复变函数与积分变换复习必备

合集下载

复变函数与积分变换知识点总复习

复变函数与积分变换知识点总复习

解析函数 f (z) 的导数仍为解析函数, 它的 n阶
导数为:
f
(n)
( z0
)
n! 2πi
C
(z
f
(z) z0 )n1
dz
(n 1,2,)
其中C 为在函数 f (z) 的解析区域 D内围绕 z0 的
任何一条正向简单闭曲线, 而且它的内部全含于 D.
8.调和函数与解析函数的关系
调和函数
满足 Laplace
但u iv不是解析函数。
证明:
因为 u x
2x,
2u x 2
2,
u y
2 y,
2u y 2
2,
2u 2u 2 2 0,所以,u是调和函数。 x2 y2
同理 2v 6x2 y 2y3 , 2v 6x2 y 2y3 , x2 (x2 y2 )3 y2 (x2 y2 )3
2v x 2
解:u(x, y) a ln(x2 y2 ),v(x, y) arct an y ,则 x
u 2ax , u 2ay , v y , v x , x x2 y2 y x2 y2 x x2 y2 y x2 y2 在区域x 0内连续,且 u v , v u 在区域x 0上成立时,2a 1, x y x y 即,当a 1 时,函数f (z)在区域x 0内是解析的。
Байду номын сангаас
而 u y2, u 2xy, v 2xy, v x2,在复平面上
x
y
x
y
处处连续,当x y 0时满足C R方程,
故f (z)仅在(0,0)点可导,在复平面上处处不解析。
2)因为f (z) x2 iy,则u(x, y) x2, v(x, y) y,

复变函数与积分变换全教程绝对完整经典考试复习必备

复变函数与积分变换全教程绝对完整经典考试复习必备
第二章 解析函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1 解析函数的概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1 复变函数的导数与微分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1.1 导数的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1.2 可导与连续. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.1.3 求导法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.1.4 微分的概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.2 解析函数的概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 函数解析的充要条件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 初等函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 指数函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 对数函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.3 乘幂与幂函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.4 三角函数和双曲函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.5 反三角函数与反双曲函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

复变函数与积分变换复习重点

复变函数与积分变换复习重点

复变函数与积分变换复习重点复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ?≥=+??<=-??;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳复变函数是指自变量和函数值都是复数的函数。

它是数学分析中重要的一个分支,具有广泛的应用。

而积分变换则是一种广泛应用于工程学科中的计算工具,可以将微分方程转化成简单的代数方程,便于求解。

下面是复变函数与积分变换的一些重要知识点的归纳:1.复变函数的运算规则:复变函数的加法、减法、乘法和除法规则与实变函数类似,但要注意复数的有序性和虚部的运算。

2.复变函数的全纯性:全纯性是复变函数的重要性质,全纯函数在其定义域内是无穷次可微的,且它的导函数在其定义域中也是全纯函数。

3.柯西-黎曼方程:复变函数的全纯性与柯西-黎曼方程有密切关系,柯西-黎曼方程是全纯函数必须满足的一个必要条件。

4.柯西-黎曼积分定理:柯西-黎曼积分定理是复变函数在闭合曲线上的积分与曲线内部的全纯函数的值之间的关系。

该定理在计算复分析中的积分问题时非常有用。

6.罗朗级数:罗朗级数是一种表示复变函数解析性质的展开式。

罗朗级数将复变函数分解为一个主项和无穷个奇异项的和,可以方便地用于计算复分析中的积分问题。

7.积分变换:积分变换是一种重要的数学工具,可以将一个函数映射到一个新的函数空间中,并可以将微分方程转化成代数方程。

常见的积分变换包括拉普拉斯变换、傅里叶变换和Z变换等。

8.拉普拉斯变换:拉普拉斯变换是一种常用的积分变换方法,广泛应用于工程学科中的系统分析和控制理论等领域。

拉普拉斯变换可以将复杂的微分方程转化成简单的代数方程,方便进行求解。

9.傅里叶变换:傅里叶变换是一种重要的积分变换,可以将一个函数表示为一系列正弦和余弦函数的叠加。

傅里叶变换在信号处理、图像处理等领域中有广泛的应用。

10.Z变换:Z变换是一种离散时间域的积分变换,适用于离散系统的分析和设计。

Z变换可以将离散系统的差分方程转化成代数方程,便于求解。

复变函数和积分变换重要知识点归纳

复变函数和积分变换重要知识点归纳

.WORD.格式.复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx之间的关系如下: 当0,x > arg arctany z x=; 当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-= 3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳复变函数是指定义在复数域上的函数,其自变量和函数值都是复数。

复变函数可以表示为两个实变量的函数,即f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)是实变量的函数。

复变函数的积分变换是指对复变函数进行积分变换,得到新的复变函数。

在复变函数的积分变换中,有一些重要的公式需要归纳,包括:1.度量公式:对于复变函数f(z)=u(x,y)+iv(x,y),其微分形式为dz=dx+idy。

根据度量公式,有dx=\frac{1}{2}(dz+d\bar{z}),dy=\frac{1}{2i}(dz-d\bar{z})。

2.柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),满足柯西-黎曼方程的充要条件是u_x=v_y和u_y=-v_x。

