初中数学二次根式知识点总结附解析
考点03 二次根式-备战2023届中考数学一轮复习考点梳理(解析版)

考点03 二次根式数学中考中,对二次根式的考察主要集中在对其取值范围、化简计算、坡比的应用几个方面;取值范围类考点多出选择填空等小题,而化简计算则多以简答题形式考察,还常和锐角三角函数、实数概念结合出题,属于中考必考题;考向一、二次根式的相关概念;考向二、二次根式的性质与化简考向三、二次根式的运算;考向四、二次根式的应用考向一:二次根式的相关概念1.平方根与二次根式【易错警示】1.下列式子一定是二次根式的是( )A.B.C.D.【分析】直接利用二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式分别分析得出答案.【解答】解:A、,a有可能小于0,故不一定是二次根式,不合题意;B、,若﹣1<b<1,a>1时,无意义,不合题意;C、,(a﹣1)2≥0,故一定是二次根式,符合题意;D、,若﹣1<a<1时,无意义,不合题意;故选:C.2.12的平方根为 ± .【分析】由平方根的概念即可求解.【解答】解:12的平方根为±,故答案为:±.3.的算术平方根是( )A.5B.﹣5C.D.【分析】一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【解答】解:∵=5,∴的算术平方根是.故选:C.4.若(a +)2与|b ﹣1|互为相反数,则a +b 的值是( )A .B .+1C .﹣1D .1﹣【分析】先根据非负数的性质求出a ,b 的值,进而可得出结论.【解答】解:∵(a +)2与|b ﹣1|互为相反数,∴(a +)2+|b ﹣1|=0,∴a +=0,b ﹣1=0,∴a =﹣,b =1,∴a +b =+1.故选:B .5.已知n 是一个正整数,且是整数,那么n 的最小值是( )A .6B .36C .3D .2【分析】先把=2,从而判断出6n 是完全平方数,所以得出答案正整数n 的最小值是6.【解答】解:=2,则6n 是完全平方数,∴正整数n 的最小值是6,故选:A .2..同类二次根式与最简二次根式【易错警示】、都是二次根式。
初二数学二次根式知识点解析

二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
即:若,则x叫做a的平方根,记作x= 。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。
2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
4.无理数可用有理数形式表示, 如: 。
二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。
3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。
算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。
0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
初中数学二次根式的加减知识点总结

二次根式的加减--知识讲解(基础)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、同类二次根式1.(2015•浦东新区二模)如果最简二次根式与是同类二次根式,那么x的值是()A.-1B.0C.1D.2【思路点拨】根据题意,它们的被开方数相同,列出方程求解即可.【答案】C. 【解析】解:由最简二次根式与是同类二次根式,得x+2=3x ,解得x=1.故选:C .【总结升华】同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式. 举一反三:【变式】如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( )A.a =2,b =1B.a =1,b =2C.a =1,b =-1D.a =1,b =1【答案】D.根据题意,得解之,得,故选D.类型二、二次根式的加减运算2.计算(1)(2015春•建湖县期末) 4﹣+.(2)(2015春•文安县期末) .【答案与解析】解:(1) 原式=4×﹣3+2=2﹣3+2=. (2)原式=2+3﹣2=3x 【总结升华】一定要注意二次根式的加减要做到先化简,再合并. 举一反三:【变式】计算:011(1)()527232π--++-【答案】011(1)()527232π--++- 125332333352332=++--=+-=类型三、二次根式的混合运算3.计算:(1)(+)×;【高清课堂:高清ID 号: 388064关联的位置名称(播放点名称):二次根式的混合运算】(2) 22)3223()3223(--+【思路点拨】二次根式的混合运算要注意公式的灵活运用. 【答案与解析】(1)(+)×=×+×=+=3226+;(2)=(32233223)(32233223)++-+-+原式=6243246⨯=.【总结升华】二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律. 【高清课堂:高清ID 号: 388064关联的位置名称(播放点名称):巩固练习4-5】4、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________. 【答案】1;10. 【解析】225+2656,56)1a b ab ==-∴=-=,10a b +=【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就很简便而且准确. 举一反三: 【变式】已知32,32,x y ==求22x xy y -+的值。
八年级数学二次根式基础知识点详解

