机械工程材料知识点

合集下载

大学机械工程必考知识点大全

大学机械工程必考知识点大全

大学机械工程必考知识点大全一、机械工程的概述机械工程是一门应用科学,涉及工程设计、制造、操作和维护各种机械装置和系统。

它是现代工程学科中最广泛的领域之一,对于培养工程师的实践能力和创新能力至关重要。

二、力学1. 牛顿定律:质点静力学、运动学和动力学的基础2. 力的合成与分解3. 力矩及其平衡条件4. 万有引力定律5. 动力学方程6. 力学性能参数的计算和分析方法三、材料学1. 材料的分类和性质2. 材料的力学行为3. 弹性与塑性4. 线性和非线性材料5. 疲劳和断裂力学四、热力学1. 热力学基本概念2. 热力学系统和过程3. 热力学第一、第二定律4. 等温、等熵和等焓过程5. 热机效率6. 热机循环五、流体力学1. 流体的基本性质2. 流体静力学3. 流体动力学4. 流体的黏性5. 流体的压力和速度分布6. 流体力学方程六、传热学1. 传热的基本概念和机制2. 传热的方式(传导、传导和对流)3. 热传导方程4. 边界条件和传热系数5. 对流传热和辐射传热的计算方法七、动力学1. 运动学和动力学的基本概念2. 运动学方程3. 动力学方程4. 动力学的应用:速度、加速度和力的分析5. 原动机和传动系统的工作原理和分析方法八、控制工程1. 控制系统的基本概念和分类2. 控制系统的数学模型3. 控制系统的稳定性分析4. 比例、积分和微分控制器5. 反馈控制系统和前馈控制系统的设计和分析九、机械设计1. 机械设计的基本概念和原则2. 零件的设计和选择3. 机械结构的设计和分析4. 机械部件的装配和安装5. 机械设计中的材料选择和加工工艺十、制造工艺学1. 制造工艺的基本原理和分类2. 传统制造工艺和先进制造工艺的比较3. 制造过程的规划和控制4. 制造工艺的经济性和可行性分析5. 先进制造技术的应用和发展趋势十一、工程力学1. 静力学和动力学的基本概念和原理2. 物体的受力分析3. 应力和应变的计算和分析4. 弹性体的力学行为5. 非弹性体的力学行为十二、机械振动1. 振动的基本概念和特性2. 一维和多维振动3. 自由振动和受迫振动4. 振动的幅频特性和相频特性5. 振动控制和减振的方法和技术综上所述,以上列举的大学机械工程必考知识点对于学习机械工程和成为一名合格的机械工程师至关重要。

机械基础:第03章机械工程材料

机械基础:第03章机械工程材料

第3章 机械工程材料
3.2 常用金属材料
3.2.2 合金钢
3.合金工具钢 (2)刃具钢 ②高速钢 用途:主要适宜于制造切削速度较高的刃具(如车刀、钻头等)和形状复杂、负载较重的 成形刀具(如铣刀、拉刀等)。此外高速钢还可用于制造冷冲模、冷挤压模以及某些耐磨 零件。常用的高速钢有钨系高速钢,如W18Cr4V;钼系高速钢,如W6Mo5Cr4V2等。 (3)模具钢 定义:主要用来制造各种模具的钢称为模具钢。 ①冷变形模具钢 用于制造冷态金属成形的钢称为冷变形模具钢。如冷冲模、冷压模等。冷变形模具钢的性 能特点是高的硬度和高耐磨性,具有足够的强度、韧性和疲劳强度。 常用的冷变形模具钢有9SiCr、Cr12和Cr12MoV等。
第3章 机械工程材料
3.2 常用金属材料
3.2.1 碳素钢
2.碳素钢 (1)碳素结构钢 ②优质碳素结构钢 牌号:优质碳素结构钢的牌号用两位数字表示,这两位数字代表钢的平均含碳质量分数的万 之一。例如45表示平均含碳质量分数为0.45%的优质碳素结构钢。 按照钢中锰的含量不同,可分为普通含锰量钢(WMn≤0.80%)和较高含锰量钢(WMn =0.7%~1.2%)两种,如果是后一种钢,则在两位数字后面加上Mn,如45Mn表示平均含碳 量分数为0.45%的较高锰优质碳素结构钢。 用途:优质碳素结构钢既保证力学性能又保证化学成分,而且钢中的有害杂质硫、磷质量分 数较低,质量较高,故广泛用于制造较重要的零件。
根据钢中含有害元素磷、硫质量分数划分。
普通碳素钢 Ws≤0.035%,Wp≤0.035%
优质钢
Ws≤0.030%,Wp≤0.030%
高级优质钢 Ws≤0.020%,Wp≤0.025%
第3章 机械工程材料
3.2 常用金属材料

