法向量共线。
欧氏空间的连续性
连续性定义
在欧氏空间中,如果对于任意给定的正数$epsilon$,都存在一个正数$delta$,使 得对于空间中的任意两点$P$和$Q$,只要$d(P, Q) < delta$,就有$d(f(P), f(Q)) < epsilon$,则称函数$f$在欧氏空间中是连续的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也即 、 线性相关.
§9.1 定义与基本性质
3. 柯西-布涅柯夫斯基不等式的应用
(1)
易证 ( , ) 满足定义中的性质 1 ~ 4 .
所以, ( , ) 为内积. 这样Rn 对于内积 ( , ) 就成为一个欧氏空间.
当 n 3 时,1)即为几何空间 R3中内积在直角 坐标系下的表达式 . ( , )即 .
§9.1 定义与基本性质
2)定义
( , ) a1b1 2a2b2 kakbk nanbn 易证( , )满足定义中的性质 1 ~ 4 .
tR
由内积的正定性,对 t R,皆有
( , ) ( t , t )
(, ) 2(, )t ( , )t2 0
取 t ( , ) 代入(6)式,得 ( , )
( , )
2( , ) ( , ) ( , )(Βιβλιοθήκη ,)( (
, ,
)2 )2
0
即 (, )2 (, )( , )
1) 0; 0 0
2) k k
3)非零向量 的单位化:
1.
(3)
§9.1 定义与基本性质
三、欧氏空间中向量的夹角
1. 引入夹角概念的可能性与困难
1)在 R3中向量 与 的夹角 , arccos
(4)
2)在一般欧氏空间中推广(4)的形式,首先
应证明不等式:
此即,
§9.1 定义与基本性质
( , ) 1
2. 柯西-布涅柯夫斯基不等式
对欧氏空间V中任意两个向量 、 ,有
( , )
(5)
当且仅当、 线性相关时等号成立.
证:当 0时, ( ,0) 0, 0 ( , ) 0. 结论成立. 当 0 时,作向量 t ,
§9.1 定义与基本性质
2、在解析几何中,向量的长度,夹角等度量性质 都可以通过内积反映出来:
长度:
夹角 , : cos ,
3、几何空间中向量的内积具有比较明显的代数性质.
§9.1 定义与基本性质
一、欧氏空间的定义
1. 定义 设V是实数域 R上的线性空间,对V中任意两个向量
、 , 定义一个二元实函数,记作 ( , ) ,若 ( , ) 满足性质: , , V , k R
§9.1 定义与基本性质
2. 内积的简单性质
V为欧氏空间, , , V , k R
1) ( ,k ) k( , ), k ,k k2( , )
2) (, ) (, ) (, )
s
s
推广: ( , i ) ( , i )
i 1
i 1
3) (0, ) 0
§9.1 定义与基本性质
b
b
2 . (k f , g) a k f ( x)g( x) dx ka f ( x)g( x) dx
k( f , g)
§9.1 定义与基本性质
3
.
(f
g
,
h)
b
a
f (x)
g( x) h( x) dx
b
b
a f ( x)h( x) dx a g( x)h( x) dx
( f ,h) (g,h)
4 . ( f , f ) b f 2( x) dx a f 2(x) 0, ( f , f ) 0.
且若 f ( x) 0, 则 f 2( x) 0, 从而 ( f , f ) 0.
故 ( f , f ) 0 f (x) 0.
因此,( f , g) 为内积, C(a,b)为欧氏空间.
§9.1 定义与基本性质
一、欧氏空间的定义 二、欧氏空间中向量的长度 三、欧氏空间中向量的夹角 四、n维欧氏空间中内积的矩阵表示 五、欧氏子空间
§9.1 定义与基本性质
问题的引入:
1、线性空间中,向量之间的基本运算为线性运算, 其具体模型为几何空间 R2、R3, 但几何空间的度量 性质(如长度、夹角)等在一般线性空间中没有涉及.
所以 ( , ) 也为内积. 从而Rn 对于内积 ( , )也构成一个欧氏空间.
注意:由于对 V , 未必有 (, ) (, )
所以1),2)是两种不同的内积. 从而 Rn 对于这两种内积就构成了不同的欧氏空间.
§9.1 定义与基本性质
例2.C(a,b) 为闭区间 [a,b] 上的所有实连续函数
1 (, ) ( , )
(对称性)
2 (k, ) k(, )
3 ( , ) , ( , )
(数乘) (可加性)
4 ( , ) 0, 当且仅当 0 时 ( , ) 0. (正定性)
§9.1 定义与基本性质
则称 ( , )为和 的内积,并称这种定义了内积的
实数域 R上的线性空间V为欧氏空间.
所成线性空间,对于函数 f ( x), g( x) ,定义
b
( f , g) a f ( x)g( x) dx
则 C(a,b) 对于(2)作成一个欧氏空间.
(2)
证: f ( x), g( x), h( x) C(a,b), k R
b
b
1 . ( f , g) a f ( x)g( x) dx a g( x) f ( x) dx ( g, f )
注: 欧氏空间 V是特殊的线性空间
① V为实数域 R上的线性空间; ② V除向量的线性运算外,还有“内积”运算;
③ ( , ) R.
§9.1 定义与基本性质
例1.在 Rn 中,对于向量
a1,a2, ,an , b1,b2, ,bn
1)定义 ( , ) a1b1 a2b2 anbn
二、欧氏空间中向量的长度
1. 引入长度概念的可能性
1)在 R3向量 的长度(模) . 2) 欧氏空间V中, ,V , (, ) 0
使得 有意义.
2. 向量长度的定义
,V , ( , ) 称为向量 的长度. 特别地,当 1时,称 为单位向量.
§9.1 定义与基本性质
3. 向量长度的简单性质
两边开方,即得
§9.1 定义与基本性质
, .
(6)
当 、 线性相关时,不妨设 k 于是, ( , ) (k , ) k( , ) k 2 .
k k 2
( , ) . (5)式等号成立.
反之,若(5)式等号成立,由以上证明过程知
或者 0,或者
, , 0