二次根式是数学中的一种特殊形式的根式表达方式,通常是指在根号下的表达式中含有一个变量的平方。
二次根式在数学中非常重要,涉及到数学中许多的基本概念和应用。
下面将详细介绍八年级数学中与二次根式有关的基础知识点。
一、二次根式的定义二次根式是形如√a的表达式,其中a可以是一个正实数,也可以是一个变量的平方。
当a是正实数时,√a表示使x²=a的非负实数x。
例如,√4=2,√9=3当a是变量的平方时,√a表示使x²=a的非负实数x的情况。
例如,√x²=x,√(x+1)²=x+1二、二次根式的化简与提取1.化简二次根式当二次根式内没有可以约分的因子时,可以使用下列公式进行化简:√(a×b)=√a×√b√(a/b)=√a/√b例如,√12可以化简为√4×√3,其中√4=2,因此√12=2√32.提取二次根式当二次根式内有可以提取的因子时,可以使用下列公式进行提取:√(a×a×b)=a√b√(a×a×a×b)=a²√b例如,√(16×5)可以提取为4√5三、二次根式的运算1.二次根式的加减运算当两个二次根式的根号内的表达式一样时,可以进行加减运算。
例如,√5+√5=2√5,√3-√3=0。
2.二次根式的乘法运算两个二次根式相乘时,将根号内的表达式相乘,并进行化简。
例如,√2×√3=√(2×3)=√63.二次根式的除法运算两个二次根式相除时,将根号内的表达式相除,并进行化简。
例如,√8/√2=√(8/2)=√4=2四、二次根式的应用1.二次根式的几何意义二次根式可以用来表示几何中的长度、面积等概念。
例如,一个边长为a的正方形的对角线长度可以表示为√2×a。
2.二次根式的解方程二次根式可以用来解决一些方程问题。
例如,方程x²+3x+2=0的解可以表示为√1和√23.二次根式的化简与提取在一些运算或应用问题中,需要对二次根式进行化简或提取,以便得到更简洁的表达式或结果。
初中数学八年级《二次根式》知识点讲解及例题解析

《二次根式》知识讲解及例题解析【学习目标】1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论: a ≥0,(a ≥0),(a ≥0),(a ≥0),并利用它们进行计算和化简.【要点梳理】要点一、二次根式的概念一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号. 要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.要点二、二次根式的性质 1.a ≥0,(a ≥0); 2.(a ≥0);3..4.积的算术平方根等于积中各因式的算术平方根的积,即(a ≥0,b ≥0).5.商的算术平方根等于被除数的算术平方根与除数的算术平方根的商, 即()a a a b a b b b=÷=÷或(a ≥0,b >0).要点诠释: (1)二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥).(22a 2()a 要注意区别与联系:①a 的取值范围不同,2()a 中a ≥02a a 为任意值。
②a ≥0时,2()a 2a a ;a <0时,2()a 2a a -.要点三、最简二次根式(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况: (1) 被开放数是分数或分式; (2)含有能开方的因数或因式.【典型例题】类型一、二次根式的概念1.当x 是__________时,+在实数范围内有意义?【答案】 x ≥-且x ≠-1【解析】依题意,得由①得:x ≥-由②得:x ≠-1 当x ≥-且x ≠-1时,+在实数范围内有意义.【总结升华】本题综合考查了二次根式和分式的概念.举一反三:【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三:【变式】问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3.我们可以计算出①=2=;=3而且还可以计算=2==3(1)根据计算的结果,可以得到:①当a>0时=a;②当a<0时=.(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简﹣﹣.【思路点拨】(1)直接利用a 的取值范围化简求出答案;(2)利用a ,b 的取值范围,进而化简二次根式即可.【答案与解析】解:(1)由题意可得:①当a >0时=a ;②当a <0时=﹣a ;故答案为:a ,﹣a ;(2)如图所示:﹣2<a <﹣1,0<b <1, 则﹣﹣=﹣a ﹣b +(a +b )=0.【总结升华】此题主要考查了二次根式的性质与化简以及实数与数轴,正确化简二次根式是解题关键.类型三、最简二次根式4 (122389)+++【思路点拨】此类题型为规律题型,应该是在分母有理化的基础上寻找规律. 【答案与解析】原式1(21)1(32)19-8...(12)(21)(23)(32)+9-8⨯-⨯-⨯++-+-()(89)()2132...9891 =2【总结升华】找出规律,是这一类型题的特点,要总结此类题型并加以记忆.举一反三: 2323+-a ,小数部分是b ,求22a ab b -+的值.【答案】2(23)(23)=3=7+43(23)(23)-+原式()又因为整数部分是a ,小数部分是b 则a =13,b =43622221313(436)(436)a ab b ∴-+=-⨯+=3311003-。
二次根式知识点总结

二次根式知识点总结
一、二次根式的定义
二次根式是指形如 $\sqrt{a}$ 的无理数或代数式,其中 $a$ 是一个
非完全平方数,即 $a$ 不能表示为某个正整数的平方。
二、简化二次根式
1. 将二次根式 $\sqrt{a}$ 化简为 $\sqrt{b}$ 的形式,其中
$b$ 是 $a$ 的正因子;
2. 对于 $\sqrt{a}\pm\sqrt{b}$,可通过有理化分母的方法化为
$\frac{\sqrt{c}\pm\sqrt{d}}{e}$ 的形式,其中 $c$、$d$、$e$ 均
为整数。
三、二次根式的运算
1. 二次根式加减法:将同类项合并,并对结果进行简化;
2. 二次根式乘法:利用分配律,将每一项分别与另一个二次根式相乘,并化简结果;
3. 二次根式除法:将除数、被除数都乘以分母的共轭复数,化为分母
为整数的形式后进行约分。
四、二次根式的应用
1. 应用勾股定理求直角三角形的一条边;
2. 当面积或体积为二次根式时,可通过二次根式的运算得到结果。
五、注意事项
1. 化简二次根式时,应将完全平方因子提出;
2. 二次根式运算时,不同二次根式之间不能进行加减法;
3. 对于 $\sqrt{a}$,$a$ 不能为负数。
二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
初中数学二次根式知识点总复习含解析(1)