机械知识知识点总结大全

机械知识知识点总结大全

机械知识知识点总结大全一、机械工程基础知识1. 机械工程概述机械工程是利用各种能源和原材料进行制造加工,生产各种机械设备和零部件的工程技术。

它涉及到机械结构、机械动力、机械传动、机械设计、机械制造、机械装配以及机械维护等多个方面。

2. 基本原理与概念(1)力学与运动学:涉及到牛顿运动定律、动力学、静力学、动力学等基本原理和概念。

(2)材料力学:包括材料的力学性能、应力分析、应变分析等。

(3)热工学:涉及到热力学基本概念、热传递、热力循环等。

(4)流体力学:包括流态特性、流体运动、流体压力等内容。

3. 机械结构机械结构是机械设备的基础部件,包括机床、传动装置、工作装置、装置等,是机械设备实现功能的基础。

4. 机械动力学机械动力学是机械工程中的一个基本概念,也是机械设备的工作基础。

它涉及到动力传递、动力转换、功率传递等内容。

二、机械设计1. 设计基础知识(1)机械设计的基本原则:包括安全可靠、节能环保、经济合理等原则。

(2)设计过程:包括定位、调研、方案制定、方案评审、详细设计、制作图纸、试验验证、修改完善等内容。

2. 机械设计基础(1)机械设计基础知识:包括机械设计基础概念、机械设计原理、机械设计基本过程等内容。

(2)机械元件设计:包括轴、螺纹、联轴器、弹簧、齿轮等机械元件的设计原则、计算方法、制作要求等。

3. 机械设计方法(1)规范计算法:根据工程设计规范和标准,进行机械设计计算。

(2)试验法:通过试验数据进行机械设计。

(3)仿生学设计法:借鉴自然界的设计原则,进行机械设计。

4. 机械设计软件(1)CAD软件:包括AutoCAD、SolidWorks、Pro/E等。

(2)CAE软件:包括ANSYS、ABAQUS等。

(3)CAM软件:包括MasterCAM、UG等。

5. 机械设计案例分析根据不同工程案例,对机械设计进行分析和评估,总结经验教训。

三、机械制造1. 制造工艺知识(1)金属材料的制造过程:包括锻造、铸造、焊接、冷加工等。

机械工程材料

机械工程材料


三、硬度(第二节金属材料的力学性能) HV维氏硬度—主要用于测定很薄材料和表面薄层硬度。 HS肖氏硬度—肖氏硬度计机体体积较小,携带方便,主要用于测定大而笨重的 工件或大型钢材的硬度。肖氏硬度试验,在工件上基本不留痕迹,适于测定精 密量具的表面硬度。 各种硬度的硬度值之间不存在理论上的换算关系,它们之间不能用来直接比较 材料的硬度高低。 在要求不很精确时使用。 当布氏硬度值在200~600HBS(W)范围时: HRC≈1/10HBS(W) 当布氏硬度值小于450HBS时: HBS≈HV HS≈1/6HBS 硬度指标的测定与其他力学性能指标测定相比较,其试验方法简便、迅速、易 掌握,不需要特殊加工试样,试样可以是大小、厚薄、形状各异的原材料,也 可以是毛坯件或成品零件。 生产中常把硬度指标作为技术条件之一标注在图样中。表1—4所列是一些钢件 的硬度要求
四、冲击韧度(第二节金属材料的力学性能)
金属材料的冲击韧度αk与其化学成分、组织、表面质量
及温度等因素有关。有些材料在常温下,具有较好的韧性, 不显示脆性,但在一定的较低温度下韧性降低,发生向脆性 的转化.显示出脆性。这种脆性转变在工程中很值得注意。
机械工程材料
金属材料
• 黑色金属 • 有色金属
非金属材料 复合材料
第一章 金属材料基础知识
第一节 钢材生产概述 第二节 金属材料的力学性能 第三节 金属的物理、化学性能及工艺性能 复习思考题
第一节钢材生产概述(第一章)