3.柯西-黎曼积分定理:对于一个闭合曲线C,如果复变函数f(z)在C内解析(即在C内柯西-黎曼方程成立),那么有\oint_C f(z)dz=0。

4.柯西积分公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式为\oint_C \frac{f(z)}{z-a} dz=2\pi i f(a),其中C是D内包围点a 的闭合曲线。

5.柯西积分公式的推广:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式的推广形式为\oint_C \frac{f(z)}{(z-a)^n} dz=2\pi i \frac{f^{(n-1)}(a)}{(n-1)!},其中C是D内包围点a的闭合曲线。

6.柯西积分公式的应用:柯西积分公式可以用于计算复变函数的积分,如计算围道上的积分或者在无穷远处的积分等。

7.柯西主值公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西主值公式为\frac{1}{2\pi i}\int_C \frac{f(z)}{z-a} dz=PV\frac{1}{2\pii}\int_C \frac{f(z)}{z-a} dz=PVf(a)+\frac{1}{2}f(a),其中PV表示柯西主值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数与积分变换概念及公式
常用积分公式
1.
为逆时针方向且的圆周为中心,半径为是以,为整数C ,C )
(1,01,2)(ρρπ=-⎩⎨
⎧≠==-⎰a z a n n n i a z dz
C n 2.柯西积分定理:
)D D C D )((0)(的边界,或者为多连通区域内任意一条简单闭曲线为单连通区域内解析,在区域,z f dz z f C
=⎰
3.柯西高阶导数公式:)
(2)()
(0)C D D D C )((,...)2,1,(!)
(2)()()(1z if d z f n z f n D z n z if d z f C n C n πξξξπξξξ=-=+==∈=-⎰⎰+时,即为柯西积分公式特别的,上连续内解析,在所围成的区域在简单闭曲线,
4.

+∞
=0
2
sin π
dx x x 5. ⎰

+-=
2
2
π
dx e
x
6.留数定理:
)
,...,,)((,)),((Re 2)(211
部的一条简单闭曲线内包含这些奇点在其内是外解析,
内出去有限个孤立奇点在区域D C z z z D z f z z f s i dz z f n n
k k C
∑⎰
==π
常用不等式
1.||...||||...2121n n z z z z z z +++≤+++
2.
),)(C (,)(的长度为曲线上,在曲线C l M z f Ml dz z f C
≤≤⎰
3.柯西不等式:))()((,...),2,1(,!
)()
(M z f R a z z f n M R
n a f n n ≤≤-=≤
内解析,且在圆函数
常用等式
1.|
||
|z )(
21212121z z z z z z z =
= 2.无穷的运算发则:无意义0
,,
0,;0
,
0;,0,
∞∞•∞∞±∞∞=∞=∞•=•∞⇒≠∞=∞
=∞∞=±∞=∞±⇒∞≠z
z z z z
z z z z
3.De Movie 公式:)sin (cos ,sin cos )sin (cos θθθθθθθ
i r re n i n i i n
+=+=+欧拉公式:
4.柯西-黎曼方程:y
v
i
y x v i x z f x
v
y y v x y x iv y x u z f ∂∂-∂∂=∂∂+∂∂='∂∂-
=∂∂∂∂=∂∂+=u u )(u ,u D ),(),()(并因此有内有定义,在区域函数
5.对数函数的主值:Lnz=ln|z|+iargz+2k πi=lnz+2k πi (k 为任意正整数,ππ≤<-z arg ), lnz =ln|z|+iargz 即为主值
6.拉普拉斯方程:内的调和函数为区域称内满足拉普拉斯方程,在区域D ),(D ),(,02
222y x g y x g y
g
x g =∂∂+∂∂ 7.常用函数在z=0处泰勒展式:

∑∑∑∞
=∞
=∞=+∞
=+--=+<-=+-==∞<0
20120!
)
1)...(1()1(:1||;
)!2()1(cos ,)!12()1(sin ,!:||n n
n n n n n n n n z
z n n z z n z z n z z n z e z αααα
8.),..,,)((0)),((Re )),((Re ,211
外解析在扩充复平面上除去函数∞==∞+∑n n
k k
z z z z f z f s z
z f s
常用定理
1.刘维尔定理:有界整函数(在有限复平面上解析的函数)一定恒等于常数
2.解析函数的唯一性定理:设函数f(z)与g(z)在区域D 内解析,{z n }是D 内彼此不同的点列,且{z n }在D 内有聚点。

若f(z n )=g(z n )(n=1,2,…),则在D 内,f(z)≡g(z)
3.最大模定理:若函数f(z)在区域D 内解析,并且不为常数,则|f(z)|在D 内取不到最大值
孤立奇点及留数的计算
设z=z0是函数f(z)的孤立奇点,∑+∞
-∞
=-
n
n
n
z
z
c)
(
为f(z)在z0某个去心邻域0<
z
z-<R内的罗朗展式,
傅里叶变换与拉普拉斯变换。

相关文档
最新文档