初中数学二次根式知识点总复习含解析(1)一、选择题 1.若1x +有意义,则x 的取值范围是( ) A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】要是二次根式a 有意义,被开方数a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】若1x +有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.2.下列各式中计算正确的是()A .268+=B .2323+=C .3515⨯=D .42= 【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:A. 2和6不是同类二次根式,不能合并,故本选项错误;B.2和3不是同类二次根式,不能合并,故本选项错误;C. 3515⨯=,计算正确,故本选项正确;D.42=1,原式计算错误,故本选项错误. 故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b【答案】B【解析】【分析】 根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<, ∴()()22a a b a b a a b +-=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.4.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意; 选项D ,被开方数含分母, D 不符合题意,故选A .5.已知n 135n 是整数,则n 的最小值是( ).A .3B .5C .15D .25【答案】C【解析】【分析】【详解】 解:135315n n =Q 135n 15n 也是整数,∴n 的最小正整数值是15,故选C .6.下列各式计算正确的是( )A .2+b =2bB 523=C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .7.x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.8.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m =3,是同类二次根式,故此选项不符合题意 故选:B本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.9.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.如果一个三角形的三边长分别为12、k、7221236k k-+|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.14.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C、=(D、=【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.15.计算20172019(32)(32)+-的结果是( ) A .2+3B .32-C .437-D .743- 【答案】C 【解析】【分析】先利用积的乘方得到原式= 20172[(32)(32)](32)+-⋅-,然后根据平方差公式和完全平方公式计算.【详解】 解:原式=20172[(32)(32)](32)+-⋅-=2017(34)(3434)-⋅-+1(743)=-⨯-437=-故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )AB .C + 1D + 2【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】 解:(221m m ++1)31m m+÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.n 的最大值为( )A .12B .11C .8D .3 【答案】C【解析】【分析】如果实数n 取最大值,那么12-n22,从而得出结果.【详解】2时,n 取最大值,则n =8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.,a==ba 、b 可以表示为 ( )A .10a b+ B .10-b aC .10ab D .ba3.下列各式成立的是( )A3= B3= C.22(3=- D.2-=4.下列计算结果正确的是( ) AB.3= C=D=5.下列各式中,运算正确的是( )A.=-=.2=D2=-6.m 能取的最小整数值是( ) A .m = 0B .m = 1C .m = 2D .m = 37.已知44220,24,180x y x y >+=++=、.则xy=( )A .8B .9C .10D .118.当4x =-的值为( )A .1 BC .2D .39.有意义,则字母x 的取值范围是( ) A .x≥1 B .x≠2C .x≥1且x =2D ..x≥-1且x ≠210.若a,b =,则a b 的值为( )A .12 B .14C .321+D二、填空题11.已知实数,x y满足(2008x y =,则2232332007x y x y -+--的值为______.12.能力拓展:1:2121A -=+;2:3232A -=+;3:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴32+________21+∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.计算(π-3)02-211(223)-4-22--()的结果为_____. 15.()2117932x x x y ---=-,则2x ﹣18y 2=_____.16.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.18222a a ++的最小值是______.19.计算:652015·652016=________. 20.化简(32)(322)+-的结果为_________.三、解答题21.先阅读材料,再回答问题: 因为)21211=2121=+;因为(32321=,所以3232=+(43431=4343=+ (154=+ ,1n n=++ ; (2213210099⋅⋅⋅++++的值. 【答案】(1541n n +2)9 【分析】 (1)仿照例子,由54541+=54+的值;由111n nn n +++=11n n++的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】 解:(1)因为54541-=54+54; 因为111n nn n ++=11n n++1n n +541n n +(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=a b,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.解:设x222x=++2334x=+,x2=10∴x=10..【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x2=2+2+即x2=4+4+6,x2=14∴x=.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.1)-26.(1)计算:2(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质得出5-x≥0,求出即可. 【详解】|5|5x x ==-=-, ∴5-x≥0, 解得:x≤5, 故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C 【分析】化简即可. 【详解】10ab. 故选C . 【点睛】的形式. 3.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】解:A 3=,故A 正确;B -不能合并,故B 错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C=D5==,故D选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.5.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D2=,故D错误;故选:A.【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.6.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1.故选:B .【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握. 8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x将4x =代入得, 原式11423423 22111313 3113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0, 解得:x≥-1且x≠2.故选:D .【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.10.B解析:B【解析】【分析】将a可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出a b 的值.【详解】a=b 44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】 (1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.13.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。