一、钢与生铁 二、钢的分类 三、钢铁材料的生产过程 四、钢材品种
二、塑性(第二节金属材料的力学性能)
二、塑性
是指金属材料在载荷作用下,产生塑性变形而不被破坏的能力。塑性也 是通过拉伸试验测定的。表示塑性的指标是:

机械工程中常用的材料及其特性分析

机械工程中常用的材料及其特性分析

机械工程中常用的材料及其特性分析机械工程是应用物理学和材料科学的领域,其中涉及到广泛的材料选择。

在机械工程中,材料的选择和使用对于提高产品性能和延长寿命至关重要。

本文将分析机械工程中常用的几种材料及其特性。

1. 金属材料金属材料是机械工程中最常见的材料之一。

金属具有良好的导电性、热传导性和可塑性。

常用的金属材料包括钢、铝、铜和铁等。

- 钢:钢具有强度高、硬度大的特点,同时具有较好的塑性。

它被广泛应用于制造机械零件和结构件。

- 铝:铝具有较低的密度和良好的耐腐蚀性,适用于制造轻型结构和航空航天器件。

- 铜:铜具有良好的导电性和导热性,广泛应用于电子设备和导线等领域。

- 铁:铁是常见的结构材料,具有良好的韧性和可塑性。

2. 塑料材料塑料是一种具有可塑性、耐腐蚀性和绝缘性的高分子化合物。

它们在机械工程领域中得到了广泛应用。

- 聚乙烯(PE):聚乙烯具有较高的强度和良好的耐化学性,常用于制造管道、储罐和塑料零件等。

- 聚丙烯(PP):聚丙烯是一种具有良好耐腐蚀性和高韧性的材料,常用于汽车零部件和容器等领域。

- 聚氯乙烯(PVC):聚氯乙烯是一种广泛使用的塑料材料,它具有优异的耐化学性和电绝缘性能,常用于制造管道、电线等。

- 聚苯乙烯(PS):聚苯乙烯具有低成本、良好的耐冲击性和绝缘性能,在包装和电子器件等领域有广泛应用。

3. 纤维材料纤维材料是由纤维形状的颗粒组成的材料,常用于机械工程领域的结构件和强度要求较高的零件。

- 碳纤维:碳纤维具有极高的强度和刚度,同时重量很轻,被广泛应用于航空航天、汽车和体育器材等领域。

- 玻璃纤维:玻璃纤维具有优异的强度、耐腐蚀性和绝缘性能,在船舶、风力发电和建筑等领域有广泛应用。

- 聚酰胺纤维(ARAMID):聚酰胺纤维具有很高的强度和耐热性,广泛用于防弹材料、绳索和高温隔热材料等。

4. 陶瓷材料陶瓷材料是一类脆性材料,具有良好的耐磨、耐高温和绝缘性能。

在机械工程中,陶瓷材料主要用于制造轴承、绝缘体和切削工具等。

职高高考机械知识点总结

职高高考机械知识点总结

职高高考机械知识点总结一、机械设计基础知识1. 机械工程基础知识:包括机械工程的定义、发展历史、发展特点、工作内容和方法等方面的基本知识。

2. 机械设计基本原理:包括机械设计的基本原理、设计目标和设计过程等方面的基本概念。

3. 机械设计过程:包括机械设计的概念、设计步骤、设计方法和设计要求等方面的基本概念。

二、机械工程材料1. 金属材料:包括金属材料的种类、性能、用途和加工工艺等方面的基本知识。

2. 非金属材料:包括非金属材料的种类、性能、用途和加工工艺等方面的基本知识。

3. 复合材料:包括复合材料的种类、性能、用途和加工工艺等方面的基本知识。

三、机械元件、机构和机器1. 机械元件:包括机械传动元件、机械连接元件和机械固定元件等方面的基本知识。

2. 机械机构:包括机械传动机构、机械连杆机构和机械凸轮机构等方面的基本知识。

3. 机械机器:包括机械传动机器、机械液压机器和机械气动机器等方面的基本知识。

四、机械设计与制造1. 机械设计:包括机械设计的基本原理、设计方法和设计要求等方面的基本概念。

2. 机械制造:包括机械制造的基本流程、制造工艺和制造要求等方面的基本知识。

3. 机械加工:包括机械加工的基本原理、加工方法和加工要求等方面的基本知识。

五、机械传动1. 机械传动原理:包括机械传动的基本原理、传动模型和传动参数等方面的基本知识。

2. 机械传动构成:包括机械传动的构成要素、传动装置和传动件等方面的基本知识。

3. 机械传动分析:包括机械传动的运动规律、运动参数和运动特性等方面的基本知识。

六、机械设备维护1. 机械设备维护:包括机械设备的维护原理、维护方法和维护要求等方面的基本知识。

2. 机械设备检修:包括机械设备的检修原理、检修方法和检修要求等方面的基本知识。

3. 机械设备保养:包括机械设备的保养原理、保养方法和保养要求等方面的基本知识。

七、机械制造工艺1. 机械加工工艺:包括机械加工的基本原理、加工方法和加工要求等方面的基本知识。

机械工程材料考点汇总

机械工程材料考点汇总

晶体结构与相图1.什么是合金的相图?为什么我们研究的Fe-Fe3C相图中只限于C=6.69%?答:相图又称状态图或平衡图,它表示在平衡条件下材料中出现的相或组织(或称所处的状态)以及当条件改变时相或组织的变化。

是制定材料热处理工艺的依据。

因为铁和碳可形成一系列的稳定碳化物(Fe3C、Fe2C、FeC),其中的含碳量为6.69%,由于Wc>6.69%时的铁碳合金脆性极大,没有实用价值,而且又是一个稳定的化合物,可以作为一个独立的单元,故相图研究Fe-Fe3C相图。

2.共晶反应和共析反应有什么不同?分别写出铁碳合金中两种反应的反应转变式。

答:共晶反应是在结晶过程中由一种液相同时结晶出两种固定成分的固相转变,而共析反应是从一种固相中同时析出两种固定成分的固相转变。

共晶反应1148度共析反应727度3.铁碳合金中基本相是那些?其机械性能如何?答铁素体强度硬度低,塑性韧性好奥氏体强度硬度低,塑性韧性好渗碳体塑性韧性极差,硬度高而极脆4.何谓碳钢中的铁素体、渗碳体、珠光体?他们的力学性能各有何特点?珠光体:是铁素体与渗碳体的机械混合物性能介于铁素体与渗碳体之间,强度较高,硬度适中,有一定的塑韧性。

5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?晶格缺陷使晶格发生畸变,最后使金属的强度硬度有所提高6.简述含碳量为1.0%的钢比含碳量为0.5%的钢硬度高的原因。

含碳量为1%的钢是高碳钢,含碳量越高使得组织内的渗碳体含量越高,股硬度越高。

7.什么是同素异构转变?试以纯铁为例说明金属的同素异构转变。

指某些晶体在不同温度下存在的晶体方式不一样,在加热或者降温过程中,晶体由一种晶格转变成另一种晶格的现象,是热处理的依据。

δ-Fe 体心立方晶格——γ-Fe(1394)面心立方晶格——(912)α-Fe体心立方晶格8.简述随着碳含量增加,碳钢组织的变化,并说明碳含量对碳钢的性能的影响。

9.反复弯曲铁丝,越弯越硬,最后会断裂。

机械工程师必背知识点总结

机械工程师必背知识点总结

机械工程师必背知识点总结1. 材料力学1.1 应力在材料力学中,应力是指单位面积受到的力的大小。

常见的应力有拉应力、压应力、剪应力等。

材料在受到外力作用时,会产生应力,了解材料在不同应力下的性能是机械工程师必备的知识。

1.2 应变应变是材料在受到应力作用时产生的变形程度。

不同的应力会导致材料产生不同的应变,这对于设计和选择合适的材料至关重要。

1.3 杨氏模量杨氏模量是材料的一项重要参数,它描述了材料在受到拉伸或压缩时的弹性性能。

不同的材料具有不同的杨氏模量,工程师需要了解各种材料的杨氏模量,以确保设计的合理性。

1.4 弹性极限材料在受到应力作用时会发生弹性变形,当达到一定应力时,材料会产生塑性变形,这个应力值被称为弹性极限。

了解材料的弹性极限可以帮助工程师评估材料的使用范围和安全系数。

1.5 疲劳在实际工程中,材料会受到交变应力的作用,这会导致疲劳破坏。

了解材料的疲劳性能可以帮助工程师设计出更加耐用的机械结构。

2. 制图基础2.1 线条符号机械工程师需要掌握各种线条符号的含义,例如实线、虚线、粗实线、细实线等,这些线条符号在图纸上代表不同的物体和结构,工程师应当清楚其含义。

2.2 尺寸标注图纸上的尺寸标注是非常重要的,它决定了设计的准确性和可行性。

工程师需要灵活运用各种尺寸标注方法,结合实际情况进行合理标注。

2.3 图纸投影机械工程师需要掌握正投影和等轴投影的简单原理和应用,以确保绘制出的图纸符合实际的尺寸和形状。

2.4 公差在机械制图中,尺寸的精度和公差是非常重要的。

工程师需要了解各种公差的表示和计算方法,保证制图的准确性。

3. 机械设计原理3.1 受力分析在机械设计中,受力分析是至关重要的一环。

工程师需要了解不同零件在受到外力作用时的受力情况,以确保设计的可靠性和稳定性。

3.2 传动原理机械传动是指利用各种传动装置将动力从一个部件传递到另一个部件的过程。

工程师需要了解各种传动装置的原理和工作方式,以确定最合适的传动方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械工程材料知识点第一章金属材料的力学性能及其测定金属材料的力学性能是指材料在外加载荷作用下所表现出来的性能。

任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

载荷分为静载荷(力的大小方向不变或变化很慢)和交变载荷(力的大小方向周期性变化)金属表现来的诸如疲脑强度、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。

工程中常用的强度指标有(1)弹性极限(公式:σe=F e A0)、(2)屈服点(公式:σs=F s A对于高碳钢、铸铁σr0.2=F r0.2A0)和(3)抗拉强度(公式:σb=F b A)。

屈服强度是指金属材料在外力作用下,产生屈服现象时的应1.1 拉伸曲线图力,或开始出现塑性变形时的最低应力值,用σs表示。

抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。

对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。

1.2 塑性塑性是指材料在断裂前产生永久变形的能力。

工程中常用的塑性指标有断后伸长率(公式:δ=l1−l0l×100%)和断面收缩率(公式:ψ=A0−A1A0×100%。

伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。

断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示。

伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。

良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。

测量优缺点:断后伸长率:优点测量方法简单,数据准确、计算简单。

缺点材料必须规格一致。

断面收缩率:不受规格限制。

缺点测量和实验数据不准确。

试件分类:长试件(L d⁄=10)、短试件(L d⁄=5)、长件(L d⁄≥12)、细长件(L d⁄≥20)⑴晶体:结构具有周期性和对称性的固体,原子或分子排列规则。

⑵晶格:用假想的直线将原子中心连接起来所形成的三维空间格架。

⑶液态金属在理论结晶温度以下开始结晶的现象称过冷。

⑷理论结晶温度与实际结晶温度的差∆T称过冷度∆T= T0 –T11.3硬度及其测量硬度是指材料表面抵抗比它更硬的物体压入的能力。

硬度是材料的重要力学性能指标。

一般材料的硬度越高,其耐磨性越好。

材料的强度越高,塑性变形抗力越大,硬度值也越高。

布氏硬度是用单位压痕面积的力作为布氏硬度值的计量即试验力除以压痕表面积,符号用HBS(用淬火钢球压头测量范围450HBS以下)或HBW(用硬质合金压头测量范围650以下)表示,即:洛氏硬度是用压痕深度作为洛氏硬度值的计量即,符号用HR表示,其计算公式为:洛氏硬度值=K−ℎ淬0.002火钢球压头多用于测定退火件、有色金属等较软材料的硬度,压入深度较深;金刚石压头多用于测定淬火钢等较硬材料的硬度,压入深度较浅。

采用不同的压头与总试验力,组合成几种不同的洛氏硬度标尺。

我国常用的是HRA、HRB、HRC三种,其中HRC应用最广。

洛氏硬度无单位,须标明硬度标尺符号,在符号前面写出硬度值,如58HRC、76HRA。

读法,例如,45HRC表示用C标尺测定的洛氏硬度值为45。

布氏硬度实验的优缺点:优点:是测定的数据准确、稳定、数据重复性强,常用于测定退火、正火、调质钢、铸铁及有色金属的硬度。

缺点:是对不同材料需要更换压头和改变载荷,且压痕较大,压痕直径的测量也较麻烦,易损坏成品的表面,故不宜在成品上进行试验。

洛氏硬度试验的优缺点:优点:是操作迅速、简便,硬度值可从表盘上直接读出;压痕较小,可在工件表面试验;可测量较薄工件的硬度,因而广泛用于热处理质量的检验。

缺点:是精确性较低,硬度值重复性差、分散度大,通常需要在材料的不同部位测试数次,取其平均值来代表材料的硬度。

此外,用不同标尺测得的硬度值彼此之间没有联系,也不能直接进行比较。

维氏硬度也是以单位压痕面积的力作为硬度值计量。

试验力较小,压头是锥面夹角为136°的金刚石正四棱锥体,见图所示。

维氏硬度用符号HV表示。

维氏硬度表示方法:在符号HV前方标出硬度值,在HV后面按试验力大小和试验力保持时间(10~15s不标出)的顺序用数字表示试验条件。

例如:640HV300。

维氏硬度试验的优缺点:优点:是可测软、硬金属,特别是极薄零件和渗碳层、渗氮层的硬度,其测得的数值较准确,并且不存在布氏硬度试验那种载荷与压头直径比例关系的约束。

此外,维氏硬度也不存在洛氏硬度那样不同标尺的硬度无法统一的问题,而且比洛氏硬度能更好地测定薄件或薄层的硬度。

缺点:是硬度值的测定较为麻烦,工作效率不如洛氏硬度,因此不太适合成批生产的常规检验。

1.4冲击韧性、疲劳强度冲击韧性:金属材料抵抗冲击载荷而不破坏的能力。

工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功A k,单位为焦耳(J)。

A k=G(H1−H2)。

冲击韧度a k(a k=A k/A)疲劳强度:材料在循环应力的作用下,在一处或几处产生局部永久性积累损伤,经一定循环次数后或突然发生完全断裂的过程称为疲劳。

疲劳强度用σ−1表示单位MPa第二章铁碳合金⑴合金是由两种或两种以上金属元素或金属和非金属组成的具有金属特性的物质⑵合金中凡成分相同、结构相同、聚集态相同,并与其它部分有界面分开的均匀组成部分称为相⑶固溶强化:固溶体中晶格畸变较大,随溶质原子增加合金强度和硬度提高,塑性和韧性降低。

⑷以固溶体为基,弥散分布金属间化合物,可提高强度、硬度和耐磨性,即第二相质点强化或称弥散强化。

⑸晶内偏析:溶质原子在液相能够充分扩散,在固相内来不及扩散,以致固溶体内先结晶的中心和后结晶的部分成分不同。

一个枝晶范围内成分不均匀的现象称作枝晶偏析。

冷速越大,枝晶偏析越严重。

枝晶偏析会影响合金的力学、耐蚀、加工等性能。

2.1金属的晶体结构与结晶固态物质按其原子排列规律的不同可分为晶体与非晶体两大类。

原子呈规则排列的物质称为晶体,晶体具有固定的熔点,呈现规则的外形,并具有各向异性特征;原子呈不规则排列的物质称为非晶体,非晶体没有固定的熔点。

一、晶体结构的基本概念在金属晶体中,原子是按一定的几何规律作周期性规则排列。

是金属的同素异构现象。

1.晶格这种抽象的、用于描述原子在晶体中规则排列方式的空间格子称为晶格。

晶体中的每个点叫做结点。

2.晶胞晶体中原子的排列具有周期性的特点,因此,通常只从晶格中选取一个能够完全反映晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元称为晶胞。

实际上整个晶格就是由许多大小、形状和位向相同的晶胞在三维空间重复堆积排列而成的。

二、常见金属的晶格类型1.体心立方晶格2.面心立方晶格3.密排六方晶格体心立方晶格的金属有铬(Cr)、钨(W)、钼(Mo)、钒(V)、α铁(α-Fe)等。

面心立方晶格的金属有铝(Al)、铜(Cu)、镍(Ni)、金(Au)、银(Ag)、γ铁(γ-Fe)等。

晶体缺陷按几何形状分为点缺陷、线缺陷、面缺陷,晶体缺陷对金属的性能和内部结构都有很大影响。

通常,晶体缺陷产生晶格畸变,使金属的强度、硬度有所提高。

纯金属结晶三、凝固与结晶的基本概念:凝固:物质由液态转变成固态的过程。

结晶:如果凝固的固态物质是原子(或分子)作有规则排列的晶体,则这种凝固又称为结晶。

过程:首先形成晶核吸附周围液体中的原子长大。

与此同时在液体中又有新的晶核产生、长大,直到全部结晶成液态金属。

也是液体中原子有序排列向远程有序排列的过程。

○1过冷度是结晶的必要条件。

过冷度:ΔT = T0– T1○2纯金属结晶是等温结晶。

四、金属晶粒的大小及细化方法目的:以提高金属的力学性能。

方法:1.增加过冷度2.变质处理3附加震动纯铁的同素异晶转变金属的同素异晶转变将导致金属的体积发生变化,并产生较大的应力。

纯铁具有同素异晶转变的特性,因此才有可能通过不同的热处理来改变钢铁的组织和性能。

2.2合金的晶体结构与二元合金相图合金的基本概念(1)合金:金属或非金属通过熔炼或其他放法集合在一起具有金属特性的材料。

(2)组元:组成合金的尊基本的独立物质称为组元,简称元。

(3)合金系:组成物质相同,但组元比例不同。

(4)相:在合金中成分、结构的组成部分成为相。

(5)组织:金属材料的内部微观外貌。

(6)结构:晶体中原之排列的几何方式。

合金的相结构及合金的组织(1)置换固溶体。

溶质原子替换部分溶剂原子占据溶剂晶格中一些节点位置所形成的固溶体。

(2)间隙固溶体原子融入溶剂间隙形成的。

所有的金属化合物都是脆硬相合金组织(1)由单相固溶体晶粒组成(2)由单相的金属化合物晶粒组成(3)由两种固溶体的混合物组成(4)由固溶体和金属化合物组成。

2.3 铁碳合金的基本相1.铁素体(F或a)2.奥氏体(A或y)3.渗碳体(Fe3C铁素体+渗碳体=珠光体;奥氏体+渗碳体=莱氏体。

铁碳合金相图铁素体、奥氏体、渗碳体均为单项组织,称为铁碳合金的基本相。

○3过共析钢:0.77%<W c≤2.11%,室温平衡组织为珠光体+二次渗碳体。

(3)白口铸铁:2.11%<W C≤6.69%。

○1共晶白口铸铁:W C=4.3%,为低温莱氏体。

○2亚共晶白口铸铁:2.11%<W C<4.30%,为珠光体+二次渗碳体+低温莱氏体。

○3过共晶白口铸铁:4.30<W C<6.69%,为低温莱氏体+一次渗碳体。

第三章碳钢的热处理及钢的合金化3.1奥氏体的形成过程加热是热处理的第一道工序,其目的是均匀的奥氏体组织,这种加热转变过程称为钢的奥氏体化。

最终目的是均匀细小的奥氏体晶粒。

(1)A晶核形成。

(2)A晶核长大。

(3)残余F e3C的溶解。

(4)A的均匀化。

钢在冷却时的组织转变在热处理中,通常有两种方式,即等温冷却与连续冷却。

等温转变产物的组织和性能(1)珠光体转变。

分为珠光体(P、A1~650)、索氏体(S、650~600)、托氏体(T、600~550)。

(2)贝氏体转变。

分为上贝氏体(B e、550~350)、下贝氏体(B d、350~Ms)下贝氏体硬度高、属性韧性好,有良好的综合力学性能。

珠光体、贝氏体的转变是通过铁、碳原子的扩散来完成的,所以都是扩散行相变过程。

相关文档
最新文档